Kennedy Center-Wide Operations
Space Final Programmatic Center
Environmental Impact Statement
ABSTRACT

This Programmatic Environmental Impact Statement (PEIS) has been prepared to evaluate the potential environmental impacts from proposed center-wide Kennedy Space Center (KSC) operations, activities, and facilities across a 20-year planning horizon. These operations, activities and facilities are described in the 2013 Center Master Plan (CMP), which has a planning horizon of 2012-2032. It considers a range of future scenarios for repurposing existing facilities and recapitalizing infrastructure, and for reorganizing the management of the KSC and its land resources, with potentially various kinds of partnerships, some of which are already in place.

The PEIS has been prepared in accordance with the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) regulations for implementing NEPA (40 CFR 1500–1508), and the National Aeronautics and Space Administration’s (NASA’s) regulations for implementing NEPA. Section 106 of the National Historic Preservation Act (NHPA) and Section 7 of the Endangered Species Act (ESA) are also integrated with the NEPA process, to identify and protect cultural resources and threatened and endangered species, respectively. This PEIS outlines and broadly describes actions associated with KSC’s proposed programs in the limited detail with which they are known at present.

The purpose of the Proposed Action – the CMP – is to provide overall management guidance for KSC to 2032. Implementation of the CMP will facilitate a 20-year transformation from a single, government-user launch complex to a multi-user spaceport. This multi-user spaceport will be developed in concert with NASA’s programmatic missions and requirements to explore destinations outside of low Earth orbit. The need for the action is to update KSC’s CMP in a manner that supports achievement of NASA’s programmatic mission objectives, at the same time as maximizing the provision of excess capabilities and assets in support of non-NASA access to space.

As a result of comments received during internal and external (public) scoping, NASA developed three alternatives that are assessed in this PEIS. Under the first of these, the Proposed Action, KSC would transition to a multi-user spaceport. A number of new land uses are proposed, including two seaports and horizontal and vertical launch and landing facilities. There would be changes in the acreage of existing designated land use categories at KSC.

Alternative 1 was crafted as a direct response to concerns expressed in comments received during the PEIS public scoping period in June 2014, as well as other observations and data acquired from stakeholders and other agencies during the scoping process. Alternative 1 is similar to the Proposed Action in many regards, but is differentiated in several key respects, primarily, differences in the siting and size of vertical and horizontal launch and landing facilities. Also, the two new seaports would not be constructed.

In the No Action Alternative, KSC management would continue its emphasis on dedicated NASA Programs and would not transition in the coming years towards a multi-user spaceport. Rather, each NASA Program would continue to be operated as an independent entity to a
significant degree, to be funded separately, and to manage activities and buildings in support of its own program. There would continue to be a limited non-NASA presence at KSC.

The PEIS broadly predicts and describes the potential environmental consequences resulting from each of the three alternatives. There would be a number of direct and indirect adverse impacts but none that are considered to be significantly adverse. Beneficial impacts would also occur. Under each of the three alternatives evaluated, NASA would continue to work closely with its partners, including the U.S. Fish and Wildlife Service, National Park Service, Federal Aviation Administration, Space Florida, Cape Canaveral Air Force Station, U.S. Army Corps of Engineers, and state agencies.

The 45-day public comment period for this PEIS begins on the day after the Environmental Protection Agency publishes a notice of availability for the Draft PEIS in the Federal Register. Comments on the Draft PEIS must be received before the close of business on the last day of the comment period.

Written comments on the Draft PEIS may be submitted to:

 National Aeronautics and Space Administration
 Kennedy Space Center
 ATTN: Donald Dankert
 Environmental Management Branch, TA-A4C
 Kennedy Space Center, FL 32899

Written comments on the Draft PEIS may be emailed to:

 ksc-dl-centerwide-eis@mail.nasa.gov.

The Draft PEIS was released to the public in March 2016 and a Notice of Availability (Appendix D in this Final PEIS) was published in the Federal Register on March 4, 2016. NASA KSC conducted two open houses and public meetings on the Draft PEIS, in Titusville on March 29 and in New Smyrna Beach on March 30, 2016. Comments on the Draft PEIS were received from four federal and state agencies, 26 members of the public, and five non-governmental conservation groups. NASA KSC has responded to those comments in this Final PEIS (see Appendix C).

NOTE:

In this Final PEIS for the KSC Center Master Plan, with one exception (related to the response to comment ALT-13 on p. C-145), text that is being deleted from the Draft PEIS (except for small word choice and punctuation edits or typos) in response to comments received on the draft, is struck through with a single line, as such, while text that has been inserted is underlined, as with this very sentence.
EXECUTIVE SUMMARY

Background and Introduction

This Programmatic Environmental Impact Statement (PEIS) has been prepared in accordance with the National Environmental Policy Act of 1969 (NEPA), the Council on Environmental Quality (CEQ) regulations for implementing NEPA, the National Aeronautics and Space Administration’s (NASA’s) regulations for implementing NEPA, the NASA Procedural Requirements for Implementing NEPA, Executive Order (EO) 12114, and as identified in Section 1102 of the NASA Authorization Act of 2010. Section 106 of the National Historic Preservation Act (NHPA) and Section 7 of the Endangered Species Act (ESA) are also integrated with the NEPA process, to identify and protect cultural resources and threatened and endangered (T&E) species, respectively.

The PEIS has been prepared to evaluate the potential environmental impacts from proposed center-wide Kennedy Space Center (KSC) operations, activities, and facilities for a planning horizon that encompasses the next 20 years. These operations, activities and facilities are described in the 2013 Master Plan (Center Master Plan Update, or CMP), which has a planning horizon of 2012-2032. It considers a range of future scenarios for repurposing existing facilities and recapitalizing infrastructure, and for reorganizing the management of the KSC and its land resources, with potentially various kinds of partnerships (some of which are already in place). The PEIS is intended to ensure that NASA is in compliance with applicable environmental statutes as it sets program priorities for future operations and activities.

Beginning in the late 1950s the United States embarked upon a new era of human space exploration, an effort which continues to this day more than half a century later. The first human spaceflight initiative in the U.S. was Project Mercury, established in 1958 with crewed spacecraft first launched from Cape Canaveral Air Force Station (CCAFS) in the early 1960s. NASA’s Launch Operations Center and the portions of CCAFS that were used by NASA were renamed the John F. Kennedy Space Center (KSC) in 1963. Project Mercury was followed by Project Gemini and the Apollo Program. Ultimately a total of nine Apollo missions reached the Moon, landing 12 astronauts there. The last American strode the surface of the Moon in December 1972.

Early in 1962, NASA began acquiring property for a space center as a base for launch operations in support of the Manned Lunar Landing Program. Approximately 34,000 hectares (ha) (84,000 acres (ac)) were purchased on Merritt Island in the northern part of Brevard County extending into the southernmost tip of Volusia County. An additional 22,660 ha (56,000 ac) of state-owned submerged land (Mosquito Lagoon and part of Indian River Lagoon) were negotiated with the State of Florida for exclusive rights dedicated to the United States. This total area of nearly 56,660 ha (140,000 ac), together with the adjoining water bodies, was considered extensive enough to provide adequate safety for the surrounding communities from the planned vehicle launches. The State of Florida Trustees of Internal Improvement Fund granted the United States an additional 22,660 hectares (56,000 acres) of state-owned submerged lands, wetlands, and uplands including the Mosquito Lagoon, and parts of the Indian and Banana Rivers) for primary
use in the Space Program and secondary use as a Wildlife Refuge or for public park and recreation purposes upon a determination that such use was consistent with the property’s primary use in the Space Program. This total area of approximately 56,660 ha (140,000 ac), together with the adjoining water bodies, was considered extensive enough to meet future space program launch facility and operational needs while also providing adequate safety to the surrounding communities.

In the mid-1970s, NASA initiated development of the Space Transportation System (commonly called the Space Shuttle) as the next crewed vehicle. Designed solely for missions to low Earth orbit (99-1,200 miles above the Earth’s surface), the Space Shuttle was the first and to date the only winged U.S. spacecraft capable of launching crew vertically into orbit and landing horizontally upon returning to Earth. The Space Shuttle era lasted for 30 years, from the launch of Columbia on April 12, 1981 until the landing of Atlantis on July 21, 2011.

KSC is a major central Florida tourist destination and is approximately one hour's drive from the Orlando area. The Visitor Complex offers public tours of the center and CCAFS. Because much of the installation is a restricted area and only nine percent of the land is developed, the site also serves as an important wildlife sanctuary. The Indian River Lagoon, Merritt Island National Wildlife Refuge (MINWR) and Canaveral National Seashore (CANA or CNS) are other natural features of the area. The visiting public can encounter Bald Eagles, American alligators, wild boars, eastern diamondback rattlesnakes, bobcats, and Florida manatees, among other wildlife.

Purpose and Need for the Action

The Space Shuttle has completed its final mission and retirement of the Shuttle Program has been completed. NASA’s budget has been reduced from earlier agency planning guidance and NASA anticipates continuing funding challenges in the coming years. Approximately half of KSC’s skilled workforce has been laid off with the conclusion of the Shuttle Program. Resources to sustain and renew existing facilities and capabilities at KSC are severely constrained.

In the coming years, the Kennedy Space Center will remain the world’s preeminent launch facility for government and commercial space access. KSC will support NASA, and ultimately, our nation’s competitiveness, by investing in next-generation technologies and encouraging innovation. KSC will foster partnerships – intergovernmental, commercial, academic, and international – to expand its ability to support both public and private space initiatives. These institutional efforts and initiatives necessitate changes to the infrastructure, facilities, and operations at the KSC over the coming decade which are identified in a new CMP Update that has been developed by the Center Planning and Development Office.

The purpose of the action – the CMP – is to provide overall management guidance for KSC from 2016 to 2032. Implementation of the CMP will facilitate a 20-year transformation from a single, government-user launch complex to a multi-user spaceport. This multi-user spaceport will be developed in concert with NASA’s programmatic missions and requirements to explore destinations outside of low Earth orbit.
The need for the action is to update KSC’s CMP in a manner that supports achievement of NASA’s programmatic mission objectives, at the same time as maximizing the provision of excess capabilities and assets in support of non-NASA access to space.

Overall, KSC is transitioning to a re-focused mission that redefines its relationship with industry and leverages the potential of partnerships. Amid the challenges of an aging and unsustainable asset base, as well as a highly constrained federal budget, NASA must adopt and implement strategies that preserve the institutional infrastructure needed to support its purpose and programs.

In keeping with CEQ guidance, this PEIS outlines and broadly describes actions associated with KSC’s proposed programs in the limited detail with which they are known at present. Three programmatic alternatives are described and their potential environmental effects are assessed in fairly general terms. At such time as a given specific project of detailed dimensions and scale is proposed at a specific location, and is in the process of being reviewed and approved, this PEIS can serve as a master NEPA document to which future NEPA compliance documents may be “tiered”. That is, having already been addressed at a programmatic level, the action or project can incorporate discussion from the broader PEIS by reference and focus on the issues specific to the subsequent tiered proposal. Ideally, this will serve to expedite the environmental review process and facilitate project approval, funding, and implementation.

Strategic Partnerships

KSC cultivates strategic partnerships with other federal, state, public, private and academic organizations to capitalize on complementary strengths of each organization in managing the Kennedy Space Center. Under the each of the alternatives considered in the PEIS, KSC would continue to invest in existing partnerships, such as those with CCAFS (an installation of the U.S. Air Force Space Command’s 45th Space Wing, headquartered at nearby Patrick Air Force Base), U.S. Fish and Wildlife Service (USFWS) – Merritt Island National Wildlife Refuge, National Park Service (NPS) – Canaveral National Seashore, U.S. Department of Energy, Federal Aviation Administration (FAA) Office of Commercial Space Transportation (FAA-AST), Florida Department of Transportation (FDOT), Space Florida, Patrick Air Force Base (PAFB), and Brevard County government.

Scoping and Public Involvement

NEPA requires lead agencies to invite public involvement prior to decision-making on Proposed Actions that may affect the environment. “Scoping” is the process of soliciting input from “stakeholders” – including Tribes, the public (both private citizens and non-governmental organizations or NGO’s), and other agencies – at the outset of an EIS. Not only may the information obtained from interested and knowledgeable parties be of value in and of itself, but the perspectives and opinions as to which issues matter the most, and how, indeed whether, the agency should proceed with a given Proposed Action are equally important. Input from scoping thus helps shape the direction that the analysis takes, helping analysts decide which issues merit consideration. Public input also helps in the development of alternatives to the Proposed Action, which is an integral part of NEPA.
Appendix B of this PEIS is a Scoping Report that describes and documents the scoping process NASA followed in detail.

NASA-KSC held an agency Draft PEIS scoping meeting on June 4, 2014 at KSC for cooperating agencies and partners. Participants included the U.S. Fish and Wildlife Service (USFWS), National Park Service (NPS), FAA, and Space Florida.

NASA-KSC held two public scoping meetings on June 4, 2014 in Titusville and June 5, 2014 in New Smyrna Beach, using a combined open house and open forum format. In the first hour, an open house format was used to give attendees the chance to speak informally with officials from NASA and its USFWS and NPS partners, sharing information and perspectives. Several stations with exhibits, maps, and materials were staffed by representatives of NASA, USFWS, NPS, and PEIS contractor Solv. In the second hour of both scoping meetings, three short presentations described KSC’s mission, goals, updated Master Plan, and the NEPA process. Following these presentations, the public was invited to make oral comments for the record.

A number of stakeholders provided written comments that helped determine the scope of the PEIS.

The Draft PEIS was released to the public in March 2016 and a Notice of Availability (Appendix D in this Final PEIS) was published in the Federal Register on March 4, 2016. NASA KSC conducted two well-attended open houses and public meetings on the Draft PEIS, in Titusville on March 29 and in New Smyrna Beach on March 30, 2016. Comments on the Draft PEIS were received from four federal and state agencies, 26 members of the public, and five non-governmental conservation groups. NASA KSC has responded to those comments in this Final PEIS (see Appendix C).

Alternatives Considered

As a result of comments received during internal and external (public) scoping, NASA developed three alternatives that are assessed in this PEIS. Under the first of these, the **Proposed Action**, KSC would transition to a multi-user spaceport. A number of new facilities would be constructed, including two seaports and horizontal and vertical launch and landing facilities. There would be changes in the acreage of designated land use categories at KSC.

