Appendix 3.2C
Jurisdictional Determination
This page intentionally left blank.
DEPARTMENT OF THE ARMY
Los Angeles District, Corps of Engineers
Ventura Field Office
2151 Alessandro Drive, Suite 110
Ventura, CA 93001

February 12, 2013

REPLY TO
ATTENTION OF
Regulatory Division

Allen Elliot, SSFL Project Director
National Aeronautics and Space Administration
Office of Center Operations
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

SUBJECT: Approved Jurisdictional Determination regarding presence/absence of geographic jurisdiction

Dear Mr. Elliot:

Reference is made to your request (File No. SPL-2012-00520-AJS) dated April 11, 2012 for an approved Department of the Army jurisdictional determination (JD) for the NASA-Administered Property at the Santa Susana Field Lab (at long: -118.698205, lat: 34.232447) located near the City of Simi Valley, Ventura County, California.

As you may know, the Corps’ evaluation process for determining whether or not a Department of the Army permit is needed involves two tests. If both tests are met, then a permit is required. The first test determines whether or not the proposed project is located in a water of the United States (i.e., it is within the Corps’ geographic jurisdiction). The second test determines whether or not the proposed project is a regulated activity under Section 10 of the River and Harbor Act or Section 404 of the Clean Water Act. As part of the evaluation process, pertaining to the first test only, we have made the jurisdictional determination below.

Based on available information, we have determined there are waters of the United States on the project site, as well as non-jurisdictional aquatic resources, in the locations depicted on the enclosed drawing. The Corps concurs with the findings and extent of waters of the United States and wetlands as presented in the “Wetlands and Waters of the United States, Delineation for the NASA-Administered Portions of the Santa Susana Field Laboratory, Ventura County, California” dated March 2012, with the exception of “SW-1 Pond, “Drainage A-1” and “PLF Drainage.” These features consist of poorly defined swales or erosional features lacking an ordinary high water mark and thus not considered waters of the United States. The basis for our determination can be found in the enclosed JD form(s).

The aquatic resource identified as “SW-2 Pond” including the associated tributary drainage on the above drawing is an intrastate isolated water with no apparent interstate or foreign commerce connection. As such, this water is not currently regulated by the Corps of Engineers. This disclaimer of jurisdiction is only for Section 404 of the Clean Water Act. Other Federal, State, and local laws may apply to your activities. In particular, you may need authorization from the California State Water Resources Control Board and/or the U.S. Fish and Wildlife Service.

This letter contains an approved jurisdictional determination for the NASA-Administered Property at the Santa Susana Field Lab. If you object to this decision, you may
request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet (Appendix A) and Request for Appeal (RFA) form. If you request to appeal this decision you must submit a completed RFA form to the Corps South Pacific Division Office at the following address:

Tom Cavanaugh
Administrative Appeal Review Officer,
U.S. Army Corps of Engineers
South Pacific Division, CESPD-PDS-O, 2042B
1455 Market Street, San Francisco, California 94103-1399

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 C.F.R. Part 331.5, and that it has been received by the Division Office within 60 days of the date on the NAP. Should you decide to submit an RFA form, it must be received at the above address by April 13, 2013. It is not necessary to submit an RFA form to the Division office if you do not object to the decision in this letter.

This verification is valid for five years from the date of this letter, unless new information warrants revision of the determination before the expiration date. If you wish to submit new information regarding the approved jurisdictional determination for this site, please submit this information to Antal Szijj at the letterhead address April 13, 2013. The Corps will consider any new information so submitted and respond within 60 days by either revising the prior determination, if appropriate, or reissuing the prior determination. A revised or reissued jurisdictional determination can be appealed as described above.

This determination has been conducted to identify the extent of the Corps' Clean Water Act jurisdiction on the particular project site identified in your request. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

If you have any questions, please contact Antal Szijj of my staff at 805-585-2147 or via e-mail at AntalJ.Szijj@usace.army.mil.

Please be advised that you can now comment on your experience with Regulatory Division by accessing the Corps web-based customer survey form at http://per2.nwp.usace.army.mil/survey.html.

Sincerely,

[Signature]

Aaron O. Allen
Chief, North Coast Branch
Regulatory Division

Enclosures

Cf: Steve Long, CH2M Hill
NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applicant: NASA
File Number: SPL-2012-520
Date: 12-Feb-2013

<table>
<thead>
<tr>
<th>Attached is:</th>
<th>See Section below</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission)</td>
<td>A</td>
</tr>
<tr>
<td>PROFFERED PERMIT (Standard Permit or Letter of permission)</td>
<td>B</td>
</tr>
<tr>
<td>PERMIT DENIAL</td>
<td>C</td>
</tr>
<tr>
<td>X APPROVED JURISDICTIONAL DETERMINATION</td>
<td>D</td>
</tr>
<tr>
<td>PRELIMINARY JURISDICTIONAL DETERMINATION</td>
<td>E</td>
</tr>
</tbody>
</table>

SECTION I

The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://www.usace.army.mil/csgw/pages/reg_materials.aspx or Corps regulations at 33 CFR Part 331.

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- **ACCEPT:** If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.

- **OBJECT:** If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit.

- **ACCEPT:** If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.

- **APPEAL:** If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- **ACCEPT:** You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.

- **APPEAL:** If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

SECTION II - REQUEST FOR APPEAL OR OBJECTIONS TO AN INITIAL PROFERED PERMIT

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.

POINT OF CONTACT FOR QUESTIONS OR INFORMATION:

If you have questions regarding this decision and/or the appeal process you may contact:
Antal Szijj, Senior Project Manager
U.S. Army Corps of Engineers
Los Angeles District, Ventura Field Office
2151 Alessandro Dr, Suite 110
Ventura, CA 93001
Phone: (805)-585-2147 Fax (805) 585-2154
Email: antal.j.szijj@usace.army.mil

If you only have questions regarding the appeal process you may also contact: Thomas J. Cavanaugh
Administrative Appeal Review Officer,
U.S. Army Corps of Engineers
South Pacific Division
1455 Market Street, 2052B
San Francisco, California 94103-1399
Phone: (415) 503-6574 Fax: (415) 503-6646
Email: thomas.j.cavanaugh@usace.army.mil

RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations.