Alternative 1 was crafted as a direct response to concerns expressed in comments received during the PEIS public scoping period in June 2014, as well as other observations and data acquired from stakeholders and other agencies during the scoping process. Under **Alternative 1**, as in the Proposed Action, KSC would also transition to a multi-user spaceport. Alternative 1 is similar to the Proposed Action in many regards, but is differentiated in several key respects: primarily, differences in the siting and size of vertical and horizontal launch and landing facilities. Also, the two new seaports would not be constructed.

In the **No Action Alternative**, KSC management would continue its emphasis on dedicated NASA Programs and would not transition in the coming years towards a multi-user spaceport. Rather, each NASA Program would continue to be operated as an independent entity to a
significant degree, to be funded separately, and to manage activities and buildings in support of its own program. There would continue to be a limited non-NASA presence at KSC.

Under the three PEIS alternatives, there would be differences in the sizes of the areas of designated land uses at KSC. These varying acreages are a function of the different emphases, priorities, and projects of the three PEIS alternatives. Only in the recreation and water categories are the acreages identical in all three alternatives. These acreages variations are shown in Table ES-1.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>40.72</td>
<td>40.72</td>
<td>104.76</td>
</tr>
<tr>
<td>Assembly, Testing and Processing</td>
<td>1,894.77</td>
<td>1,894.77</td>
<td>475.41</td>
</tr>
<tr>
<td>Central Campus</td>
<td>138.75</td>
<td>138.75</td>
<td>NA</td>
</tr>
<tr>
<td>Horizontal Launch and Landing</td>
<td>2,838.84</td>
<td>1,806.62</td>
<td>501.25</td>
</tr>
<tr>
<td>Launch Operations and Support</td>
<td>506.14</td>
<td>491.59</td>
<td>398.75</td>
</tr>
<tr>
<td>Open Space</td>
<td>NA</td>
<td>NA</td>
<td>1,873.64</td>
</tr>
<tr>
<td>Operational Buffer/Conservation</td>
<td>40,196.64</td>
<td>41,297.17</td>
<td>44,583.14</td>
</tr>
<tr>
<td>Operational Buffer/Public Use</td>
<td>34,824.72</td>
<td>34,824.72</td>
<td>34,844.14</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>522.13</td>
<td>522.13</td>
<td>216.01</td>
</tr>
<tr>
<td>Recreation</td>
<td>161.36</td>
<td>161.36</td>
<td>161.36</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>1,109.85</td>
<td>1,109.85</td>
<td>66.54</td>
</tr>
<tr>
<td>Research and Development</td>
<td>867.49</td>
<td>867.49</td>
<td>88.36</td>
</tr>
<tr>
<td>Seaport</td>
<td>317.26</td>
<td>30.92</td>
<td>30.92</td>
</tr>
<tr>
<td>Support Services</td>
<td>471.40</td>
<td>471.40</td>
<td>723.91</td>
</tr>
<tr>
<td>Utility Systems</td>
<td>1,329.60</td>
<td>1,329.60</td>
<td>1,327.23</td>
</tr>
<tr>
<td>Vertical Launch</td>
<td>536.42</td>
<td>728.08</td>
<td>360.32</td>
</tr>
<tr>
<td>Vertical Landing</td>
<td>75.73</td>
<td>40.56</td>
<td>NA</td>
</tr>
<tr>
<td>Water</td>
<td>55,541.81</td>
<td>55,541.81</td>
<td>55,541.81</td>
</tr>
</tbody>
</table>

Environmental Consequences

Soils and Geology

Impacts of activities under the **Proposed Action** and **Alternative 1** on soils and geology would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, types of soils occurring onsite, and whether impervious surfaces would be placed over soils and geological materials. These impacts would be less than significant. Overall effects of vertical and horizontal launches and landings on soils and geology are expected to be short-term to medium-term, direct, adverse, and minor to moderate. These impacts would also be less than significant. Overall impacts of Alternative 1 on soils and geology would be slightly less than the Proposed Action.
Under the **No Action Alternative**, soils and geology would not be affected by construction or operations from new projects described under the Proposed Action or Alternative 1. Any existing activities or operations would occur in accordance with existing laws and permits and within the footprint of existing developed areas. Effects on soils and geology from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. The No Action Alternative would not have any additional impacts on soils and geology.

Water Resources

Impacts of proposed project activities under the **Proposed Action** and **Alternative 1** on water resources (both water quality and water quantity) would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, and proximity to surface water. With proper implementation of BMPs and adherence to permit conditions, impacts on water resources would be less than significant.

Vertical and horizontal launches may result in local adverse impacts on freshwater and marine systems, from deposition associated with rocket engine emissions, the deposition of spent launch vehicle equipment, or landing of a reentry vehicle or its associated equipment. Impacts from hydrogen chloride or HCl (formed during rocket launches, and which becomes hydrochloric acid when it dissolves in water) on surface waters would be restricted to the area immediately adjacent to the launch pad. No substantial impacts on surface waters of nearby oceans, lagoons, or large inland water bodies should occur due to the buffering capacities of these bodies. A normal launch would have no substantial impacts on local water quality.

Direct cumulative impacts on water resources from reasonably foreseeable projects under the Proposed Action and Alternative 1 are likely to be minor and adverse. To the extent that reasonably foreseeable projects contribute to long-term economic and population growth and development of the Space Coast region, they may contribute indirectly to continuing cumulative impairment of the Indian River Lagoon (IRL) complex as a result of an increase in the area of impervious surfaces and non-point source loadings of sediments, nutrients, and contaminants.

These potential adverse cumulative impacts on water quality in the IRL and other water bodies from a likely increase in non-point source pollution associated with population growth and development in surrounding watersheds could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing the septic fields now used widely in southeastern Volusia County and the extension of municipal potable water service that could decrease impacts on shallow drinking water wells. An absence of economic growth and commensurate funding resources would likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters.

Overall impacts of Alternative 1 on water resources would be slightly less than the Proposed Action.

Under the **No Action Alternative**, water resources would not be affected by construction or operations from new projects described under the Proposed Action or Alternative 1. Any
existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Effects on water resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. In sum, there would be no additional impacts on water resources. However, the long-term cumulative impacts on water quality in the IRL described under the Proposed Action could still occur if other reasonably foreseeable projects were to take place and if population projections and associated development are realized in the decades ahead, fostering increases in non-point source pollution that have already damaged the lagoon.

Hazardous Materials and Waste

Under the **Proposed Action** and **Alternative 1**, the impact of transitioning to a multi-user spaceport on hazardous materials and waste is confined to an increase in quantity, rather than an influx of new materials. **These same materials are currently used at KSC.** KSC currently handles solvents, surface coatings, propellants and fuels, and the types of hazardous materials and waste generated from use of these products would remain the same, although the quantities would increase. Procedures for handling, transporting, storing or disposing of hazardous materials would be unaffected by the Proposed Action and Alternative 1. Because of the increase in exposure and the activities related to these materials, the risks associated with them would also be slightly increased. The importance of adhering to proper safety procedures must be viewed as a top priority for future operations to minimize the risks of accidental release and personnel exposure.

The probability of an accidental release would increase due to the increased activities and quantity of materials, but best practices would ensure this increase in risk is small, with the probability of a major spill kept at a minimum. Overall, adverse impacts on hazardous materials and waste would be of slight precedence, negligible to minor magnitude, and long-term duration. Cumulative impacts are not expected. Effects of Alternative 1 would be essentially identical to those of the Proposed Action.

Under the **No Action Alternative**, the status quo would be maintained at KSC. There would be no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC.

Air Quality

Both the **Proposed Action** and **Alternative 1** would have short- and long-term minor adverse effects. They could also affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic. Short-term effects from demolition of aging or obsolete facilities would occur from airborne dust and other pollutants.

Long-term effects would occur from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic. In addition to criteria pollutants, the products of combustion from solid rocket boosters would also include other common products of combustion including aluminum...
oxide, hydrogen chloride, hydrogen, nitrogen, carbon dioxide, and water. These components are predominately inert and would be emitted in limited amounts.

All components of the Proposed Action and Alternative 1 are completely within an attainment area and would not inherently lead to a violation of any Federal, state, or local air regulation. Therefore, impacts would be less than significant. There would be short- and long-term minor adverse cumulative effects. The impacts of the Proposed Action and Alternative 1 would be essentially identical.

The No Action Alternative would result in no additional effects on air quality. Because the number and type of activities would remain relatively similar, similar levels of emissions of air pollutants would be expected. Ambient air quality would remain unchanged when compared to existing conditions.

Climate Change

Climate change impacts globally include overall warmer temperatures, rising sea levels, a melting polar ice cap, changes in rainfall patterns, a greater frequency of extreme weather events (e.g., droughts, deluges, severe storms, floods, prolonged heat waves) and other associated and often interrelated effects. CEQ guidance advises that actions subject to NEPA compliance should be evaluated along two dimensions relative to climate change impacts: (1) the effects of GHG emissions from a Proposed Action and alternative actions on global climate change; and (2) the effects of climate change on a Proposed Action or alternatives, including the relationship to proposal design, environmental impacts, mitigation and adaptation measures. With regard to point #1, all three alternatives would add a negligible amount to the U.S. emissions contributing to global climate change.

With regard to point #2, sea level rise is the single largest hazard to continued KSC/CCAFS operations and regional land management activities. Sea level rise may cause loss of usable land and inundation of coastal ecosystems. More frequent and extreme high temperatures and humidity may cause increased risk of heat-related ailments among outdoor workers, higher cooling costs, decreased utility reliability, and damage to buildings. More frequent and intense droughts and seasonal shifts in water cycle may cause reduced water availability, higher water costs, salt water intrusion, and groundwater changes. More intense precipitation events may cause more frequent flooding of low-lying indoor and outdoor areas. More frequent and intense coastal flood events may cause coastal erosion and have safety implications for surrounding communities.

Hardening, improving, or moving facilities in adaptation to potential climate change impacts will require financial investment and funding, which might reasonably be considered impacts of climate change on the Proposed Action. Consolidation of NASA operations at KSC into a smaller geographic footprint can be expected to lead to further reductions in facility energy use, thereby reducing greenhouse gas emissions and producing beneficial impacts to climate change. Continued and increased efforts to power NASA’s facilities, programs, and activities using renewable sources of energy will have a beneficial impact on climate change by reducing greenhouse gas emissions.
Both the effect of climate change on Alternative 1 and the effect of Alternative 1 on climate change would be essentially the same as under the Proposed Action.

Under the No Action Alternative, KSC would not implement elevation-based zoning and development controls to insure that any future development is constructed at an elevation of six feet above mean sea level, although this would not be consistent with NASA land management practices and Office of Strategic Infrastructure climate adaptation guidance and strategy. NASA operations at KSC would be at somewhat greater risk from the impacts of sea level rise, more frequent and intense coastal flood events, and more intense precipitation events than they be would if the additional actions were taken.

Acoustic Environment (Noise)

Under both the Proposed Action and Alternative 1, short- and long-term minor adverse effects would be expected. They would result in the continuation of many of the types of noise presently occurring at KSC but potentially in greater amounts. Short-term increases in noise would result from the use of heavy equipment during construction and demolition activities. Long-term effects would be from the addition of stationary sources of noise such as standby generators, and changes in both vertical and horizontal launch activities.

Increases in traffic volumes and changes in traffic patterns would have insignificant effects related to noise. Neither the Proposed Action nor Alternative 1 would (1) result in the violation of applicable Federal, state, or local noise ordinance; (2) create incompatible land uses for areas with sensitive noise receptors outside the KSC boundary; or (3) be loud enough to threaten or harm human health. In general, the overall effects of the actions and their components would be less than significant. Minor short- and long-term cumulative effects would be expected. Noise impacts of Alternative 1 would be very similar if not identical to those of the Proposed Action.

The No Action Alternative would result in no changes in the existing level of impact to the ambient noise environment. KSC operations and the current levels of activities would continue without changes, and the noise environment would remain unchanged when compared to existing conditions. Minor short- and long-term cumulative effects would be expected.

Biological Resources

Under the Proposed Action, there would be a reduction of 4,406 acres in the size of the operational buffer, both public use and conservation components, meaning that 4,406 acres of native vegetation communities (both upland and wetland) would be converted or lost to development. Vertical and horizontal launches may result in local adverse impacts on native upland and wetland vegetation. Two proposed new seaports would result in the elimination of 286 acres of wetlands vegetation/habitat.

A loss of wildlife habitat would result from the conversion of up to 4,386 acres of operational buffer/conservation to other more developed land uses. This would constitute about five percent of the total non-water land area at KSC, and about 10 percent of the total existing acreage of operational buffer/conservation lands (44,583 acres).

Launches at KSC would likely continue to have recurring, short-term, localized to medium, minor to moderate adverse impacts to aquatic habitats and fish for the duration of the Center
Overall cumulative impacts from climate change and climate change-related sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, and widespread.

The impacts of Alternative 1 on existing biological resources would be qualitatively similar to those of the Proposed Action, but quantitatively somewhat less. The combined area of operational buffer/conservation and operational buffer/public use – and associated vegetation and wildlife habitat – would be reduced by approximately 3,305 acres, as those lands are committed to more developed uses and facilities. A loss of wildlife habitat would result from conversion of up to 3,286 acres of operational buffer/conservation to other more developed land uses. This would comprise about four percent of the non-water land area at KSC, and about seven percent of the total existing acreage of operational buffer/conservation lands (44,583 acres). However, because under Alternative 1 the two new seaports associated with the Proposed Action would not be built, this would avoid the elimination of 286 acres of wetlands vegetation/habitat that would occur under the Proposed Action.

Under the No Action Alternative, upland vegetation would not be affected by construction or operations as described under the Proposed Action and Alternative 1. Any existing activities or operations would occur in accordance with existing laws and permits and existing uses would continue at current levels. The effects on upland vegetation from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. There would not be any additional impacts on upland vegetation.

Wildlife and aquatic species would continue to be affected to a negligible to minor degree from continuation of activities at KSC under the No Action Alternative. Many cumulative impacts on the Indian River Lagoon would be expected with or without implementation of the Proposed Action. That is, the No Action Alternative would neither substantially increase nor decrease their magnitude.