__
Signature of appellant or agent.

Date: ________________________ Telephone number: ________________________
Administrative Appeal Process for Approved Jurisdictional Determinations

District issues approved Jurisdictional Determination (JD) to applicant/landowner with NAP.

- Approved JD valid for 5 years:
 - Yes: District makes new approved JD
 - No: Applicant/landowner accepts approved JD?
 - Yes: Applicant/landowner provides new information?
 - Yes: Applicant decides to appeal approved JD
 - Applicant submits RFA to division engineer within 60 days of date of NAP
 - Corps reviews RFA and notifies appellant within 30 days of receipt
 - To continue with appeal process, appellant must rewrite RFA. See Appendix D.
 - Is RFA acceptable?
 - Yes: Optional JD Appeals Meeting and/or site investigation
 - R0 reviews record and the division engineer (or designee) renders a decision on the merits of the appeal within 90 days of receipt of an acceptable RFA
 - Division engineer or designee submits decision to district with specific instructions, for reconsideration; appeal process completed.
 - Does the appeal have merit?
 - Yes: District's decision is upheld; appeal process completed
 - No: Does the appeal have merit?
 - Yes: District's decision is upheld; appeal process completed
 - No: Does the appeal have merit?
 - Yes: District's decision is upheld; appeal process completed
 - No: District's decision is upheld; appeal process completed

Max 60 days

Max 30 days

Max 30 days

Appendix C
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 01/14/2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office; SSFL NASA Property Delineation;
File no. SPL-2012-520-AJS: Southwestern Drainage tributary

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: CA County/parish/borough: Ventura City: unincorporated (SSFL)
Center coordinates of site (lat/long in degree decimal format): Lat. 32.2276° N, Long. 118.7080° W
Universal Transverse Mercator:
Name of nearest waterbody: Bell Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Los Angeles River
Name of watershed or Hydrologic Unit Code (HUC): Los Angeles River (18070105)
☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offshore mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☐ Office (Desk) Determination. Date: 09/12/2012
☐ Field Determination. Date(s): Jan 2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
There ☐☐☐ “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the
review area. [Required]
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
There ☐☐☐ “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 1300 linear feet; 2 width (ft) and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHVM.
 Elevation of established OHVM (if known):

2. Non-regulated waters/wetlands (check if applicable):3
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain:

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 37 square miles
 Drainage area: 40 square miles
 Average annual rainfall: 19 inches
 Average annual snowfall: 0 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☐ Tributary flows directly into TNW.
 ☒ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 5-18 river miles from TNW.
 Project waters are 1 or less river miles from RPW.
 Project waters are 3-14 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: n/a.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW\(^5\): Upper Southwestern Drainage flows into R2A Pond, thence to Bell Canyon Channel (natural), thence to the channelized section of lower Bell Canyon. The downstream TNW is upper end of the Los Angeles River, at the confluence of Bell Canyon Channel and Arroyo Calabasas.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

- **Tributary is:**
 - Natural
 - Artificial (man-made). Explain:

- **Tributary properties with respect to top of bank (estimate):**
 - Average width: 4-5 feet
 - Average depth: 1 foot
 - Average side slopes: \(\frac{3}{4}\).

- **Primary tributary substrate composition (check all that apply):**
 - **\(\checkmark\)** Silts
 - **\(\checkmark\)** Sands
 - **\(\checkmark\)** Gravel
 - **\(\checkmark\)** Vegetation. Type/% cover:
 - **\(\checkmark\)** Concrete
 - **\(\checkmark\)** Muck

- **Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: some incision evident.**

- **Presence of run/riffle/pool complexes. Explain: n/a.**

- **Tributary geometry:**

- **Tributary gradient (approximate average slope): 1%**

(c) **Flow:**
- **Tributary provides for:**
 - **\(\checkmark\)** Ephemeral flow

- **Estimate average number of flow events in review area/year:**

- **Describe flow regime:**
 - Ephemeral.

- **Other information on duration and volume:**
 - Channel previously affected by discharges from SSFL test operations requiring cooling water (no longer conducted). Channel and downstream impoundments acted to collect cooling water discharges during rocket engine testing.

- **Surface flow:**
 - **\(\checkmark\)** Confined. Characteristics:

- **Subsurface flow:**
 - **\(\checkmark\)** Unknown. Explain findings:
 - Dye (or other) test performed:

- **Tributary has (check all that apply):**
 - **\(\checkmark\)** Bed and banks
 - **\(\checkmark\)** OHWM\(^6\) (check all indicators that apply):
 - **\(\checkmark\)** clear, natural line impressed on the bank
 - **\(\checkmark\)** changes in the character of soil
 - **\(\checkmark\)** shelving
 - **\(\checkmark\)** vegetation matted down, bent, or absent
 - **\(\checkmark\)** leaf litter disturbed or washed away
 - **\(\checkmark\)** sediment deposition
 - **\(\checkmark\)** water staining
 - **\(\checkmark\)** other (list):
 - **\(\checkmark\)** the presence of litter and debris
 - **\(\checkmark\)** destruction of terrestrial vegetation
 - **\(\checkmark\)** the presence of wrack line
 - **\(\checkmark\)** sediment sorting
 - **\(\checkmark\)** scour
 - **\(\checkmark\)** multiple observed or predicted flow events
 - **\(\checkmark\)** abrupt change in plant community

- **If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):**
 - **\(\checkmark\)** High Tide Line indicated by:
 - **\(\checkmark\)** Mean High Water Mark indicated by:
 - **\(\checkmark\)** oil or scum line along shore objects
 - **\(\checkmark\)** fine shell or debris deposits (foreshore)
 - **\(\checkmark\)** physical markings/characteristics
 - **\(\checkmark\)** tidal gauges
 - **\(\checkmark\)** other (list):
 - **\(\checkmark\)** survey to available datum;
 - **\(\checkmark\)** physical markings;
 - **\(\checkmark\)** vegetation lines/changes in vegetation types.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
 Explain: water not present at time of delineation.
 Identify specific pollutants, if known: heavy metals.
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): lower reach support mulefat and arroyo willow.
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
- Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List Explain: surface water only present in impounded areas.

Surface flow is: Pick List
Characteristics:

Subsurface flow: Pick List Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List
 Approximately (_____) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: The subject tributary is a small ephemeral drainage with a narrow (approx 2-3 foot) but well-defined ordinary high water mark. The channel itself is largely unvegetated, but adjacent uplands include coast live oak, ceanothus, coyotebrush and chamise. The tributary drains an area that supported the Systems Test Laboratory facilities. Flows are eventually conveyed to the "southwestern drainage" prior to entering a secondary holding pond and thence to Bell Canyon Channel. The downstream TNW (upper reach of the Los Angeles River) is approximately 8 miles downstream. The total drainage area of the tributary represents approximately 0.002% of the watershed draining to the downstream TNW. Soil testing within the channel and surrounding watershed have revealed elevated levels of heavy metals (lead, cadmium, copper and/or mercury), Bell Canyon Channel, inclusive of the reach within the review area, is included on the list 303(d) impaired waterbodies due to bacterial contamination. The tributary therefore has a significant nexus to the downstream TNW by virtue of its potential to deliver contaminants downstream.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetlands present are palustrine in nature as the result of impoundments of tributary. Flow and potential pollutants would be conveyed through wetland, therefore the wetlands in question have a significant nexus to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.
2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: 1,300 linear feet; 3 width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: 0.64 acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY).

*See Footnote # 3.

* To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
which are or could be used by interstate or foreign travelers for recreational or other purposes.
from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
which are or could be used for industrial purposes by industries in interstate commerce.
Interstate isolated waters. Explain: .
Other factors. Explain: .

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: 0.155 acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- Corps navigable waters study:
- U.S. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s), Cite scale & quad name:
- USDA Natural Resources Conservation Service Soil Survey. Citation:
- National wetlands inventory map(s). Cite name:
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date):

Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Ramos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject tributary is a small first order drainage channel with an average OHWM width of 2-3 feet. The drainage area is roughly 40 acres. Soil sampling within the drainage area has identified elevated levels of heavy metals and dioxin. Based on these results, the subject tributary appears to have a significant nexus to the downstream TNW (upper Los Angeles River, approximately 8 river miles downstream) based on the potential to deliver contaminants downstream.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 09/12/2012

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office; SSFL NASA Property Delinication; File no. SPL-2012-520-AJS: Upper Bell Creek (aka Southwestern Drainage)

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: CA County/parish/borough: Ventura City: unincorporated (SSFL)
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.23245° N, Long. 118.6982° W
 Universal Transverse Mercator:
 Name of nearest waterbody: Bell Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Los Angeles River
 Name of watershed or Hydrologic Unit Code (HUC): Los Angeles River (18070105)
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date: 09/12/2012
 Field Determination. Date(s): Jan 2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide:

Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 13200 linear feet: 5 width (ft) and/or 1.52 acres.
 Wetlands: 0.64 acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain:

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
 Watershed size: 37 square miles
 Drainage area: 1060 acres
 Average annual rainfall: 19 inches
 Average annual snowfall: 0 inches

(ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 ✗ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 4-10 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 5-10 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: n/a.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW: Upper Southwestern Drainage flows into R2A Pond, thence to Bell Canyon Channel (natural), thence to the channelized section of lower Bell Canyon. The downstream TNW is upper end of the Los Angeles River, at the confluence of Bell Canyon Channel and Arroyo Calabasas. Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):
Tributary is: □ Natural

Tributary properties with respect to top of bank (estimate):
Average width: 4-5 feet
Average depth: 1 foot
Average side slopes: 7:1.

Primary tributary substrate composition (check all that apply):
□ Silts □ Sands □ Concrete
□ Cobble □ Gravel □ Muck
□ Bedrock □ Vegetation. Type/cover:
□ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: some incision evident.
Tributary geometry: Meandering
Tributary gradient (approximate average slope): 1 %

c) Flow:
Tributary provides for: Ephemeral flow
Estimate average number of flow events in review area/year: 5
Describe flow regime: ephemeral

Other information on duration and volume: Channel previously affected by discharges from SSFL test operations requiring cooling water (no longer conducted). Channel and downstream impoundments acted to collect cooling water discharges during rocket engine testing.

Surface flow is: Discrete and confined. Characteristics:

Subsurface flow: Unknown. Explain findings:
□ Dye (or other) test performed:

Tributary has (check all that apply):
□ Bed and banks
□ OHWM (check all indicators that apply):
□ clear, natural line impressed on the bank □ destruction of terrestrial vegetation
□ changes in the character of soil □ the presence of litter and debris
□ shelving □ scour
□ vegetation matted down, bent, or absent □ sediment sorting
□ leaf litter disturbed or washed away □ multiple observed or predicted flow events
□ sediment deposition □ abrupt change in plant community
□ water stalling
□ other (list):
□ Discontinuous OHWM. Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
□ High Tide Line indicated by: □ Mean High Water Mark indicated by:
□ oil or scum line along shore objects □ survey to available datum;
□ fine shell or debris deposits (foreshore) □ physical markings;
□ physical markings/characteristics □ vegetation lines/changes in vegetation types.
□ tidal gauges □ other (list):

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: water not present at time of delineation.
Identify specific pollutants, if known: heavy metals.
(iv) **Biological Characteristics.** Channel supports (check all that apply):
- ☑ Riparian corridor. Characteristics (type, average width): lower reach support mulefat and arroyo willow.
- ☑ Wetland fringe. Characteristics:
- ☐ Habitat for:
 - ☐ Federally Listed species. Explain findings:
 - ☐ Fish/spawn areas. Explain findings:
 - ☐ Other environmentally-sensitive species. Explain findings:
 - ☐ Aquatic/wildlife diversity. Explain findings:

2. **Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW**

 (i) **Physical Characteristics:**
 - (a) **General Wetland Characteristics:**
 Properties:
 - Wetland size: 0.64 acres
 - Wetland type. Explain: palustine.
 - Wetland quality. Explain: poor. formed as a result of 2 impoundments (0.51 and 0.13 acre respectively) intended to collect runoff from testing operations (no longer conducted). An additional impoundment area outside the review area (Boeing property) is also present and likely supports similar degraded palustine wetlands.
 - Project wetlands cross or serve as state boundaries. Explain: n/a.