Because of combined habitat loss and fragmentation, potential cumulative impacts on the Florida scrub-jay could be adverse and significant. Overall cumulative impacts from climate change and climate change-related sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread or large extent, and possibly significant, even under the No Action Alternative.

Cultural Resources

All activities under the Proposed Action and Alternative 1 that may have adverse effects on cultural resources at KSC would be managed in accordance with the KSC Cultural Resources Management Plan. As the locations of specific projects are defined, the NHPA Section 106 process would be initiated and determinations would be made for the APE and potentially impacted cultural resources. Appropriate surveys and studies would be conducted so that the effect of the undertaking upon the cultural resources can be determined. Consultations would be undertaken on a project-by-project basis with the respective SHPO or THPO and interested or affected Native American tribes. Should previously undiscovered artifacts or features be unearthed during any of the proposed projects, work would be stopped in the immediate vicinity of the find, a determination of significance made, and a mitigation plan formulated.
Impacts of the Proposed Action and Alternative 1 would be essentially the same.

Under the **No Action Alternative**, cultural resources would not be affected by construction or operations as described under the Proposed Action and Alternative 1. Any existing activities or operations would occur in accordance with existing laws, regulations, and policies. Effects on cultural resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. The No Action Alternative would not have any additional impacts on cultural resources.

Land Use

The **Proposed Action** and **Alternative 1** would consolidate existing NASA operations into a smaller geographic footprint. These possible land use and land cover changes would be minor to moderate in magnitude, of small extent, long-term, and beneficial. The acreage at KSC currently used for administration, open space, and operational buffer (for both conservation and public use), and support services would decrease. There would be no change to acreage associated with water or recreation – as distinct from the Operational Buffer/Public Use category, which may also be used for recreation, but which, as noted, is slated to decrease.

The acreage currently used for Assembly, Testing, and Processing; Central Campus; Horizontal Launch and Landing; Launch Operations and Support; Public Outreach; Renewable Energy; Research and Development; Seaport; Utility Systems; Vertical Launch; and Vertical Landing would all increase. As implementation of the CMP Update occurs, NASA would work closely with the USFWS and NPS to determine the appropriate methods for, locations of, and mitigations pertaining to projects within KSC, MINWR, and CANA.

Due to the proposed changes, construction, and demolition activities that would occur, and BMPs that would be followed, in conjunction with the implementation of all projects, impacts to land use are anticipated to be minor to moderate, depending on the acreage impacted, the land cover to be changed, and the number or type of projects to be carried out in that area. Overall cumulative impacts to land use over the coming several decades would likely be moderate in magnitude.

Overall, the impacts from Alternative 1 would be very similar to those of the Proposed Action, but somewhat less pronounced, because the two proposed seaports would not be built and the horizontal launch and landing area north of Beach Road might not be built. Moreover, new vertical launch sites north of LC-39 become “notional” rather than definite.

Under the **No Action Alternative**, current land uses and their configuration at KSC would remain unchanged for the duration of the 20-year planning horizon. Total land and water area under jurisdiction of KSC would remain at approximately 140,000 acres. Of this total area, about 85,000 acres would continue to be owned by NASA and the remaining 55,000 acres by the State of Florida and dedicated for the exclusive use of the U. S. Government. Because there would be no change to existing land uses, there would be no additional impacts on this resource.
Transportation

The **Proposed Action** and **Alternative 1** would result in the continuation of many of the modes of transportation presently occurring at KSC but potentially in greater amounts. Short- and long-term minor adverse effects would be expected. Short-term increases in traffic would result from construction worker commutes during construction and demolition activities. Long-term effects would be primarily due to additional worker commutes and changes in traffic patterns near more centralized activities at KSC. Increased traffic volumes and changes in traffic patterns, and changes in both vertical and horizontal launch activities would have minor effects, and there would be some long-term beneficial effects from upgrades in transportation infrastructure. The Proposed Action and Alternative 1 are not expected to have appreciable changes in the overall traffic volume at KSC; however, some components could affect the Level of Service (LOS) at intersections or roadways both on and off the facility. With one important exception, the direct, indirect, and cumulative impacts of Alternative 1 would be like those of the Proposed Action. The exception is that under Alternative 1, two proposed new seaports that are part of the Proposed Action would not be constructed and operated. In this respect, Alternative 1 would be like the No Action Alternative.

The **No Action Alternative** would result in no changes in the impact to traffic and transportation. KSC operations and the current levels of activities would continue without changes, and traffic and transportation would remain unchanged when compared to existing conditions.

Utilities

Under the **Proposed Action** and **Alternative 1**, KSC would continue to be a retail electricity, natural gas, and fuel oil customer. Construction of new facilities or sites within KSC would require the construction of new utilities rights-of-way and installation of new utility lines or extensions for power, water, and telecommunications. Depending on the location and size of the systems to be installed or expanded, installation of utility lines could have direct and indirect environmental impacts.

Because a large portion of the KSC site is already developed, impacts from new and utility systems would not be as substantial as they may be if the site were still pristine, undeveloped land. Additionally, over time, the site as a whole may actually consume less energy and water due to the achievement of greater efficiency and right-sizing under the proposed CMP. Overall, impacts from the installation and expansion of utility systems at KSC under the Proposed Action and Alternative 1 are anticipated to be minor to moderate and of small to medium extent.

Development at and near the site by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS may spur further utility needs in the local or regional area, which could create further impacts to soils, water resources, biological resources, and to the local community as a result of noise or visual disturbances during installation of utility corridors/systems. The capacity of regional utility service providers could potentially be exceeded. Impacts could be moderate, of medium extent, long-term, and possible. Direct, indirect and cumulative impacts of Alternative 1 would be very similar to those of the Proposed Action, but on a somewhat smaller scale.
Under the **No Action Alternative**, utility systems would continue to age and would require upgrades or replacements as they become less efficient or fail. However, current utility systems and their configuration at KSC would remain relatively unchanged aside from regular maintenance for the duration of the 20-year planning horizon (2012-2032). Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions conducted as part of the Proposed Action impacting utilities may proceed, but would have to do so after environmental assessment under separate environmental documentation.

Socioeconomics

Overall, the direct economic impacts as a result of the **Proposed Action** and **Alternative 1** would be beneficial but not significant. These alternatives would potentially create beneficial impacts of minor to moderate magnitude due to the creation of jobs and labor income, most of which would occur during 2016 as part of the Development Program. The extent of impacts would be medium (localized), since most of the jobs would be filled by area residents. Indirect and long-term impacts from non-NASA (second and third priority) projects on the local economy depend on external factors such as interest and financial commitment from non-NASA entities.

In the long-term, with KSC having leveraged its position as a multi-user spaceport and having positioned itself to attract new tenants, indirect economic impacts would be beneficial and significant for both the Proposed Action and Alternative 1.

Future employees from non-NASA projects at KSC would represent new purchasing power that would support additional jobs and payroll at local retail and service establishments in the Region of Influence (ROI). There is a larger multiplier effect associated with the consumer spending of employees directly supported by KSC (though these future employees would not directly be employed by NASA). Through this spending, the Proposed Action and Alternative 1 could indirectly support thousands of indirect and induced jobs.

Direct, indirect, and cumulative socioeconomic impacts associated with Alternative 1 would be broadly similar to those of the Proposed Action, though on a somewhat smaller scale, because facilities such as two proposed new seaports would not be built, and other notional facilities might not be constructed.

Under the **No Action Alternative**, no socioeconomic changes would occur to Brevard or Volusia counties. Since ongoing activities would be substantially the same as those already occurring, no significant additional change in community character and setting would be anticipated. Existing conditions would remain substantially unchanged and have no effect on the populations of concern. There would be no change to population, housing, employment, income characteristics, economic activity, taxes and revenues, or quality of life conditions. Fluctuations or changes would occur at rates consistent with historical trends.

Recreation

Under the **Proposed Action** and **Alternative 1**, changes in KSC’s land use, actions to meet KSC’s mission and core competencies, and future development, transportation facilities, and activities would have both adverse and beneficial impacts on recreational resources and
ecosystem services. Long-term consolidation of support services and expansion of existing facilities would create impacts of lesser magnitude compared to the construction of new facilities on pristine land, since infrastructure such as access roads and utilities have already been constructed.

Under the Proposed Action, development of horizontal launch infrastructure could hinder or delay access to Playalinda Beach; construction activities would contradict its natural attributes that contribute to its beauty and aesthetic quality, and the cultural services it provides. Launch and landing activities under the Proposed Action would likely generate intermittent, adverse effects on the visitor experience due to beach closures, but would not exceed the threshold of significance. Development north of Beach Road associated with the Proposed Action (vertical landing and horizontal launch and landing facilities) would have adverse, long-term effects on recreation opportunities at Playalinda Beach and CANA.

Under the Proposed Action, future development of two seaports could include the removal of saltwater marsh or mangroves, which would hinder natural flood control, degrade finfish and shellfish spawning grounds and nurseries, impact boating and fishing experiences, and further impact the Florida manatee with the introduction of motorized boating. Adverse impacts of the seaports to ecosystem services would occur in both the short- and long-term and could be significant.

In contrast to the Proposed Action, Alternative 1 might not hinder or delay access to Playalinda Beach because launch and landing facilities might not be constructed north of Beach Road. Also under Alternative 1, future development of two seaports would not occur, so that associated impacts on recreation would be avoided.

Under both the Proposed Action and Alternative 1, local population growth, climate change, and sea level rise will likely have adverse long-term effects on outdoor recreation opportunities such as fishing and wildlife observation.

Under the No Action Alternative, land use would not change on Operational Buffer and Public Use areas. Without future development of horizontal launch and vertical landing facilities, vertical launch pads, and seaports, the value of ecosystem services at CANA and MINWR would not change (or would fluctuate with market forces). Over time, the continued increase in visitor numbers, as well as urban development of the area surrounding the national seashore, would likely degrade visitor experience and the uncrowded beach and lagoon experience at CANA.

With more users, noise levels and the demand for services and facilities would likely increase, as well as the likelihood of resource damage. Sea level rise and erosion from climate change or the need to protect certain areas or species may alter visitor access to certain parts of CANA and MINWR. Visitation for birding and fishing may change if new species shift northward, or if extant marine fauna move northward or have dramatic declines in population, as might occur with the temperature-sensitive manatee.

Environmental Justice and Protection of Children

Neither Brevard County nor Volusia County constitutes an environmental justice population because in both counties neither the percentage of minorities exceeds 50 percent nor is
substantially higher than the percentage of minorities in the state. Disproportionate impacts to minorities in both Brevard and Volusia Counties would therefore be negligible under both the **Proposed Action** and **Alternative 1**.

Brevard County and Volusia County do not constitute an environmental justice population since poverty levels coupled with median household income levels are lower or comparable with the rest of Florida. Disproportionate impacts to the health and safety of children in Brevard and Volusia counties would not occur. Impacts of Alternative 1 would be virtually identical to those of the Proposed Action.

The **No Action Alternative** would continue KSC’s ongoing program at the current level of operations. No new potential for environmental justice effects or increased risk to children would be anticipated under this alternative. In general, all members of the affected communities would experience both the potential beneficial and adverse effects of the No Action Alternative equally. Minority or low-income individuals would be unlikely to experience high or disproportionate effects from the actions to be taken under this alternative. Disproportionate impacts to the health and safety of children in Brevard and Volusia counties would not occur.
TABLE OF CONTENTS

ABSTRACT .. i
EXECUTIVE SUMMARY .. ES-1
TABLE OF CONTENTS .. i
1.0 PURPOSE AND NEED .. 1-1
 1.1 Introduction .. 1-1
 1.2 Background ... 1-1
 1.2.1 KSC History and Operations .. 1-1
 1.2.2 Mission and Core Competencies .. 1-5
 1.3 Purpose and Need for the Action ... 1-6
 1.3.1 Purpose of the Action .. 1-6
 1.3.2 Need for the Action ... 1-8
 1.4 Scope of this Programmatic EIS ... 1-9
 1.4.1 Scoping Process for PEIS .. 1-9
 1.4.2 Agency Scoping Meeting .. 1-10
 1.4.3 Public Scoping Meetings .. 1-10
 1.4.4 Additional Opportunities for Public Involvement .. 1-11
 1.5 Coordination with Other Environmental Reviews .. 1-11
2.0 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES ... 2-1
 2.1 Proposed Action .. 2-1
 2.1.1 Land Use Plan .. 2-1
 2.1.1.1 Overview ... 2-1
 2.1.1.2 Future Land Use .. 2-1
 2.1.1.2.1 Center-wide Strategy ... 2-2
 2.1.1.2.2 Vertical Launch .. 2-10
 2.1.1.2.3 Vertical Landing ... 2-10
 2.1.1.2.4 Horizontal Launch and Landing .. 2-10
 2.1.1.2.5 Launch Operations and Support .. 2-11
 2.1.1.2.6 Assembly, Testing and Processing .. 2-11
 2.1.1.2.7 Utility Systems .. 2-11
 2.1.1.2.8 Administration .. 2-12
 2.1.1.2.9 Central Campus ... 2-12
 2.1.1.2.10 Support Services ... 2-12
Table of Contents

2.1.1.2.11 Public Outreach ... 2-13
2.1.1.2.12 Recreation .. 2-13
2.1.1.2.13 Research and Development ... 2-13
2.1.1.2.14 Seaport ... 2-14
2.1.1.2.15 Renewable Energy .. 2-14
2.1.1.2.16 Operational Buffer .. 2-15

2.1.2 Future Development Plan .. 2-15
2.1.2.1 Development Program .. 2-16

2.1.3 Launch, Landing, Operations and Support 2-18
2.1.3.1 Vertical Launch and Landing .. 2-18
2.1.3.1.1 Associated Activities ... 2-18
2.1.3.1.2 Small Class Launch Vehicle (SCLV) ... 2-18
2.1.3.1.3 Medium Class Launch Vehicle (MCLV) 2-18
2.1.3.1.4 Heavy Class Launch Vehicle (HCLV) ... 2-18
2.1.3.1.5 Super Heavy Class Launch Vehicle (SHCLV) 2-18
2.1.3.2 Horizontal Launch and Landing ... 2-19
2.1.3.3 Launch Operations and Support ... 2-20
2.1.3.3.1 Launch Vehicle Operations ... 2-20
2.1.3.3.2 Payload Operations ... 2-20
2.1.3.4 Assembly, Testing and Processing ... 2-20