 (b) **General Flow Relationship with Non-TNW:**
 - Flow is: [general flow] Explain: surface water only present in impounded areas.
 - Surface flow is: [not present]
 - Characteristics:
 - ☐ Dye (or other) test performed:

 (c) **Wetland Adjacency Determination with Non-TNW:**
 - ☑ Directly abutting
 - ☑ Not directly abutting
 - ☐ Discrete wetland hydrologic connection. Explain:
 - ☐ Ecological connection. Explain:
 - ☐ Separated by berm/barrier. Explain:

 (d) **Proximity (Relationship) to TNW**
 - Project wetlands are 5-10 river miles from TNW.
 - Project waters are 5-10 aerial (straight) miles from TNW.
 - Flow is from: Wetland to navigable waters.
 - Estimate approximate location of wetland as within the 2-year or less floodplain.

(ii) **Chemical Characteristics:**
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: dry at time of delineation.
Identify specific pollutants, if known: heavy metals detected downstream.

(iii) **Biological Characteristics.** Wetland supports (check all that apply):
- ☑ Vegetation type/percent cover. Explain: Open water area varies depending on inundation. Fringe area supports Typha spp. and sparse mulefat and arroyo willow.
- ☑ Habitat for:
 - ☑ Federally Listed species. Explain findings:
 - ☐ Fish/spawn areas. Explain findings:
 - ☐ Other environmentally-sensitive species. Explain findings:
 - ☐ Aquatic/wildlife diversity. Explain findings:

3. **Characteristics of all wetlands adjacent to the tributary (if any)**
 All wetland(s) being considered in the cumulative analysis: 2
 - Approximately (.64) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.13</td>
<td>y</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: 1 very small impoundment area with managed hydrology. Dominated by Typha sp. and ungerinated open water (dry at time of delineation). A second, larger impoundment occurs immediately downstream also collecting flow from the COCA drain and PLY drain. Impoundments were originally constructed to collect runoff from testing operations, which may also contain contaminants. An additional impoundment along flow route likely supports palustrine fringe wetlands, however this was outside the assessment area.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The subject tributary is a small ephemeral drainage with a discontinuous ordinary high water mark averaging 4-5 feet in width. The tributary includes concrete-lined sections and flow control weirs. Historically, the channel functioned to collect and convey runoff from adjacent road engine test stands that require substantial amounts of cooling water during testing. Flows are eventually conveyed to a holding pond off the NASA property (Boeing property) and thence to a secondary pond and thence to Bell Canyon Channel. The downstream TNW (upper reach of the Los Angeles River) is approximately 8 miles downstream. The total drainage area of the tributary represents approximately 2% of the watershed draining to the downstream TNW. Soil testing within the channel and surrounding watershed have revealed elevated levels of heavy metals (lead, cadmium, copper and/or mercury). Bell Canyon Channel, inclusive of the reach within the review area, is included on the list 303(d) impaired waterbodies due to bacterial contamination. The tributary therefore has a significant nexus to the downstream TNW by virtue of its potential to deliver contaminants downstream.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetlands present are palustrine in nature as the result of impoundments of tributary. Flow and potential pollutants would be conveyed through wetland, therefore the wetlands in question have a significant nexus to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

7
1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), or acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial.
 - Tributaries of TNW where tributaries have continuous flow: "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. **Non-RPWs* that flow directly or indirectly into TNWs.**
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: 10200 linear feet; 5 width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW.
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: 0.64 acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from "waters of the U.S."
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

*See Footnote # 3.

*To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10

☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
☐ Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet width (ft).
☐ Other non-wetland waters: acres.
☐ Identify type(s) of waters:
☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
☐ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: 0.155 acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☒ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ Corps navigable waters’ study:
☐ U.S. Geological Survey Hydrologic Atlas:
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☐ U.S. Geological Survey map(s), Cite scale & quad name:
☐ USDA Natural Resources Conservation Service Soil Survey. Citation:
☐ National wetlands inventory map(s). Cite name:

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject tributary is a small first order drainage channel with an average OHWM width of 4-5 feet. The drainage area is roughly 1,060 acres. Soil sampling within the drainage area has identified elevated levels of heavy metals and dioxin. Based on these results, the subject tributary appears to have a significant nexus to the downstream TNW (upper Los Angeles River, approximately 8 river miles downstream) based on the potential to deliver contaminants downstream.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 11/15/2012

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office, SSFL NASA Property Delineation; file no. SPL-2012-520-AJS: SW-2 Pond

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
State: CA County/parish/borough: Ventura City: unincorporated (SSFL)
Center coordinates of site (lat/long in degree decimal format): Lat. 34.2389° N Long. 118.6892° W
Universal Transverse Mercator:
Name of nearest waterbody: SW-2 Pond
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: n/a (isolated)
Name of watershed or Hydrologic Unit Code (HUC): Callegus Creek (18070103)
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
Office (Desk) Determination. Date: 01/09/2013
Field Determination. Date(s): 12/20/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
There are “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 TNWs, including territorial seas
 Wetlands adjacent to TNWs
 Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 Non-RPWs that flow directly or indirectly into TNWs
 Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 Impoundments of jurisdictional waters
 Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: acres.
 c. Limits (boundaries) of jurisdiction based on: Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable): ³
 Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Pond appears to be isolated based on field observations and site topography.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.

2
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanov have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: [reddacted]
 Drainage area: [reddacted]
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 □ Tributary flows directly into TNW.
 □ Tributary flows through [reddacted] tributaries before entering TNW.

 Project waters are [reddacted] river miles from TNW.
 Project waters are [reddacted] river miles from RPW.
 Project waters are [reddacted] aerial (straight) miles from TNW.
 Project waters are [reddacted] aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain:

 Identify flow route to TNW:
 Tributary stream order, if known:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
(b) General Tributary Characteristics (check all that apply):

Tributary is:
☐ Natural
☐ Artificial (man-made). Explain:
☐ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
Average width: feet
Average depth: feet
Average side slopes: Pick List.