2.1.4 Climate Change ... 2-21

2.1.5 Functional Area Plans ... 2-21

2.1.6 Future Transportation Plan .. 2-21
2.1.6.1 Overview ... 2-21
2.1.6.2 Roads and Bridges ... 2-22
2.1.6.3 Water .. 2-25
2.1.6.4 Air ... 2-25
2.1.6.1.1 Runways ... 2-25
2.1.6.2.1 Roads ... 2-22
2.1.6.2.2 Bridges .. 2-22
2.1.6.2.3 Divestiture ... 2-23
2.1.6.2.4 Parking .. 2-25
2.1.6.3.1 Water ... 2-25
2.1.6.4.1 Runways ... 2-25
2.1.6.4.2 Airspace .. 2-26

2.1.7 Environmental Remediation ... 2-26

2.1.8 Strategic Partnerships ... 2-26

2.2 Alternative 1 ... 2-26

2.3 No Action Alternative .. 2-30
2.3.1 Overview ... 2-30
2.3.2 Land Use ... 2-31
2.3.3 Transportation .. 2-32
2.3.4 Environmental Remediation ... 2-32
2.3.5 Climate Change ... 2-32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.6</td>
<td>Strategic Partnerships</td>
<td>2-32</td>
</tr>
<tr>
<td>2.3.7</td>
<td>NASA Programs</td>
<td>2-33</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Launch, Landing, Operations and Support</td>
<td>2-33</td>
</tr>
<tr>
<td>2.4</td>
<td>Agency-Preferred Alternative</td>
<td>2-33</td>
</tr>
<tr>
<td>2.5</td>
<td>Alternatives Considered But Eliminated</td>
<td>2-33</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of Alternatives</td>
<td>2-34</td>
</tr>
<tr>
<td>3.0</td>
<td>ENVIRONMENTAL ANALYSIS</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Past, Present, and Reasonably Foreseeable Future Projects</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General Growth and Development Since the Founding of KSC</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Proposed Shiloh Launch Complex</td>
<td>3-7</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Proposed Port Canaveral Rail Extension</td>
<td>3-8</td>
</tr>
<tr>
<td>3.3</td>
<td>Soils and Geology</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Affected Environment</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Soils</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Geology</td>
<td>3-12</td>
</tr>
<tr>
<td>3.3.1.2.1</td>
<td>Pleistocene and Holocene (Recent) Deposits</td>
<td>3-15</td>
</tr>
<tr>
<td>3.3.1.2.2</td>
<td>Undifferentiated Upper Miocene and Plioene Silts, Sands and Clays</td>
<td>3-16</td>
</tr>
<tr>
<td>3.3.1.2.3</td>
<td>Lower and Middle Miocene Silts and Clays</td>
<td>3-16</td>
</tr>
<tr>
<td>3.3.1.2.4</td>
<td>Eocene Limestones</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Environmental Consequences Including Cumulative Impacts</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Proposed Action</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2.1.1</td>
<td>Land Use Plan, Future Development Plan, and Functional Area Plans</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2.1.2</td>
<td>Launch, Landing, Operations and Support</td>
<td>3-20</td>
</tr>
<tr>
<td>3.3.2.1.3</td>
<td>Future Transportation Plan</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.2.1.4</td>
<td>Cumulative Impacts</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Alternative 1</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>No Action Alternative</td>
<td>3-23</td>
</tr>
<tr>
<td>3.4</td>
<td>Water Resources</td>
<td>3-23</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Affected Environment</td>
<td>3-23</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Surface Waters</td>
<td>3-23</td>
</tr>
<tr>
<td>3.4.1.1.1</td>
<td>Surface Water Standards, Regulations and Permits</td>
<td>3-27</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Groundwater</td>
<td>3-37</td>
</tr>
<tr>
<td>3.4.1.2.1</td>
<td>Groundwater Flow Patterns</td>
<td>3-41</td>
</tr>
<tr>
<td>3.4.1.2.2</td>
<td>Groundwater Quality</td>
<td>3-42</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Environmental Consequences Including Cumulative Impacts</td>
<td>3-44</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Proposed Action</td>
<td>3-44</td>
</tr>
<tr>
<td>3.4.2.1.1</td>
<td>Land Use Plan, Future Development Plan, and Functional Area Plans</td>
<td>3-44</td>
</tr>
<tr>
<td>3.4.2.1.2</td>
<td>Launch, Landing, Operations and Support</td>
<td>3-45</td>
</tr>
<tr>
<td>3.4.2.1.3</td>
<td>Future Transportation Plan</td>
<td>3-49</td>
</tr>
</tbody>
</table>
3.4.2.1.4 Cumulative Impacts ... 3-50

3.4.2.2 Alternative 1 ... 3-50

3.4.2.3 No Action Alternative .. 3-51

3.5 Hazardous Materials and Waste ... 3-51

3.5.1 Affected Environment .. 3-51

3.5.1.1 Solvents ... 3-52

3.5.1.1.1 Handling ... 3-52

3.5.1.1.2 Storage ... 3-52

3.5.1.1.3 Transport ... 3-52

3.5.1.1.4 Disposal ... 3-52

3.5.1.2 Surface Coatings ... 3-52

3.5.1.2.1 Handling ... 3-53

3.5.1.2.2 Storage ... 3-53

3.5.1.2.3 Transport ... 3-53

3.5.1.2.4 Disposal ... 3-53

3.5.1.3 Motor Vehicle Fuels ... 3-53

3.5.1.3.1 Handling ... 3-53

3.5.1.3.2 Storage ... 3-53

3.5.1.3.3 Transport ... 3-54

3.5.1.3.4 Disposal ... 3-54

3.5.1.4 Solid Rocket Propellants ... 3-54

3.5.1.4.1 Handling ... 3-54

3.5.1.4.2 Storage ... 3-54

3.5.1.4.3 Transport ... 3-54

3.5.1.4.4 Disposal ... 3-54

3.5.1.5 Liquid Propellants ... 3-55

3.5.1.5.1 Handling ... 3-56

3.5.1.5.2 Storage ... 3-56

3.5.1.5.3 Transport ... 3-57

3.5.1.5.4 Disposal ... 3-57

3.5.2 Environmental Consequences Including Cumulative Impacts 3-57

3.5.2.1 Proposed Action .. 3-57

3.5.2.2 Alternative 1 ... 3-58

3.5.2.3 No Action Alternative .. 3-58

3.6 Air Quality ... 3-58

3.6.1 Affected Environment .. 3-58

3.6.1.1 National Ambient Air Quality Standards and Attainment Status 3-58

3.6.1.2 Permitting Overview .. 3-59

3.6.1.2.1 Prevention of Significant Deterioration 3-59

3.6.1.2.2 Minor New Source Review ... 3-60

3.6.1.2.3 Operating Permits .. 3-60

3.6.1.2.4 Clean Air Act Conformity ... 3-61
3.6.2 Environmental Consequences Including Cumulative Impacts

3.6.2.1 Proposed Action

3.6.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

3.6.2.1.2 Launch, Landing, Operations and Support

3.6.2.1.3 Climate Change

3.6.2.1.4 Future Transportation Plan

3.6.2.1.5 Programmatic Determinations

3.6.2.1.6 Cumulative Impacts

3.6.2.2 Alternative 1

3.6.2.3 No Action Alternative

3.7 Climate Change

3.7.1 Affected Environment

3.7.1.1 Temperature

3.7.1.2 Rainfall

3.7.1.3 Sea Level

3.7.1.4 Climate Projections

3.7.1.5 Greenhouse Gas (GHG) Emissions

3.7.2 Environmental Consequences including Cumulative Impacts

3.7.2.1 Methodology

3.7.2.2 Potential Impacts of Global Climate Change on KSC Actions

3.7.2.3 Impacts Associated With the Proposed Action

3.7.2.3.1 Impacts of the Proposed Action on Climate Change

3.7.2.3.2 Effects of Global Climate Change on the Proposed Action

3.7.2.4 Impacts Associated with Alternative 1

3.7.2.5 Impacts Associated with the No Action Alternative

3.7.2.5.1 Impacts of the No Action Alternative on Climate Change

3.7.2.5.2 Impacts from Global Climate Change on the No Action Alternative

3.7.2.6 Cumulative Impacts

3.8 Acoustic Environment (Noise)

3.8.1 Affected Environment

3.8.1.1 Regulatory Review

3.8.1.2 Noise Sensitive Areas and Background Noise

3.8.1.3 Existing Noise

3.8.1.4 Vertical Launch Operations

3.8.2 Environmental Consequences Including Cumulative Impacts

3.8.2.1 Proposed Action

3.8.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

3.8.2.1.2 Launch, Landing, Operations and Support
3.8.2.1.3 Climate Change .. 3-101
3.8.2.1.4 Future Transportation Plan .. 3-101
3.8.2.1.5 Programmatic Determinations .. 3-102
3.8.2.2 Alternative 1 ... 3-103
3.8.2.3 No Action Alternative .. 3-103

3.9 Biological Resources ... 3-103

3.9.1 Affected Environment ... 3-104

3.9.1.1 Terrestrial Environment .. 3-104
3.9.1.1.1 Upland Plant Communities .. 3-104
3.9.1.1.2 Terrestrial Wildlife ... 3-115

3.9.1.2 Aquatic Environments .. 3-127
3.9.1.2.1 Wetlands (Freshwater and Brackish) 3-127
3.9.1.2.2 Wildlife and Aquatic Biota .. 3-135

3.9.2 Environmental Consequences including Cumulative Impacts ... 3-147

3.9.2.1 Terrestrial Environment – Vegetation ... 3-147
3.9.2.1.1 Proposed Action ... 3-147
3.9.2.1.2 Alternative 1 ... 3-153
3.9.2.1.3 No Action Alternative .. 3-154

3.9.2.2 Wetlands Vegetation ... 3-154
3.9.2.2.1 Proposed Action ... 3-154
3.9.2.2.2 Alternative 1 ... 3-159
3.9.2.2.3 No Action Alternative .. 3-160

3.9.2.3 Upland Wildlife ... 3-160
3.9.2.3.1 Proposed Action ... 3-160
3.9.2.3.2 Alternative 1 ... 3-168
3.9.2.3.3 No Action Alternative .. 3-168

3.9.2.4 Wetlands and Aquatic Wildlife .. 3-168
3.9.2.4.1 Proposed Action ... 3-168
3.9.2.4.2 Alternative 1 ... 3-170
3.9.2.4.3 No Action ... 3-170

3.9.2.5 Cumulative Impacts to Upland Wildlife, Wetlands and Aquatic Biota 3-172
3.9.2.5.1 Invasive Species ... 3-172
3.9.2.5.2 Recreational Use .. 3-174
3.9.2.5.3 Climate Change and Sea Level Rise 3-176

3.10 Cultural Resources ... 3-177

3.10.1 Affected Environment ... 3-177
3.10.1.1 Regulatory Framework .. 3-177
3.10.1.2 Integrated Cultural Resources Management Plan ... 3-180
3.10.1.2.1 Prehistoric and Historic Archaeological Resources ... 3-180
3.10.1.2.2 Historic Buildings, Structures, Objects, and Districts .. 3-182

3.10.2 Environmental Consequences including Cumulative Effects ... 3-182
3.10.2.1 Proposed Action ... 3-182
3.10.2.1.1 Cumulative Effects ... 3-184
3.10.2.2 Alternative 1 ... 3-185
3.10.2.3 No Action Alternative .. 3-185
3.11 Land Use ... 3-186
 3.11.1 Affected Environment .. 3-186
 3.11.1.1 NASA Zoning and Land Use Planning 3-189
 3.11.1.2 Land Cover at KSC ... 3-189
 3.11.1.3 Existing Land Uses at KSC ... 3-190
 3.11.1.3.1 Vertical Launch ... 3-190
 3.11.1.3.2 Vertical Landing ... 3-190
 3.11.1.3.3 Horizontal Launch and Landing 3-190
 3.11.1.3.4 Launch Operations and Support 3-190
 3.11.1.3.5 Assembly, Testing and Processing 3-190
 3.11.1.3.6 Utility Systems .. 3-191
 3.11.1.3.7 Administration .. 3-191
 3.11.1.3.8 Central Campus ... 3-191
 3.11.1.3.9 Support Services ... 3-191
 3.11.1.3.10 Public Outreach .. 3-191
 3.11.1.3.11 Recreation ... 3-191
 3.11.1.3.12 Research and Development 3-192
 3.11.1.3.13 Seaport .. 3-192
 3.11.1.3.14 Renewable Energy .. 3-192
 3.11.1.3.15 Operational Buffer .. 3-192
 3.11.1.3.16 Open Space ... 3-192
 3.11.1.3.17 Roads and Bridges ... 3-193
 3.11.1.4 Land Use Controls ... 3-193
 3.11.1.5 Land Use Permits ... 3-193
 3.11.1.6 Land Use Agreements .. 3-194
 3.11.2 Environmental Consequences Including Cumulative Impacts .. 3-195
 3.11.2.1 Proposed Action ... 3-195
 3.11.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans .. 3-195
 3.11.2.1.2 Launch, Landing, Operations and Support 3-197
 3.11.2.1.3 Future Transportation Plan 3-198
 3.11.2.1.4 Summary of Impacts .. 3-199
 3.11.2.1.5 Cumulative Impacts .. 3-200
 3.11.2.2 Alternative 1 ... 3-201
 3.11.2.3 No Action Alternative .. 3-201
 3.12 Transportation .. 3-201
 3.12.1 Affected Environment ... 3-201
 3.12.1.1 Rail ... 3-203
 3.12.1.2 Public Transportation .. 3-203
 3.12.1.3 Airports .. 3-203
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12.1.4 Launch Facilities</td>
<td>3-204</td>
</tr>
<tr>
<td>3.12.1.5 Waterways</td>
<td>3-204</td>
</tr>
<tr>
<td>3.12.2 Environmental Consequences Including Cumulative Impacts</td>
<td>3-204</td>
</tr>
<tr>
<td>3.12.2.1 Proposed Action</td>
<td>3-204</td>
</tr>
<tr>
<td>3.12.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans</td>
<td>3-204</td>
</tr>
<tr>
<td>3.12.2.1.2 Launch, Landing, Operations and Support</td>
<td>3-205</td>
</tr>
<tr>
<td>3.12.2.1.3 Climate Change</td>
<td>3-207</td>
</tr>
<tr>
<td>3.12.2.1.4 Future Transportation Plan</td>
<td>3-207</td>
</tr>
<tr>
<td>3.12.2.1.5 Programmatic Determinations</td>
<td>3-208</td>
</tr>
<tr>
<td>3.12.2.1.6 Cumulative Impacts</td>
<td>3-209</td>
</tr>
<tr>
<td>3.12.2.2 Alternative 1</td>
<td>3-209</td>
</tr>
<tr>
<td>3.12.2.3 No Action Alternative</td>
<td>3-209</td>
</tr>
<tr>
<td>3.13 Utilities</td>
<td>3-209</td>
</tr>
<tr>
<td>3.13.1 Affected Environment</td>
<td>3-209</td>
</tr>
<tr>
<td>3.13.1.1 Major Energy Sources at KSC</td>
<td>3-209</td>
</tr>
<tr>
<td>3.13.1.2 Regulatory Overview</td>
<td>3-210</td>
</tr>
<tr>
<td>3.13.1.3 Utility Systems at KSC</td>
<td>3-213</td>
</tr>
<tr>
<td>3.13.1.3.1 Drinking Water</td>
<td>3-214</td>
</tr>
<tr>
<td>3.13.1.3.2 Domestic Wastewater</td>
<td>3-214</td>
</tr>
<tr>
<td>3.13.1.3.3 Industrial Wastewater</td>
<td>3-214</td>
</tr>
<tr>
<td>3.13.1.3.4 Stormwater</td>
<td>3-215</td>
</tr>
<tr>
<td>3.13.1.3.5 Easements and Rights-of-Way</td>
<td>3-215</td>
</tr>
<tr>
<td>3.13.1.4 NASA KSC Energy Management Goals and Five-Year Plan</td>
<td>3-215</td>
</tr>
<tr>
<td>3.13.2 Environmental Consequences Including Cumulative Impacts</td>
<td>3-217</td>
</tr>
<tr>
<td>3.13.2.1 Proposed Action</td>
<td>3-217</td>
</tr>
<tr>
<td>3.13.2.1.1 Summary of Impacts</td>
<td>3-218</td>
</tr>
<tr>
<td>3.13.2.1.2 Cumulative Impacts</td>
<td>3-219</td>
</tr>
<tr>
<td>3.13.2.2 Alternative 1</td>
<td>3-219</td>
</tr>
<tr>
<td>3.13.2.3 No Action Alternative</td>
<td>3-219</td>
</tr>
<tr>
<td>3.14 Socioeconomics</td>
<td>3-219</td>
</tr>
<tr>
<td>3.14.1 Affected Environment</td>
<td>3-219</td>
</tr>
<tr>
<td>3.14.1.1 Population and Housing</td>
<td>3-220</td>
</tr>
<tr>
<td>3.14.1.1.1 Population</td>
<td>3-220</td>
</tr>
<tr>
<td>3.14.1.1.2 Housing</td>
<td>3-222</td>
</tr>
<tr>
<td>3.14.1.2 Labor</td>
<td>3-223</td>
</tr>
<tr>
<td>3.14.1.2.1 Civilian Labor Force</td>
<td>3-223</td>
</tr>
<tr>
<td>3.14.1.2.2 Employment</td>
<td>3-223</td>
</tr>
<tr>
<td>3.14.1.2.3 Unemployment Rates</td>
<td>3-225</td>
</tr>
<tr>
<td>3.14.1.3 Earnings</td>
<td>3-226</td>
</tr>
<tr>
<td>3.14.1.3.1 Per Capita Personal Income</td>
<td>3-226</td>
</tr>
<tr>
<td>3.14.1.3.2 Industry Compensation</td>
<td>3-227</td>
</tr>
<tr>
<td>3.14.1.4 Public Finance</td>
<td>3-228</td>
</tr>
</tbody>
</table>
3.14.1.4.1 Property Values .. 3-229
3.14.1.4.2 Real Estate Transfer Taxes 3-229
3.14.1.4.3 Tourist Development Tax (Resort Tax) 3-230
3.14.1.4.4 Payment in Lieu of Taxes ... 3-230
3.14.1.5 Community Cohesion ... 3-230

3.14.2 Environmental Consequences Including Cumulative Impacts ... 3-231
3.14.2.1 Proposed Action .. 3-231
 3.14.2.1.1 Land Use Plan ... 3-232
 3.14.2.1.2 Future Development Plan ... 3-233
 3.14.2.1.3 Future Transportation Plan .. 3-236
 3.14.2.1.4 Conclusion.. 3-237
 3.14.2.1.5 Cumulative Effects ... 3-237
3.14.2.2 Alternative 1 .. 3-237
3.14.2.3 No Action Alternative .. 3-238

3.15 Recreation ... 3-238
3.15.1 Affected Environment .. 3-238
 3.15.1.1 Merritt Island National Wildlife Refuge 3-239
 3.15.1.1.1 Recreation Visits and Access ... 3-240
 3.15.1.1.2 Visitor Expenditures ... 3-243
 3.15.1.2 Canaveral National Seashore ... 3-244
 3.15.1.2.1 Recreation Visits and Access ... 3-244
 3.15.1.2.2 Visitor Expenditures ... 3-247
 3.15.1.3 Ecosystem Services Valuation .. 3-248
3.15.2 Environmental Consequences Including Cumulative Impacts 3-248
 3.15.2.1 Proposed Action ... 3-248
 3.15.2.1.1 Land Use Plan, Future Development Plan, and Functional
 Area Plans ... 3-249
 3.15.2.1.2 Launch, Landing, Operations and Support 3-253
 3.15.2.1.3 Future Transportation Plan ... 3-254
 3.15.2.1.4 Conclusion.. 3-254
 3.15.2.1.5 Cumulative Impacts ... 3-255
 3.15.2.2 Alternative 1 .. 3-256
 3.15.2.3 No Action Alternative .. 3-256

3.16 Environmental Justice and Protection of Children .. 3-256
3.16.1 Affected Environment .. 3-256
 3.16.1.1 Minority Populations ... 3-257
 3.16.1.2 Low-Income Populations ... 3-258
 3.16.1.3 Protection of Children.. 3-259
3.16.2 Environmental Consequences Including Cumulative Impacts 3-261
 3.16.2.1 Proposed Action ... 3-262
 3.16.2.1.1 Minority Populations ... 3-262
 3.16.2.1.2 Low-Income Populations ... 3-262
 3.16.2.1.3 Protection of Children.. 3-262
Table of Contents

3.16.2.1.4 Employment ... 3-263
3.16.2.1.5 Air Quality ... 3-263
3.16.2.1.6 Water Quality ... 3-263
3.16.2.1.7 Acoustic Environment .. 3-264
3.16.2.1.8 Recreation ... 3-264
3.16.2.1.9 Community Services and Traffic 3-264
3.16.2.1.10 Conclusion ... 3-265
3.16.2.2 Alternative 1 ... 3-265
3.16.2.3 No Action Alternative ... 3-265
3.16.2.4 Mitigation ... 3-266

3.17 Unavoidable Adverse Impacts .. 3-267
3.18 Relationship Between Short-Term Uses of the Environment and Maintenance and Enhancement of Long-term Productivity .. 3-270
3.19 Irreversible and Irretrievable Commitment of Resources 3-271
3.19.1 Irreversible Commitments of Resources 3-272
3.19.2 Irretrievable Commitments of Resources 3-272

4.0 SUMMARY OF MITIGATION MEASURES ... 4-1
4.1 Soils and Geology ... 4-1
4.2 Water Resources ... 4-1
4.3 Hazardous Materials and Waste .. 4-2
4.4 Air Quality .. 4-2
4.5 Climate Change .. 4-2
4.6 Acoustic Environment (Noise) ... 4-3
4.7 Biological Resources ... 4-3
4.8 Cultural Resources ... 4-5
4.9 Land Use .. 4-6
4.10 Transportation ... 4-6
4.11 Recreation .. 4-7
4.12 Environmental Justice ... 4-7

5.0 REFERENCES CITED ... 5-1

6.0 LIST OF PREPARERS .. 6-1

7.0 LIST OF PERSONS AND AGENCIES CONSULTED ... 7-1

8.0 INDEX OF TERMS .. 8-1

APPENDIX A: ACRONYMS AND ABBREVIATIONS .. A-1
APPENDIX B: SCOPING REPORT .. B-1
APPENDIX C: COMMENT RESPONSE DOCUMENT .. C-1
APPENDIX D: NOTICE OF AVAILABILITY ... D-1
APPENDIX E: PUBLIC MEETINGS PRESENTATION FOR DRAFT PEIS E-1

Table of Contents
TABLES:
Table ES-1. Acreages of designated land uses at KSC under the three alternatives .. ES-5
Table 2.1-1. Existing and proposed future land uses at KSC under Proposed Action .. 2-2
Table 2.1-2. General characteristics of vertical launch vehicle classes ... 2-19
Table 2.1-3. General characteristics of potential horizontal launch vehicles* .. 2-20
Table 2.2-1. Existing and proposed future land uses at KSC under Alternative 1 .. 2-30
Table 2.6-1. Acreages of designated land uses at KSC under the three alternatives .. 2-35
Table 2.6-2. Impact comparison matrix ... 2-36
Table 3.2-1. Population growth in Brevard and Volusia counties, 1960-2013 ... 3-7
Table 3.3-1. Soil classification for the Kennedy Space Center .. 3-11
Table 3.3-2. Area of identified soil classes at the Kennedy Space Center .. 3-12
Table 3.3-3. Generalized stratigraphy at the Kennedy Space Center ... 3-16
Table 3.4-1. General characteristics of aquifers at KSC ... 3-39
Table 3.6-1. Air quality standards and monitored data .. 3-59
Table 3.6-2. Annual emissions for significant stationary sources at KSC ... 3-60
Table 3.6-3. Emissions estimated from large demolition and construction projects ... 3-62
Table 3.6-4. Summary of launch vehicle products of combustion ... 3-65
Table 3.6-5. 40 CFR 93 § 153 de minimis levels for criteria pollutants .. 3-67
Table 3.6-6. Summary of de minimis calculation estimates ... 3-67
Table 3.6-7. Estimated annual emissions for all horizontal launches and landings nationwide 3-74
Table 3.7-1. Estimated climate conditions for air temperature and rainfall for KSC 3-81
Table 3.7-2. Estimated changes in the numbers of days of extreme hot or cold temperatures for KSC 3-81
Table 3.7-3. Projected likelihood of extreme events through the latter part of the 21st Century¹.......................... 3-82
Table 3.7-4. Percent change in NASA greenhouse gas emissions covered by reduction targets (metric tons of CO₂-equivalent), from FY 2008 to FY 2013* ... 3-83
Table 3.7-5. Key climate hazards and potential impacts to NASA assets and capabilities 3-87
Table 3.8-1. Common sounds and their levels ... 3-94
Table 3.8-2. Measured vertical launch noise at KSC ... 3-96
Table 3.8-3. Noise levels associated with outdoor construction .. 3-97
Table 3.9-1. Land cover classes at KSC ... 3-104
Table 3.9-2. Land cover types at KSC ... 3-108
Table 3.9-3. Category I and II invasive upland plant species at KSC .. 3-111
Table 3.9-4. Special status upland plants of the KSC area, including adjacent federal property 3-112
Table 3.9-5. Common habitats of special status upland plants of the KSC area, including adjacent federal property ... 3-114
Table 3.9-6. Terrestrial amphibians and reptiles of KSC .. 3-116
Table 3.9-7. Upland mammals of KSC ... 3-119
Table 3.9-8. Federal and state protected terrestrial wildlife of KSC ... 3-120
Table 3.9-9. Category I and II invasive wetland species at KSC .. 3-131
Table 3.9-10. Special status wetland plants of the KSC area, including adjacent federal property 3-132
Table 3.9-11. Common habitats of special status wetland plants of the KSC area, including adjacent federal property ... 3-132

Table of Contents xi
Table of Contents

- Table 3.9-12. Amphibians and reptiles of KSC wetlands and waterways ... 3-135
- Table 3.9-13. Common mammals of KSC wetlands.. 3-138
- Table 3.9-14. Aquatic and transitional Federal and State protected wildlife of KSC 3-140
- Table 3.9-15. Existing and proposed future land uses at KSC... 3-161
- Table 3.12-1. Annual average daily traffic counts for nearby off-Center roadways.......................... 3-202
- Table 3.13-1. Major energy sources at KSC... 3-210
- Table 3.13-2. FY 2013 consumption and cost... 3-210
- Table 3.13-3. KSC energy management and efficiency goals... 3-215
- Table 3.14-1. Population change, 2000-2013 ... 3-220
- Table 3.14-2. Summary of children by age group (2013).. 3-221
- Table 3.14-3. Distribution of population by age (2013)... 3-221
- Table 3.14-4. Components of population change, 2010-2013 .. 3-221
- Table 3.14-5. Housing characteristics (2013) ... 3-222
- Table 3.14-6. Civilian labor force, 2000-2010 ... 3-223
- Table 3.14-7. Annual employment, 2000-2013 .. 3-223
- Table 3.14-8. Top 10 private employers in Brevard County (2013).. 3-224
- Table 3.14-9. Top 10 private employers in Volusia County (2014).. 3-224
- Table 3.14-10. Workforce at Kennedy Space Center ... 3-225
- Table 3.14-11. Per capita personal income ... 3-227
- Table 3.14-12. 2013 Compensation of employees by industry in ROI ($000) 3-228
- Table 3.14-13. Taxable value in Brevard County, 2008-2013 .. 3-229
- Table 3.14-14. Total taxable value in Volusia County, 2008-2013 .. 3-229
- Table 3.14-15. 2013 Payments and acreage in Brevard and Volusia counties 3-230
- Table 3.14-16. Community cohesion indicators in ROI ... 3-231
- Table 3.14-17. KSC procurement dollars spent in Florida, 2010-2013 .. 3-234
- Table 3.15-1. 2011 Recreation visits at MINWR .. 3-241
- Table 3.15-2. Visitor recreation expenditures at MINWR (2011 $000) .. 3-243
- Table 3.15-3. 2011 Economic impact of MINWR ... 3-244
- Table 3.15-4. Recreation visits at CANA (2010-2014) .. 3-245
- Table 3.15-5. CANA annual visitation by management district (2010-2014) 3-247
- Table 3.15-6. 2013 2014 Economic impact of CANA on Brevard and Volusia counties 3-247
- Table 3.16-1. Summary of minorities and minority population groups .. 3-258
- Table 3.16-2. Summary of economic characteristics ... 3-259
- Table 3.16-3. Summary of children by age group .. 3-261
- Table 3.17-1. Unavoidable adverse impacts ... 3-267

FIGURES:

- Figure 1.2-1. Location map of the Kennedy Space Center... 1-4
- Figure 1.2-2. Major surface water bodies in and surrounding the Kennedy Space Center 1-5
- Figure 1.3-1. Kennedy Space Center mission in the coming years: exploring destinations beyond low-Earth orbit................................. 1-7
Figure 3.5-1. Hydrazine being loaded onto NASA’s Messenger space probe.