Primary tributary substrate composition (check all that apply):
☐ Silts ☐ Sands ☐ Concrete
☐ Cobbles ☐ Gravel ☐ Mud
☐ Bedrock ☐ Vegetation. Type/% cover:
☐ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List.
Tributary gradient (approximate average slope): %

(c) Flow:
Tributary provides for: Pick List.
Estimate average number of flow events in review area/year: Pick List.
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
☐ Dye (or other) test performed:

Tributary has (check all that apply):
☐ Bed and banks
☐ OHWM* (check all indicators that apply):
☐ the presence of litter and debris
☐ clear, natural line impressed on the bank
☐ changes in the character of soil
☐ destruction of terrestrial vegetation
☐ shelving
☐ the presence of wrack line
☐ vegetation matted down, bent, or absent
☐ sediment sorting
☐ leaf litter disturbed or washed away
☐ scour
☐ sediment deposition
☐ multiple observed or predicted flow events
☐ water staining
☐ abrupt change in plant community
☐ other (list):
☐ Discontinuous OHWM.7 Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
☐ High Tide Line indicated by:
☐ Mean High Water Mark indicated by:
☐ oil or scum line along shore objects
☐ survey to available datum;
☐ fine shell or debris deposits (foreshore)
☐ physical markings;
☐ physical markings/characteristics
☐ vegetation lines/changes in vegetation types.
☐ tidal gauges
☐ other (list):

(III) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

*A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
7Ibid.
Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear foot width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .

3. Non-RPWs that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
- Wetlands adjacent to such waters, and when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.
- As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from “waters of the U.S.” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, "THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY)."
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

*See Footnote # 3.

* To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

** Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
- Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: 0.15 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately referenced sources below):
- Maps, plans, plots or plats submitted by or on behalf of the applicant/consultant.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- Corps navigable waters' study:
- U.S. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name:
- USDA Natural Resources Conservation Service Soil Survey. Citation:
- National wetlands inventory map(s). Cite name:
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): google earth, various dates. or Other (Name & Date): site photos 12/20/2012.
- Previous determination(s). File no. and date of response letter:
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject pond appears to be an excavated feature approximately 0.15 acre in size that is seasonally ponded and supports wetland characteristics (classified as a seasonally flooded palustrine emergent wetland). There is no evidence indicating the pond overflows and connects with non-isolated drainage features which ultimately drain to a TNW or cross state lines. The pond is within the larger Calleguas Creek watershed and sits within an elevated plateau area surrounded by rock formations to the
north, east and south. The drainage area of the pond is estimated to be approximately 20 acres. A small area of ponded water was evident within the larger feature during a 12/20/2012 site visit. No evidence of outflow (scour, debris deposits, etc) was observed. The nearest drainage feature, an ephemeral drainage channel ("northem drainage") ultimately draining to Calleguas Creek, is approximately 500 lateral feet and 100 vertical feet removed from the pond at its nearest point. No sources of interstate commerce were identified.
SW-2 pond drainage area (approx 20 acres)

SW-2 pond (12/20/2012)
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 09/12/2012
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office; SSFL NASA Property Delineation; File no. SPL-2012-520-AJS: Northern Drainage
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: CA County/parish/borough: Ventura City: unincorporated (SSFL)
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.23245° N, Long. 118.6982° W
 Universal Transverse Mercator:
 Name of nearest waterbody: Northern Drainage
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Lower Calleguas Creek
 Name of watershed or Hydrologic Unit Code (HUC): Calleguas Creek (18070103)
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date: 09/12/2012
 Field Determination. Date(s): Jan 2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are not “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are and are not “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 TNWs, including territorial seas
 Wetlands adjacent to TNWs
 Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 Non-RPWs that flow directly or indirectly into TNWs
 Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 Impoundments of jurisdictional waters
 Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 3200 linear feet: 8width (ft) and/or acres:
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM.
 Establishment of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: a small pond, approximately 0.15 acre in size and apparently excavated within the drainage area, was determined to be isolated. A separate JD form was prepared to address this pond.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
 Watershed size: 29 square miles
 Drainage area: 400 acres
 Average annual rainfall: 19 inches
 Average annual snowfall: 0 inches

(ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 5 tributaries before entering TNW.

 Project waters are 15-30 river miles from TNW.
 Project waters are 30+ river miles from RPW.
 Project waters are 20-50 aerial (straight) miles from TNW.
 Project waters are 2-5 aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: n/a.

 Identify flow route to TNW: Northern Drainage flows approximately 2.5 miles to Meier Creek, thence to Arroyo Simi, Arroyo Las Posas and Calleguas Creek. The downstream TNW is the upper limit of tidal influence on Calleguas Creek.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: 8 feet
- Average depth: 2 feet
- Average side slopes: 2:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobble
- Gravel
- Bedrock
- Vegetation. Type/=% cover:
- Concrete
- Muck
- Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: some incision evident.
Tributary geometry: Sinuous
Tributary gradient (approximate average slope): 1 %

(c) Flow:

Tributary provides for: Seasonal flow
Estimate average number of flow events in review area/year: 2
Describe flow regime: intermittent.
Other information on duration and volume:

Surface flow is: Confined. Characteristics:

Subsurface flow: Unknown. Explain findings:
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM6 (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- Discontinuous OHWM.7 Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: water not present at time of delineation.
Identify specific pollutants, if known: heavy metals, dioxin.

6A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:

Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
- Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:

Surface flow is: Pick List.
Characteristics:

Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain:
- Ecological connection. Explain:
- Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List.
Approximately (______) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young, for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: The subject tributary is an ephemeral drainage with an ordinary high water mark of 6-10 feet in width. Estimated discharge volumes at Outfall 009 (which includes the subject tributary plus the contribution from the ELV tributary) is approximately 12 cfs for a 1-year, 24-hour flood event, 49 cfs for the 10-year event and 100 cfs for the 100-year event. The downstream TNW (upper limit of tidal influence on Callegua Creek) is approximately 28 miles downstream. The total drainage area of the tributary represents approximately 0.21% of the watershed draining to the downstream TNW. Soil testing within the channel and surrounding watershed have revealed elevated levels of heavy metals (lead, cadmium, copper and/or mercury) as well as dioxin at one location. The tributary therefore has a significant nexus to the downstream TNW by virtue of its potential to deliver contaminants downstream.

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
1. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial.

2. Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: 3,000 linear feet; $ width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters. *

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): *

*See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- [] Tributary waters: linear feet width (ft).
- [] Other non-wetland waters: acres.
 - Identify type(s) of waters: .
- [] Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- [] If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- [] Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- [x] Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- [] Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: .
- [] Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- [] Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- [] Lakes/ponds: 0.15 acres.
- [] Other non-wetland waters: acres. List type of aquatic resource: .
- [] Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
- [] Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- [] Lakes/ponds: acres.
- [] Other non-wetland waters: acres. List type of aquatic resource: .
- [] Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- [] Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:
- [] Data sheets prepared/submitted by or on behalf of the applicant/consultant:
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
- [] Data sheets prepared by the Corps:
- [] Corps navigable waters' study:
- [] U.S. Geological Survey Hydrologic Atlas:
- [] USGS NHD data.
- [] USGS 8 and 12 digit HUC maps.
- [] U.S. Geological Survey map(s). Cite scale & quad name:
- [] USDA Natural Resources Conservation Service Soil Survey. Citation:
- [] National wetlands inventory map(s). Cite name:
- [] State/Local wetland inventory map(s):
- [] FEMA/FIRM maps:
- [] 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- [] Photographs: [] Aerial (Name & Date):
 - or [] Other (Name & Date):
B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject tributary is a small 2nd order drainage channel with an average OHWM width of 6 feet. The drainage area, including the two 1st order streams that feed into tributary 2 (tribs 3 & 4) is roughly 400 acres. Flows from the tributary pass through the Outfall 009 water quality sampling station installed by the applicant. Data from the sampling station (2004-2007) showed exceedences of permit limits of copper on one occasion, lead on 2 occasions and a dioxin congener on three occasions. Soil sampling within the drainage area has identified elevated levels of heavy metals and dioxin. Based on these results, the subject tributary appears to have a significant nexus to the downstream TNW (upper limit of tidal influence on Calleguas Creek) based on the potential to deliver contaminants downstream.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 01/15/2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office; SSFL NASA Property Delineation; File no. SPL-2012-520-ASJ: COCA Drainage

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: CA
 County/parish/borough: Ventura
 City: unincorporated (SSFL)
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.23245° N, Long. 118.6982° W
 Universal Transverse Mercator:
 Name of nearest waterbody: COCA drainage
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Los Angeles River
 Name of watershed or Hydrologic Unit Code (HUC): Los Angeles River (18070105)
 ☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☑ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: 09/12/2012
 ☑ Field Determination. Date(s): Jan 2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There ☑ “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There ☑ “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☑ TNWs, including territorial seas
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 2,000 linear feet: 5 width (W) and/or 0.42 acres.
 Wetlands: 0.33 acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM
 Elevation of established OHWM (if known):

2. Non-Regulated waters/wetlands (check if applicable): 3
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: .

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is not also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that doe not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed size: 37 square miles
 Drainage area: 43 acres
 Average annual rainfall: 19 inches
 Average annual snowfall: 0 inches

 (ii) Physical Characteristics:

 (a) Relationship with TNW:

 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 5-10 river miles from TNW.
 Project waters are 1 (or 10+) river miles from RPW.
 Project waters are 5-10 aerial (straight) miles from TNW.
 Project waters are 1 (or 10+) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: n/a.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Identify flow route to TNW: Upper Southwestern Drainage flows into R2A Pond, thence to Bell Canyon Channel (natural), thence to the channelized section of lower Bell Canyon. The downstream TNW is upper end of the Los Angeles River, at the confluence of Bell Canyon Channel and Arroyo Calabasas.

Tributary stream order, if known: 1.

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- Natural
- Artificial (man-made). Explain:

Tributary properties with respect to to top of bank (estimate):
- Average width: 4-5 feet
- Average depth: 1 feet
- Average side slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobbles
- Gravel
- Bedrock
- Vegetation. Type/ % cover:
- Concrete
- Muck

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: some incision evident.

Tributary geometry: Relatively straight

Tributary gradient (approximate average slope): 1 %

(c) Flow:

Tributary provides for: Ephemeral flow

Estimate average number of flow events in review area/year: 5

Describe flow regime: ephemeral

Other information on duration and volume: Channel previously affected by discharges from SSFL test operations requiring cooling water (no longer conducted). Channel and downstream impoundments acted to collect cooling water discharges during rocket engine testing.

Surface flow is: Discrete and confined. Characteristics:

Subsurface flow: Unknown. Explain findings:

Dye (or other) test performed:

Tributary has (check all that apply):

- Bed and banks
- OHWM® (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
- sediment deposition
- water staining
- other (list):
- Discontinuous OHWM.® Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

- High Tide Line indicated by:
- Mean High Water Mark indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

6 A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7 Ibid.
(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: water not present at time of delineation.
Identify specific pollutants, if known: heavy metals.
(iv) Biological Characteristics. Channel supports (check all that apply):
 ☐ Riparian corridor. Characteristics (type, average width):
 ☐ Wetland fringe. Characteristics:
 ☐ Habitat for:
 ☐ Federally Listed species. Explain findings:
 ☐ Fish/spawn areas. Explain findings:
 ☐ Other environmentally-sensitive species. Explain findings:
 ☐ Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

 (i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: 0.33 acres
 Wetland type: palustrine.
 Wetland quality. Explain: poor. formed as a result of impoundments intened to collect runoff from testing operations (no longer conducted).
 Project wetlands cross or serve as state boundaries. Explain: n/a.
 (b) General Flow Relationship with Non-TNW:
 Flow is: surface flow. Explain:
 Surface flow is: Not present
 Characteristic:
 Subsurface flow: Unknown. Explain findings:
 ☐ Dye (or other) test performed:
 (c) Wetland Adjacency Determination with Non-TNW:
 ☑ Directly abutting
 ☐ Not directly abutting
 ☐ Discrete wetland hydrologic connection. Explain:
 ☐ Ecological connection. Explain:
 ☐ Separated by barrier/barrier. Explain:
 (d) Proximity (Relationship) to TNW
 Project wetlands are < 10 river miles from TNW.
 Project waters are < 10 aerial (straight) miles from TNW.
 Flow is from: Wetland to navigable waters.
 Estimate approximate location of wetland as within the 1-year or less floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: dry at time of delineation.
Identify specific pollutants if known: heavy metals detected downstream.