Figure 3.4-10. Profile of groundwater circulation patterns in the Surficial aquifer at KSC.

Figure 3.4-9. Subaquifers of the Surficial aquifer at KSC.

Figure 3.9-13. Loggerhead sea turtle hatchlings.

Figure 3.4-8. Profile of geohydrological units and aquifers at KSC.

Figure 3.4-7. Algal superbloom in 2011.

Figure 3.4-6. Seagrass coverage in the Indian River Lagoon.

Figure 3.4-5. Surface water quality sampling stations at KSC.

Figure 3.4-4. Surface water classifications at and around KSC.

Figure 3.4-3. As its name suggests, manatee grass is a key food source for manatees.

Figure 3.4-2. Aerial view of Indian River Lagoon.

Figure 3.4-1. Major surface water bodies surrounding KSC.

Figure 3.3-1. Distribution of soil classes at Kennedy Space Center.

Figure 2.3-1. Existing land use at the Kennedy Space Center – maintained under the No Action Alternative.

Figure 2.2-1. Proposed future land use at the Kennedy Space Center under Alternative 1.

Figure 2.1-8. Haulover Canal Bridge.

Figure 2.1-7. Launch of Orion MPCV unmanned test flight, December 5, 2014.

Figure 2.1-6. Vehicle Assembly Building (VAB) Functional Area.

Figure 2.1-5. Shuttle Landing Facility (SLF) Functional Area.

Figure 2.1-4. Vertical Launch Areas.

Figure 2.1-3. Exploration Park, Industrial Area, and Visitor Center.

Figure 2.1-2. Proposed future land use at the Kennedy Space Center (Proposed Action).

Figure 2.1-1. Proposed future land use at the Kennedy Space Center – maintained under the No Action Alternative.

Figure 1.4-1. Commenter speaking at microphone in Titusville public scoping meeting.

Table of Contents xiii
Figure 3.9-14. The federally-endangered manatee abounds in the waters around KSC	3-145
Figure 3.9-15. Manatee protection zones at KSC	3-146
Figure 3.10-1. LC-39 – Pad A is one of several facilities at KSC listed on the NRHP	3-178
Figure 3.11-1. General land use and administration at KSC	3-187
Figure 3.11-2. General land cover at KSC	3-188
Figure 3.12-1. Railroad tracks at KSC and MINWR	3-203
Figure 3.13-1. Solar photovoltaic panels at the Kennedy Space Center	3-217
Figure 3.14-1. Unemployment in the ROI, 2000-2013	3-226
Figure 3.15-1. Canaveral National Seashore showing beach, ocean, and Mosquito Lagoon	3-239
Figure 3.15-2. Visitor center at MINWR	3-240
Figure 3.15-3. MINWR fishing map	3-242
Figure 3.15-4. Beach at Canaveral National Seashore	3-244
Figure 3.15-5. Traffic count at Apollo Beach (2010-2014)	3-246
Figure 3.15-6. Traffic count at Playalinda Beach (2010-2014)	3-246
1.0 PURPOSE AND NEED

1.1 Introduction

This Programmatic Environmental Impact Statement (PEIS) has been prepared in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S. Code [U.S.C.] 4321–4347), the Council on Environmental Quality (CEQ) regulations for implementing NEPA (40 Code of Federal Regulations [CFR] 1500–1508), the National Aeronautics and Space Administration’s (NASA’s) regulations for implementing NEPA (14 CFR Subpart 1216.3), the NASA Procedural Requirements for Implementing NEPA, Executive Order (EO) 12114 (NASA Procedural Requirements 8580.1), and as identified in Section 1102 of the NASA Authorization Act of 2010 (Public Law [PL] 111-26, October 11, 2010). Section 106 of the National Historic Preservation Act (NHPA) and Section 7 of the Endangered Species Act (ESA) are also integrated with the NEPA process, to identify and protect cultural resources and threatened and endangered (T&E) species, respectively.

This PEIS has been prepared to evaluate the potential environmental impacts from proposed center-wide Kennedy Space Center (KSC) operations, activities, and facilities for a planning horizon that encompasses the next 20 years. These operations, activities and facilities are described in the 2013 Master Plan (Center Master Plan Update, or CMP, as referenced in the rest of the document), which has a planning horizon of 2012-2032. It will consider a range of future scenarios for repurposing existing facilities and recapitalizing infrastructure, to reorganizing the management of the KSC and its land resources, with potentially various kinds of partnerships (some of which are already in place). The PEIS is intended to ensure that NASA is in compliance with applicable environmental statutes as it sets program priorities for future operations and activities.

Several EISs are discussed in this document. NASA’s EIS (i.e., this document) is the Programmatic EIS (PEIS) that provides NEPA compliance for the KSC Center Master Plan Update covering the 2012-2032 planning horizon. The Federal Aviation Administration (FAA), a cooperating agency for this PEIS, is preparing its own EIS on the proposed Shiloh Launch Complex (described in Chapter 3, Section 3.2.2) put forth by Space Florida. Finally, the Surface Transportation Board is preparing a separate EIS for the proposed Port Canaveral Rail Extension in the southern portion of KSC (described in Chapter 3, Section 3.2.3).

1.2 Background

1.2.1 KSC History and Operations

Beginning in the late 1950s the United States embarked upon a new era of human space exploration (NASA, 2008), an effort which continues to this day more than half a century later. The first human spaceflight initiative in the U.S. was Project Mercury, established in 1958 with crewed spacecraft first launched from Cape Canaveral Air Force Station (CCAFS) in the early 1960s. NASA’s Launch Operations Center and the portions of CCAFS that were used by NASA were renamed the John F. Kennedy Space Center (KSC) in 1963. Project Mercury was followed by Project Gemini and the Apollo Program. Project Gemini was announced in 1962 and served to perfect maneuvers in Earth orbit. The Apollo Program was initiated in 1961, successfully landing American astronauts on the Moon and returning them safely to the Earth in July 1969.
with Apollo 11. Ultimately a total of nine Apollo missions reached the Moon, landing 12 astronauts there. The last American strode the surface of the Moon in December 1972.

In the mid-1970s, NASA initiated development of the Space Transportation System (commonly called the Space Shuttle) as the next crewed vehicle. Designed solely for missions to low Earth orbit (99-1,200 miles above the Earth’s surface), the Space Shuttle was the first and to date the only winged U.S. spacecraft capable of launching crew vertically into orbit and landing horizontally upon returning to Earth. The Space Shuttle era lasted for 30 years, from the launch of Columbia on April 12, 1981 until the landing of Atlantis on July 21, 2011. During this period the Space Shuttle fleet supported 135 missions, recovering and repairing satellites, conducting cutting-edge scientific research under zero gravity conditions, and helping to construct and service the International Space Station (ISS), the largest-ever structure built in space (NASA, 2012a).

Early in 1962, NASA began acquiring property for a space center as a base for launch operations in support of the Manned Lunar Landing Program. Approximately 34,000 hectares (ha) (84,000 acres (ac)) were purchased on Merritt Island in the northern part of Brevard County extending into the southernmost tip of Volusia County. An additional 22,660 ha (56,000 ac) of state-owned submerged land (Mosquito Lagoon and part of Indian River Lagoon) were negotiated with the State of Florida for exclusive rights dedicated to the United States. This total area of nearly 56,660 ha (140,000 ac), together with the adjoining water bodies, was considered extensive enough to provide adequate safety for the surrounding communities from the planned vehicle launches. The State of Florida Trustees of Internal Improvement Fund granted the United States an additional 22,660 hectares (56,000 acres) of state-owned submerged lands, wetlands, and uplands including the Mosquito Lagoon, and parts of the Indian and Banana Rivers for primary use in the Space Program and secondary use as a Wildlife Refuge or for public park and recreation purposes upon a determination that such use was consistent with the property’s primary use in the Space Program. This total area of approximately 56,660 ha (140,000 ac), together with the adjoining water bodies, was considered extensive enough to meet future space program launch facility and operational needs while also providing adequate safety to the surrounding communities.

KSC is located on the east coast of Florida (Figure 1.2-1). The Center itself is situated approximately 242 km (150 miles) south of Jacksonville and 64 km (40 mi) due east of Orlando, on the north end of Merritt Island, adjacent to Cape Canaveral.

KSC is relatively long and narrow, being approximately 56 km (35 mi) in length and varying from 8 to 16 km (5 to 10 mi) in width. It is bordered on the west by the Indian River (a brackish water lagoon) and on the east by the Atlantic Ocean and the CCAFS. The northernmost end of the Banana River (another brackish-water lagoon) lies between Merritt Island and CCAFS and is included as part of KSC submerged lands. The southern boundary of KSC runs east-west along the Merritt Island Barge Canal, which connects the Indian River with the Banana River and Port Canaveral at the southern tip of Cape Canaveral. The northern border lies in Volusia County near Oak Hill across Mosquito Lagoon. The Indian River, Banana River and the Mosquito Lagoon collectively make up the Indian River Lagoon system (Figure 1.2-2).

Only a very small part – about five percent – of the total acreage of KSC has been developed or designated for NASA operational and industrial use (see Figure 2.2-1). Merritt Island consists of
prime habitat for unique and endangered wildlife; therefore, in August 1963 NASA entered into an agreement with the U.S. Fish and Wildlife Service (USFWS) to establish a wildlife preserve, known as the Merritt Island National Wildlife Refuge (MINWR), within the boundaries of KSC. Public Law 93-626 created the Canaveral National Seashore (CANA or CNS); thereby, an agreement with the U.S. Department of the Interior (USDOI) was also signed in 1975 due to the location of CANA within KSC boundaries (Figure 1.2-1). CANA and MINWR conducted separate NEPA planning processes to adopt individual management plans: CANA is managed in accordance with its General Management Plan (GMP) and MINWR is managed in accordance with its Comprehensive Conservation Plan (CCP), including key step-down management plans such as a hunt plan.

The 140,000-acre area, in association with adjacent water bodies, provides sufficient buffer zones to afford adequate safety to the surrounding civilian communities for vehicle launches and other KSC activities. A portion of the seashore on the eastern edge of the Center is available for public recreation purposes on a non-interference basis (NASA, 1971).

Since December 1968, all manned launch operations have been conducted from Pads A and B at Launch Complex 39 (LC-39). Both pads are close to the ocean, five km (three miles) east of the Vehicle Assembly Building (VAB). From 1969–1972, LC-39 was the departure point for all six Apollo manned Moon landing missions using the Saturn V rocket, the largest and most powerful operational launch vehicle in history, with more than 7.5 million pounds of thrust. LC-39 was used from 1981–2011 for all Space Shuttle launches. The Shuttle Landing Facility (SLF), located just to the north, was used for most Shuttle landings and, at 4,572 meters (m) (15,000 ft. or 2.8 miles) is among the longest runways in the world.

The KSC Industrial Area, where many of the Center's support facilities are located, is eight km (five miles) south of LC-39. It includes the Headquarters Building, the Operations and Checkout Building and the Central Instrumentation Facility. KSC was also home to the Merritt Island Spaceflight Tracking and Data Network station (MILA), a key radio communications and spacecraft tracking complex. The Center operates its own railroad, the primary function of which is to transport solid rocket boosters to and from various locations on KSC.

KSC is a major central Florida tourist destination and is approximately a one hour drive from the Orlando area. The Visitor Complex offers public tours of the center and CCAFS. Because much of the installation is a restricted area and only nine percent of the land is developed, the site also serves as an important wildlife sanctuary. The Indian River Lagoon, Merritt Island National Wildlife Refuge and Canaveral National Seashore are other natural features of the area. KSC workers and the visiting public can encounter Bald Eagles, American alligators, wild boars, eastern diamondback rattlesnakes, bobcats, and Florida manatees, among other wildlife.
Figure 1.2-1. Location map of the Kennedy Space Center
KSC is one of eleven major NASA field centers (Ames, Armstrong, Glenn, Goddard, Jet Propulsion Laboratory, Johnson, Kennedy, Langley, Marshall, Stennis, and Wallops), and it has a number of facilities listed on the National Register of Historic Places (NRHP).

1.2.2 Mission and Core Competencies

KSC’s core competencies are rooted in its history of space flight. The future operations performed at KSC will continue to use these competencies, which are unmatched anywhere in the world, having been mastered with over 50 years of successful space launch operations. This unique experience and position within the space launch industry is reflected in its specialized workforce, unique facilities supporting launch preparations and operations, and ideal location for sending payloads to orbit. An essential function of the success of KSC’s transformation is that it applies those competencies across new business lines. This is what will enable and attract a broader user base. It’s a new way of doing business for a new generation of explorers.

KSC excels in these core competencies:

- **Acquisition and management of launch services and commercial crew development** – Ability to successfully acquire and manage commercial launch services for human and science-related missions is critical to expanding U.S. aerospace markets as we continue to live, learn, and explore in space.

- **Launch vehicle and spacecraft processing, launching, landing and recovery, operations, and sustainment** – Accomplishments range from processing highly complex spacecraft and space telescope optics to the launch and recovery of both manned and unmanned spacecraft and launch vehicles.

- **Payload and flight science experiment processing, integration, and testing** – KSC’s ability to develop, integrate, and test a variety of different payloads and research experiments, provide controlled environments to sustain critical science cargo, offer contamination control services, and consistently deliver time-critical launch/landing site payload customer services has earned KSC recognition within the NASA community.
• **Designing, developing, operating, and sustaining flight and ground systems, and supporting infrastructure** – KSC’s engineers are skilled in electrical systems, avionics, mechanical accessories, fluids and propulsion, information technology, and pyrotechnics.