(iii) Biological Characteristics. Wetland supports (check all that apply):
 ☐ Riparian buffer. Characteristics (type, average width):
 ☐ Vegetation type/percent cover. Explain:
 ☐ Habitat for:
 ☐ Federally Listed species. Explain findings:
 ☐ Fish/spawn areas. Explain findings:
 ☐ Other environmentally-sensitive species. Explain findings:
 ☐ Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis:
 Approximately (0.33) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: very small impoundment area with managed hydrology. Dominated by Typha sp. and unvegetated open water (dry at time of delineation). An additional impoundment along flow route likely supports palustrine fringe wetlands, however this was outside the assessment area.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself; then go to Section III.D:

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The subject tributary is a small ephemeral drainage with a discontinuous ordinary high water mark averaging 4-5 feet in width. The tributary includes concrete-lined sections and flow control wiers. Historically, the channel functioned to collect and convey runoff from adjacent rocket engine test stands that require substantial amounts of cooling water during testing. Flows are eventually conveyed to a holding pond off the NASA property (Boeing property) and thence to a secondary pond (“R2A Pond”) and thence to Bell Canyon Channel. The downstream TNW (upper reach of the Los Angeles River) is approximately 3 miles downstream. The total drainage area of the tributary represents approximately 2% of the watershed draining to the downstream TNW. Soil testing within the channel and surrounding watershed have revealed elevated levels of heavy metals (lead, cadmium, copper and/or mercury). The tributary therefore has a significant nexus to the downstream TNW by virtue of its potential to deliver contaminants downstream.

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Wetlands present are palustrine in nature as the result of impoundments of tributary. Flow and potential pollutants would be conveyed through wetland, therefore the wetlands in question have a significant nexus to the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area
 - [] TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial.
- Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
 Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
- Tributary waters: 3700 linear feet 5 width (ft).
- Other non-wetland waters: acres.
 Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: 0.13 acres.

7. Impoundments of jurisdictional waters.9
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

8 See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10
- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
 - Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: 0.155 acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plot or plat submitted by or on behalf of the applicant/consultant: .
- Data sheets prepared/submitted by or on behalf of the applicant/consultant: .
- Office concurs with data sheets/delineation report: .
- Office does not concur with data sheets/delineation report: .
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NHD data: .
- USGS 8 and 12 digit HUC maps: .
- U.S. Geological Survey map(s). Cite scale & quad name: .
- USDA Natural Resources Conservation Service Soil Survey. Citation: .
- National wetlands inventory map(s). Cite name: .
- State/Local wetland inventory map(s): .

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
FEMA/TIRM maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Photographs: ☐ Aerial (Name & Date):

or ☐ Other (Name & Date):

Previous determination(s). File no. and date of response letter:

Applicable/supporting case law:

Applicable/supporting scientific literature:

Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject tributary is a small first order drainage channel with an average OHWM width of 4-5 feet. The drainage area is roughly 495 acres. Soil sampling within the drainage area has identified elevated levels of heavy metals and dioxin. Based on these results, the subject tributary appears to have a significant nexus to the downstream TNW (upper Los Angeles River, approximately 8 river miles downstream) based on the potential to deliver contaminants downstream.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 09/12/2012

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESPL-RG-N, Ventura Field Office; SSFL NASA Property Delineation;
 File no. SPL-2012-520-AJS; ELV Drainage

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: CA
 County/parish/borough: Ventura
 City: unincorporated (SSFL)
 Center coordinates of site (lat/long in degree decimal format): Lat. 32.23245° N, Long. 118.6982° W
 Universal Transverse Mercator:
 Name of nearest waterbody: ELV Drainage
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Lower Calleguas Creek
 Name of watershed or Hydrologic Unit Code (HUC): Calleguas Creek (18070103)
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a
 different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date: 09/12/2012
 - Field Determination. Date(s): Jan 2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the
 review area. [Required]
 - Waters subject to the ebb and flow of the tide.
 - Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 1250 linear feet: 5 width (ft) and/or 0.171 acres
 Wetlands: 0 acres.

 c. Limits (boundaries) of jurisdiction based on: Established by OHWM.
 Elevation of established OHWM (if known):

 2. Non-regulated waters/wetlands (check if applicable): 3
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain:

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
 Watershed size: 29 square miles
 Drainage area: 67 acres
 Average annual rainfall: 19 inches
 Average annual snowfall: 0 inches

(ii) Physical Characteristics:
 (a) Relationship with TNW:

 □ Tributary flows directly into TNW.
 □ Tributary flows through 5 tributaries before entering TNW.

 - Project waters are 20 river miles from TNW.
 - Project waters are 5 river miles from RPW.
 - Project waters are 5 aerial (straight) miles from TNW.
 - Project waters are 5 aerial (straight) miles from RPW.
 - Project waters cross or serve as state boundaries. Explain: n/a.

 Identify flow route to TNW:\(^5\): ELV Drainage flows approximately 2.5 miles to Meier Creek, thence to Arroyo Sini, Arroyo Las Posas and Calleguas Creek. The downstream TNW is the upper limit of tidal influence on Calleguas Creek.

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary stream order, if known: 1.

(b) General Tributary Characteristics (check all that apply):
Tributary is:
- [] Natural
- [] Artificial (man-made). Explain:
- [x] Manipulated (man-altered). Explain: culverted road xing, and approx 100-foot section has been lined with asphalt.

Tributary properties with respect to top of bank (estimate):
- Average width: 6 feet
- Average depth: 1 feet
- Average side slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [x] Silts
- [x] Sands
- [] Cobbles
- [] Gravel
- [] Bedrock
- [x] Vegetation. Type/cover:
- [] Concrete
- [] Muck

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: some incision evident. Presence of run/riffle/pool complexes. Explain: n/a.
Tributary geometry: meandering
Tributary gradient (approximate average slope): 1%

(c) Flow:
Tributary provides for: seasonal flow
Estimate average number of flow events in review area/year: 2
Describe flow regime: intermittent
Other information on duration and volume:

Surface flow is: confined. Characteristics:

Subsurface flow: unknown. Explain findings:
- [] Dye (or other) test performed.

Tributary has (check all that apply):
- [x] Bed and banks
- [x] OHWM" (check all indicators that apply):
 - [x] clear, natural line impressed on the bank
 - [] changes in the character of soil
 - [] flooding
 - [] vegetation matted down, bent, or absent
 - [] leaf litter disturbed or washed away
 - [] sediment deposition
 - [] water staining
 - [] other (list):
- [] Discontinuous OHWM." Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [x] High Tide Line indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other (list):
- [] Mean High Water Mark indicated by:
 - [] survey to available datum;
 - [] physical markings;
 - [] vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality: general watershed characteristics, etc.).
Explain: water not present at time of delineation.
Identify specific pollutants, if known: heavy metals, dioxin recorded at monitoring station (Outfall 009) which includes the subwatershed of this drainage feature. No monitoring results of this specific drainage channel are available, however the drainage area

"A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

"Ibid.
includes facilities historically operated as part of the Santa Susana Field Lab and it likely similar contaminants would be generated within this drainage area.
(iv) **Biological Characteristics. Channel supports (check all that apply):**
- □ Riparian corridor. Characteristics (type, average width):
- □ Wetland fringe. Characteristics:
- □ Habitat for:
 - □ Federally Listed species. Explain findings:
 - □ Fish/spawn areas. Explain findings:
 - □ Other environmentally-sensitive species. Explain findings:
 - □ Aquatic/wildlife diversity. Explain findings:

2. **Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW**

(i) **Physical Characteristics:**
(a) **General Wetland Characteristics:**
Properties:
- □ Wetland size: acres
- □ Wetland type. Explain:
- □ Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:

(b) **General Flow Relationship with Non-TNW:**
Flow is: **Pick List**
Explain:

Surface flow is: **Pick List**
Characteristics:

Subsurface flow: **Pick List** Explain findings:
- □ Dye (or other) test performed:

(c) **Wetland Adjacency Determination with Non-TNW:**
- □ Directly abutting
- □ Not directly abutting
 - □ Discrete wetland hydrologic connection. Explain:
 - □ Ecological connection. Explain:
 - □ Separated by berm/barrier. Explain:

(d) **Proximity (Relationship) to TNW**
Project wetlands are **Pick List** river miles from TNW.
Project waters are **Pick List** aerial (straight) miles from TNW.
Flow is from: **Pick List**
Estimate approximate location of wetland as within the **Pick List** floodplain.

(ii) **Chemical Characteristics:**
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) **Biological Characteristics. Wetland supports (check all that apply):**
- □ Riparian buffer. Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- □ Habitat for:
 - □ Federally Listed species. Explain findings:
 - □ Fish/spawn areas. Explain findings:
 - □ Other environmentally-sensitive species. Explain findings:
 - □ Aquatic/wildlife diversity. Explain findings:

3. **Characteristics of all wetlands adjacent to the tributary (if any)**
All wetland(s) being considered in the cumulative analysis: **Pick List**
Approximately (_ _ _) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

 The subject tributary is a small ephemeral drainage with an ordinary high water mark averaging 5 feet in width. Estimated discharge volumes at Outfall 009 (which includes the subject tributary plus the contribution from the Northern Drainage) is approximately 12 cfs for a 1-year, 24-hour flood event, 49 cfs for the 10-year event and 100 cfs for the 100-year event. The downstream TNW (upper limit of tidal influence on Callegus Creek) is approximately 28 miles downstream. The total drainage area of the tributary represents approximately 0.03% of the watershed draining to the downstream TNW. Soil testing within the channel and surrounding watershed have revealed elevated levels of heavy metals (lead, cadmium, copper and/or mercury) as well as dioxin at one location. The tributary therefore has a significant nexus to the downstream TNW by virtue of its potential to deliver contaminants downstream.

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial.

Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally.

Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).
Other non-wetland waters: acres.
Identify type(s) of waters: .

3. Non-RPWs that flow directly or indirectly into TNWs.

A waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

Tributary waters: 1,200 linear feet; 5 width (ft).
Other non-wetland waters: acres.
Identify type(s) of waters: .

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.

Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW.

Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

Demonstrate that impoundment was created from “waters of the U.S.,” or

Demonstrate that water meets the criteria for one of the categories presented above (1-6), or

Demonstrate that water is isolated with a nexus to commerce (see F below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10

*See Footnote # 3.

† To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

‡ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rulings.
which are or could be used by interstate or foreign travelers for recreational or other purposes.
from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
which are or could be used for industrial purposes by industries in interstate commerce.
Interstate isolated waters. Explain:
Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
 Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
 Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: 0.155 acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- Corps navigable waters' study:
- U.S. Geological Survey Hydrologic Atlas:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name:
- USDA Natural Resources Conservation Service Soil Survey. Citation:
- National wetlands inventory map(s). Cite name:
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date):
 or Other (Name & Date):
B. ADDITIONAL COMMENTS TO SUPPORT JD: The subject tributary is a small first order drainage channel with an average OHWM width of 4 feet. The drainage area is roughly 67 acres. Flows from the tributary pass through the Outfall 009 water quality sampling station installed by the applicant. Data from the sampling station (2004-2007) showed exceedences of permit limits of copper on one occasion, lead on 2 occasions and a dioxin congener on three occasions. Soil sampling within the drainage area has identified elevated levels of heavy metals and dioxin. Based on these results, the subject tributary appears to have a significant nexus to the downstream TNW (upper limit of tidal influence on Calleguas Creek) based on the potential to deliver contaminants downstream.
This page intentionally left blank.