• **Development, test and demonstration of advanced flight systems and transformational technologies** – KSC’s staff is adept in using real-time prototypes to construct hardware, thus enabling rapid solutions to complex problems. KSC also partners with industry to resolve technical problems, with results that lead to dual-use products or spinoffs.

• **Developing technology to advance exploration and space systems** – KSC’s innovations have led to advanced space systems, developing advanced human space flight capabilities required to explore space in a more sustainable and affordable way (NASA, 2011b).

1.3 Purpose and Need for the Action

In the coming years, the Kennedy Space Center will remain the world’s preeminent launch facility for government and commercial space access. KSC will support NASA, and ultimately, our nation’s competitiveness, by investing in next-generation technologies and encouraging innovation. KSC will foster partnerships – intergovernmental, commercial, academic, and international – to expand its ability to support both public and private space initiatives. These institutional efforts and initiatives necessitate changes to the infrastructure, facilities, and operations at the KSC over the coming decades which are identified in a new Center Master Plan (CMP) Update that has been developed by the Center Planning and Development Office.

1.3.1 Purpose of the Action

The purpose of the action – the CMP – is to provide overall management guidance for KSC from 2016 to 2032. Implementation of the CMP will facilitate a 20-year transformation from a single, government user launch complex to a multi-user spaceport. This multi-user spaceport will be developed in concert with NASA’s programmatic missions and requirements to explore destinations outside of low Earth orbit (Figure 1.3-1).

In the years ahead, KSC will transition from a government and program-focused, single-user launch complex to a more capability-centric and cost-effective, multi-user spaceport. KSC’s new mission will be to furnish both government and commercial space providers with the land, facilities, experienced workforce and knowledge necessary to support existing mission sets and new space programs.

In support of these endeavors, KSC is engaged in a master planning process identified in NASA’s institutional requirements report to the Congress, pursuant to Section 1102 of the NASA Authorization Act of 2010. The resulting CMP will result in changes to KSC’s infrastructure, land uses, customer base of space transportation providers and users, and business model over a 20-year planning horizon extending from 2012-2032.
Figure 1.3-1. Kennedy Space Center mission in the coming years: exploring destinations beyond low-Earth orbit
The CMP addresses:

- Both traditional and non-traditional approaches to the recapitalization, re-development, and future expansion of spaceport capabilities
- Partnerships with industry, the State of Florida, and other public and private entities
- Optimal utilization of physical assets and intellectual capital
- Environmental stewardship, sustainability, and the risks associated with future climate change
- Changes to operations and management structure for optimal performance as a multi-user spaceport.

The CMP will include a number of component plans, including a Future Land Use Plan, Facility Development Plan, Area Development Plans, Transportation Plan, and Utilities Systems Plan.

1.3.2 Need for the Action

The need for the action is to update KSC’s CMP in a manner that supports achievement of NASA’s programmatic mission objectives, while at the same time maximizing the provision of excess capabilities and assets in support of non-NASA access to space.

The Space Shuttle has completed its final mission and retirement of the Shuttle Program has been completed. NASA’s budget has been reduced from earlier agency planning guidance and NASA anticipates continuing funding challenges in the coming years. Approximately half of KSC’s skilled workforce has been laid off with the conclusion of the Shuttle Program. Resources to sustain and renew existing facilities and capabilities at KSC are severely constrained.

Overall, KSC is transitioning to a re-focused mission that redefines its relationship with industry and leverages the potential of partnerships. Amid the challenges of an aging and unsustainable asset base, as well as a highly constrained federal budget, NASA must adopt and implement strategies that preserve the institutional infrastructure needed to support its purpose and programs.

KSC’s last major revision to its CMP was performed in 2002, with an update to define Area Development Plans (ADPs) in 2008 (Rivera, 2008). The 2002 plan was a forward-looking, 75-year, unconstrained plan for land uses and facilities to support the evolution of KSC and the neighboring CCAFS into a more unified spaceport community supporting a robust increase in flight rates. The 2002 plan did not, however, provide a clear approach to implementation, or furthermore, anticipate dramatic changes in the pace of space commercialization and the challenging federal budgetary circumstances that exist at present.

Thus, the current planning environment necessitates a revised baseline (NPR 8810.1A, Center Master Planning). The space transportation industry is evolving globally, both technologically and economically. The Space Shuttle Program has run its course. In the context of Government-wide initiatives, NASA is implementing policies to reduce its facilities infrastructure footprint by
consolidating for greater efficiency and sustainability, which will reduce operations and maintenance costs, and help meet energy and water conservation goals.

1.4 Scope of this Programmatic EIS

In guidance on the “Effective Use of Programmatic NEPA Reviews” issued on December 18, 2014, the President’s Council on Environmental Quality states that:

“NEPA reviews may be on a site- or project-specific level or on broader – programmatic – level. Programmatic analyses have value by setting out the broad view of environmental impacts and benefits for a proposed decision. That programmatic NEPA review can then be relied upon when agencies make decisions based on the…Programmatic Environmental Impact Statement (PEIS) such as a rulemaking or establishing a policy, program, or plan, as well as when decisions are based on a subsequent – tiered – NEPA review. Programmatic NEPA reviews should result in clearer and more transparent decisionmaking, as well as provide a better defined and more expeditious path toward decisions on Proposed Actions. Agencies are encouraged to revise or amend their NEPA implementing procedures, if necessary, to allow for analyses at a programmatic level (CEQ, 2014a).

The December 2014 CEQ guidance on programmatic NEPA review further states:

One advantage of a programmatic NEPA review is the ability to tier subsequent reviews, such as site- or proposal-specific reviews. Tiering has the advantage of not repeating information that has already been considered at the programmatic level so as to focus and expedite the preparation of the tiered NEPA review(s). When a…PEIS has been prepared and an action is one anticipated in, consistent with, and sufficiently explored within the programmatic NEPA review, the agency need only summarize the issues discussed in the broader statement and incorporate discussion from the broader statement by reference and concentrate on the issues specific to the subsequent tiered proposal.

In keeping with this guidance, this PEIS outlines and broadly describes actions associated with KSC’s proposed programs in the limited detail with which they are known at present. Three programmatic alternatives are described and their potential environmental effects are assessed in fairly general terms. At such time as a given specific project of detailed dimensions and scale is proposed at a specific location, and is in the process of being reviewed and approved, this PEIS can serve as a master NEPA document to which future NEPA compliance documents may be “tiered”. That is, having already been addressed at a programmatic level, the action or project can incorporate discussion from the broader PEIS by reference and focus on the issues specific to the subsequent tiered proposal. Ideally, this will serve to expedite the environmental review process and facilitate project approval, funding, and implementation.

1.4.1 Scoping Process for PEIS

NEPA requires lead agencies to invite public involvement prior to decision-making on Proposed Actions that may affect the environment. “Scoping” is the process of soliciting input from “stakeholders” – including Tribes, the public (both private citizens and non-governmental
organizations or NGO’s), and other agencies – at the outset of a NEPA (in this case, PEIS) analysis. Not only may the information obtained from interested and knowledgeable parties be of value in and of itself, but the perspectives and opinions as to which issues matter the most, and how, indeed whether, the agency should proceed with a given Proposed Action are equally important. Input from scoping thus helps shape the direction that analysis takes, helping analysts decide which issues merit consideration. Public input also helps in the development of alternatives to the Proposed Action, which is an integral part of NEPA.

Appendix B of this EIS is a Scoping Report that describes and documents the scoping process NASA followed in great detail.

1.4.2 Agency Scoping Meeting

NASA-KSC held an agency Draft PEIS scoping meeting on June 4, 2014 at KSC for cooperating agencies and partners. Participants included the U.S. Fish and Wildlife Service (USFWS), National Park Service (NPS), Federal Aviation Administration (FAA), and Space Florida.

1.4.3 Public Scoping Meetings

NASA-KSC held two public scoping meetings on June 4, 2014 in Titusville and June 5, 2014 in New Smyrna Beach, using a combined open house and open forum format. In the first hour, an open house format was used to give attendees the chance to speak informally with officials from NASA and its USFWS and NPS partners, sharing information and perspectives. Several stations with exhibits, maps, and materials were staffed by representatives of NASA, USFWS, NPS, and PEIS contractor Solv. In the second hour of both scoping meetings, three short presentations described KSC’s mission, goals, updated Master Plan, and the NEPA process. Following these presentations, the public was invited to make oral comments for the record (Figure 1.4-1).

Figure 1.4-1. Commenter speaking at microphone in Titusville public scoping meeting
1.4.4 Additional Opportunities for Public Involvement

This PEIS is being released for public review and there will be public meetings to solicit comments from all interested parties and stakeholders on the CMP and PEIS at that time. The Draft PEIS will be available for viewing and downloading on the KSC website. NASA will respond to all written comments made on the Draft PEIS and consider them in preparing the Final PEIS. A Comment Responses Document (CRD) will be included as an appendix in the Final PEIS.

The Draft PEIS was released to the public in March 2016 and a Notice of Availability was published in the Federal Register on March 4, 2016. NASA KSC conducted two well-attended open houses and public meetings on the Draft PEIS, in Titusville on March 29 and in New Smyrna Beach on March 30, 2016. Comments on the Draft PEIS were received from four federal and state agencies, 26 members of the public, and five non-governmental conservation groups. NASA KSC has responded to those comments in this Final PEIS (see Appendix C).

1.5 Coordination with Other Environmental Reviews

NASA’s Environmental Assurance (EAB) and Management (EMB) Branches manage the environmental program and environmental compliance at KSC (NASA, 2015). These offices are responsible for obtaining and maintaining KSC’s environmental permits, assuring compliance with environmental laws, regulations, executive orders, and ensuring conservation and environmental stewardship issues are considered for all NASA activities at KSC.

KSC regularly undergoes both internal and external environmental audits and inspections. All onsite regulatory reviews are coordinated through the EAB and EMB with minimum effects on Center operations. EAB and EMB support and are actively involved with the Space Coast Inter-Agency Environmental Partnership working group to ensure long-term regulatory compliance and to provide a conflict resolution forum between KSC, onsite contractors, and the regulatory community. This working group consists of the Florida Department of Environmental Protection (FDEP) office in Orlando, Brevard County Natural Resources Management Department, NASA, United States Air Force (USAF), St. Johns River Water Management District (SJRWMD), as well as representatives of onsite contractors. It meets on a regular basis to discuss issues and concerns associated with planned or proposed regulatory changes, unique actions and findings at the federal facilities, and development of mutually agreeable solutions (NASA, 2015).

The EAB and EMB have primary responsibility for ensuring that all activities at KSC comply with federal, state, and local environmental laws and regulations, including NEPA, the Clean Water Act (CWA), Clean Air Act (CAA), Resource Conservation and Recovery Act (RCRA), and the Endangered Species Act (ESA).

The 2015 Environmental Resources Document (ERD) describes in detail each of the federal and state environmental statutes and regulations with which KSC must comply. These are also discussed under the respective resource topics of this PEIS. In general, this PEIS does not obviate the need for timely regulatory reviews associated with permits and approvals under these federal and state statues.
KSC has a CAA Title V operating permit issued by the FDEP Central District, which is valid for a period of five years and requires a renewal application to be submitted six months prior to the date of expiration. Under this Title V permit, KSC is designated as a major source as the potential to emit (PTE) for the criteria pollutants oxides of nitrogen (NOx), volatile organic compounds (VOCs) and carbon monoxide (CO), each of which exceeds the 100 tons per year (tpy) Title V major source threshold. Air quality issues and permitting are addressed in Section 3.6 of the PEIS.

Section 3.4 of the PEIS addresses water resources, including laws and regulations pertaining to KSC. KSC held a Consumptive Use Permit (CUP) for water issued by the St. Johns River Water Management District (SJRWMD), but in 2014 the CUP was rescinded based on a SJRWMD determination that the type and quantity of water use at KSC did not meet permitting thresholds. SJRWMD’s determinations on CUP issues would not be influenced by the PEIS.

The U.S. Army Corps of Engineers (USACE) administers the federal dredge and fill permitting program under Section 404 of the CWA, with assistance and review from other federal agencies including the USFWS, the National Marine Fisheries Service (NMFS), and the Environmental Protection Agency (EPA). Future activities at KSC involving discharge of dredge or fill materials into waters of the United States, including wetlands, would have to undergo site-specific Section 404 evaluation by the USACE, including compliance with the Section 404(b) (1) Guidelines and NEPA. Those analyses may be able to tier from this PEIS.

Section 3.5 of this PEIS discusses hazardous materials and waste at KSC, including relevant statues and regulations. KSC maintains a comprehensive inventory of all RCRA-defined hazardous wastes, and controlled waste not regulated by RCRA. KSC has an FDEP operating permit for the storage, treatment and disposal of hazardous waste. These programs and permitting activities will continue independent of NEPA reviews and compliance.

With regard to consultation under Section 7 of the ESA, KSC environmental staff collaborates closely with the USFWS, including both Ecological Services and MINWR staff, on all matters related to endangered species conservation and management at KSC. This will continue in the future. At a minimum, all site-specific actions that may affect any listed species or designated critical habitats will require informal consultation and collaboration between KSC and USFWS. It may be possible to tier associated analyses from this PEIS.

Section 3.10 of the PEIS discusses management of cultural and historic resources at KSC. Federal agencies are encouraged to coordinate studies and documents prepared under Section 106 of the National Historic Preservation Act (NHPA) with those completed under NEPA. KSC already has in place a Programmatic Agreement (PA) for the Management of Historic Properties. This agreement streamlines the Section 106 process and allows KSC to conduct normal maintenance and minor modifications, as well as reuse facilities and property. Moreover, it ensures that historic, engineering, and architectural values are recognized and considered in the course of ongoing KSC programs. This PEIS does not include any particular site-specific actions that would trigger the need for a NHPA Section 106 consultation at this time.
With KSC serving as a multi-user spaceport, future commercial space customers would be subject to FAA licensing, including Order 1050.1E FAA Order 1050.1F, as well as potentially Section 4(f). Projects that require FAA licensing, and U.S. DOT Section 4(f) review at KSC, with NASA as the jurisdictional authority, would be covered in more specific detail in NEPA documentation EAs that tiers from off of this PEIS, if appropriate. Applicability of section 4(f) will be determined by the FAA on a project-by-project basis.
2.0 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES

This chapter of the Draft Programmatic Environmental Impact Statement for Center-wide Operations (or the Center Master Plan) of the Kennedy Space Center describes three alternatives subjected to detailed analysis in subsequent chapters. The three alternatives being considered are the Proposed Action, Alternative 1 (Preferred Alternative) and the No Action Alternative. Under each of these three alternatives, partnerships, jurisdictions, and boundaries with the USFWS (MINWR) and NPS (CANA) at KSC would continue as at present.

2.1 Proposed Action

Under the Proposed Action, and as described in the Center Master Plan Update (CMP) (NASA, 2013b) and associated planning documents, KSC would transition over a 20-year period (2012-2032) to a multi-user spaceport. This section will first summarize KSC’s new land use plan included in the CMP Update, and then describe KSC’s mission and core competencies, followed by the proposed institutional arrangements associated with that transition. Section 2.1 continues with generalized descriptions of proposed future development, transportation facilities, and activities.

2.1.1 Land Use Plan

2.1.1.1 Overview

The future land use plan (Figure 2.1-1) promotes the highest, best and most efficient use of land area resources balanced with an understanding of development suitability and development capacity. An understanding of existing land use characteristics forms the basis of an overall development framework to support continuing NASA programs and encourage future non-NASA opportunities (NASA, 2013b). This includes promoting compatible relationships between adjacent land uses, encouraging infill development and preserving environmentally sensitive areas. Figures 2.1-2 through 2.1-6 depict selected key functional areas of KSC in much greater detail than Figure 2.1-1 is able to.

2.1.1.2 Future Land Use

The Future Land Use section of the CMP outlines a development framework that would support the growth of the multi-user spaceport model. Building on the development capacity section outlines in the Planning Conditions section, the CMP Update (i.e., the 2013 KSC Master Plan) outlines where development can occur, how land can be used, and how to expand strategic capabilities to support KSC’s evolution to a multi-user spaceport. Through this approach, KSC is better able to promote smart development by better separating potentially hazardous operations from less-hazardous operational areas and non-NASA operations from NASA operations.

Table 2.1-1 identifies existing and proposed future land uses at KSC and their proposed acreages under the 2013 CMP.
Table 2.1-1. Existing and proposed future land uses at KSC under Proposed Action

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Existing Acreage</th>
<th>Future Acreage</th>
<th>Change in Acreage<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>104.76</td>
<td>40.72</td>
<td>-64.03</td>
</tr>
<tr>
<td>Assembly, Testing and Processing</td>
<td>475.41</td>
<td>1,894.77</td>
<td>1,419.36</td>
</tr>
<tr>
<td>Central Campus</td>
<td>NA<sup>2</sup></td>
<td>138.75</td>
<td>138.75</td>
</tr>
<tr>
<td>Horizontal Launch and Landing</td>
<td>501.25</td>
<td>2,838.84</td>
<td>2,336.94</td>
</tr>
<tr>
<td>Launch Operations and Support</td>
<td>398.75</td>
<td>506.14</td>
<td>107.39</td>
</tr>
<tr>
<td>Open Space</td>
<td>1,873.64</td>
<td>NA</td>
<td>-1,873.64</td>
</tr>
<tr>
<td>Operational Buffer/Conservation</td>
<td>44,583.14</td>
<td>40,196.94</td>
<td>-4,386.20</td>
</tr>
<tr>
<td>Operational Buffer/Public Use</td>
<td>34,844.14</td>
<td>34,824.72</td>
<td>-19.42</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>216.01</td>
<td>522.13</td>
<td>306.12</td>
</tr>
<tr>
<td>Recreation</td>
<td>161.36</td>
<td>161.36</td>
<td>0.00</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>66.54</td>
<td>1,109.85</td>
<td>1,043.31</td>
</tr>
<tr>
<td>Research and Development</td>
<td>88.36</td>
<td>867.49</td>
<td>779.13</td>
</tr>
<tr>
<td>Seaport</td>
<td>30.92</td>
<td>317.26</td>
<td>286.34</td>
</tr>
<tr>
<td>Support Services</td>
<td>723.91</td>
<td>471.40</td>
<td>-252.51</td>
</tr>
<tr>
<td>Utility Systems</td>
<td>1,327.23</td>
<td>1,329.60</td>
<td>2.37</td>
</tr>
<tr>
<td>Vertical Launch</td>
<td>360.32</td>
<td>536.42</td>
<td>176.10</td>
</tr>
<tr>
<td>Vertical Landing</td>
<td>NA</td>
<td>75.73</td>
<td>75.73<sup>3</sup></td>
</tr>
<tr>
<td>Water</td>
<td>55,541.81</td>
<td>55,541.81</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>141,297.54</td>
<td>141,373.28</td>
<td>75.73<sup>3</sup></td>
</tr>
</tbody>
</table>

¹ Total difference in size between current land use and future land use for each category. Numbers in red represent a future land use amount that is **smaller** than the current amount for the category while numbers in green signify that the future land use amount would be **larger** than the current amount for the category.

² Not Applicable

³ Difference in Total Acreage is due to addition of the Vertical Landing category, which lies within the same geographical footprint as the Horizontal Launch and Landing Category.

2.1.1.2.1 Center-wide Strategy

Implementing the future land considerations outlined in the CMP would promote the right-sizing of NASA operations at KSC and attract non-NASA investment by providing them more operational autonomy. The consolidation of NASA operations into a smaller geographic footprint is a major component of the Future Land Use Plan in the CMP. Applying the Central Campus concept, for example, would allow NASA to recapitalize, over time, functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint. Likewise, directing future NASA and non-NASA development into functional areas with defined allowable operations would streamline safety and security considerations while promoting the maximum utilization of KSC’s infrastructure capacities. Additionally, the Future Land Use Plan supports the expansion of KSC’s quinti-modal capabilities to provide increased support for the users of the multi-user spaceport (quinti-modal refers to the capability of five separate modes of transportation: roads, water, air, rail and space).
Figure 2.1-1. Proposed future land use at the Kennedy Space Center (Proposed Action)
Figure 2.1-2. Contractors Road Functional Area
Figure 2.1-3. Exploration Park, Industrial Area, and Visitor Center
Figure 2.1-4. Vertical Launch Areas
Figure 2.1-5. Shuttle Landing Facility (SLF) Functional Area
Figure 2.1-6. Vehicle Assembly Building (VAB) Functional Area
2.1.1.2.2 Vertical Launch

Land Use Description
Vertical launch includes all facilities and land area directly related to vertical launch operations, including launch pads 39A, 39B and 41, as well as future vertical launch notional areas. It also includes immediately adjacent launch support facilities and countdown facilities required to be operational at the time of launch. Quantity Distance (QD) arcs and other related safety setback and exposure limits are considered restrictions on the use of land adjacent to vertical launch complexes. Land within these QD arcs limits is not designated part of the vertical launch use.

Future Development
In keeping with previous recommendations from the 1966, 1972 and 1977 KSC Master Plans, when the market demands an expansion of vertical launch capacity, the 2013 CMP recommends additional vertical launch pads to be sited to the north of existing 39B, as pads 39C and 39D respectively (see Figure 2.1-4). In addition, a 2007 Vertical Launch Site Evaluation Study also concluded that a vertical pad could also be sited to the northwest of 39B and Beach Road and be sited to the south of 39A and to the north of pad 41 (RS&H, 2007).

2.1.1.2.3 Vertical Landing

Land Use Description
Accommodating vertical landing capability, both powered and unpowered, would promote reusability of space flight hardware and significantly lower the price point for access to space. In anticipation of these advances, KSC has designated areas along its northeastern secure boundary as lands that could accommodate such activity. These areas could accommodate the return of first stage boosters or possibly vehicles returning from orbit.

Future Development
The proposed vertical landing facility would be on a site 75.73 acres in area, all of which lies within the same geographical footprint as Horizontal Launch and Landing area.

2.1.1.2.4 Horizontal Launch and Landing

Land Use Description
Horizontal Launch and Landing includes pavements, infrastructure, facilities and land area directly related to horizontal launch and landing operations. Horizontal Launch and Landing includes all paved runway surfaces, aprons, or similar runway features primarily associated with the Shuttle Landing Facility (SLF). Imaginary surfaces related to airfield safety clearances consistent with Federal Aviation Administration (FAA) clearance criteria and requirements, as well as QD arcs and related safety setback criteria, are considered restrictions on the use of land in and adjacent to Horizontal Launch and Landing areas. Land within those surface areas, setback, and limits is not designated as part of Horizontal Launch and Landing classification.

Future Development
Apron areas supporting the SLF are intended to be expanded to accommodate future horizontal launch and landing activities and customers along with associated support facilities. Expansion of these capabilities is expected to be consistent with the recommendations outlined in the 21st Century Launch Complex ADP (April 2012). Initial development would be focused on the east
side of the runway and future development, if required, would be accommodated on the west side.

Over the long term, as the market and emerging technology may demand, additional horizontal launch infrastructure can be constructed in an area identified just south of Beach Road that would support an east-west horizontal launch capability.

2.1.1.2.5 Launch Operations and Support

Land Use Description

Launch Operations and Support includes facilities and associated land areas essential to supporting a mission during launch and flight, including command; control; and compilation, evaluation and communication of the data associated with launch vehicle activities. Storage of propellants and munitions is also included in this classification.

Future Development

Launch Operations and Support areas would be expanded, if needed, to accommodate future launch activities and the requirements of NASA and non-NASA operations.

2.1.1.2.6 Assembly, Testing and Processing

Land Use Description

Assembly, Testing and Processing includes facilities, operations, and land areas that are essential to space vehicle component assembly, integration and processing prior to launch. Laboratories; material support and interface testing to achieve final assembly; test and closeout to prepare and test payloads; space systems; and systems components for flight and integration – which may include hazardous commodities – are also included in this classification. Primary uses and facilities support both government and commercial capabilities for payload assembly, integration, and processing; the development and testing of launch vehicle or spacecraft equipment at the component or system level; post-flight servicing and refurbishment activities; and spaceport infrastructure and operations. Secondary uses and facilities include associated and compatible manufacturing, logistics, or technical support functions.

Future Development

Assembly, Testing and Processing areas can be expanded to the north of the existing developed areas in the Vehicle Assembly Building (VAB) Area to accommodate future Assembly, Testing and Processing functions. Development in the expanded areas would require seawall construction to comply with sea level rise criteria. Land areas in the vicinity of Contractors Road previously designated as Support Services are designated as Assembly, Integration and Testing, in support of future needs and requirements. In the Industrial Area, Assembly, Testing, and Processing payload functions can be expanded to the north and east of their current concentration to accommodate increased payload processing and testing. Due to the nature these activities, QD arcs requirements would be imposed for safe operations.

2.1.1.2.7 Utility Systems

Land Use Description

Utilities Systems land use classification includes land and facilities associated with KSC utilities infrastructure and systems (i.e., water, wastewater, natural gas, electrical, chilled water, medium temperature hot water (350°F (177°C) or less), communications and sewer systems). Utility
easements help to define patterns and impacts associated with the development of utility systems and overall land use. Communications lines for line-of-sight are identified visual corridors associated with communications components.

Future Development
Utility corridors would be established as needed.

2.1.1.2.8 **Administration**

Land Use Description
Administration includes facilities supporting operations management and oversight activities. Administrative functions/uses associated with management are more focused in the Industrial Area. A subset of administration applies to administrative functions that are adjacent to and in support of assembly, integration and testing operations.

Future Development
Facilities supporting Administration functions are planned to be recapitalized into the Central Campus area over the near, medium, long-term and beyond. Consolidation of non-hazardous facilities, such as administration facilities, is a necessary precursor to the consolidation of NASA operational areas to support a multi-user spaceport.

2.1.1.2.9 **Central Campus**

Land Use Description
The area identified as Central Campus would be utilized as a means to consolidate NASA operations into a smaller, more cost-effective operational footprint. The Central Campus land use includes all non-hazardous NASA operations that occur in support of NASA missions and programs. Ideal Land Uses for consolidation include: Administration, Research and Development, and non-hazardous Support Services.

Future Development
The area would be populated over the planning horizon and beyond to support any non-hazardous new NASA development in support of NASA programming and/or as part of the KSC’s recapitalization process. Facilities that are meant to be relocated to Central Campus through recapitalization efforts are NASA facilities being utilized for Administration, Research and Development, and non-hazardous Support Services functions that have aging-related operational inefficiencies and excessive maintenance requirements whose relocation would support decreased Current Replacement Value (CRV) and Operations and Maintenance (O&M) costs.

2.1.1.2.10 **Support Services**

Land Use Description
Support Services includes all functions other than administration that provide management and oversight of KSC operations and services provided for overall KSC benefit, including operations and maintenance. Operations and maintenance land uses include: supply; storage; facilities maintenance motor pool; service stations; railroad; reclamation areas; roads and grounds maintenance; and sanitary landfill facilities. Service land uses include: access control and entry gates; fire protection facilities and training areas; security facilities and related training areas;
child development and care; training and conference; dispensary; data processing; environmental and occupational health; food service; and photo operations facilities.

Future Development

Future development of non-hazardous Support Services facilities and recapitalization of inefficient existing facilities are intended to occur in the Central Campus area to support right-sizing efforts and the consolidation of NASA operational areas.

2.1.1.2.11 Public Outreach

Land Use Description

The Public Outreach land use classification includes facilities and associated land areas that promote an educational, research or informational connection between the community and KSC. Examples of Public Outreach use include public reception/welcome centers, tour facilities, display and education areas, museums, memorials, launch viewing areas, recreation areas and conference centers.

Future Development

Existing Public Outreach areas are retained and designated in the Future Land Plan, promoting educational, research or informational connections between the community and KSC. Total Public Outreach area would be doubled in size (216.01 to 522.13 acres). This includes public reception/welcome centers, tour facilities, display and education areas, museums, memorials, launch viewing areas, and recreation areas. The MINWR CCP (2007) and the CANA GMP (2014) outline existing and proposed management for each; future development of public outreach facilities on the refuge or seashore would be planned and implemented by FWS and/or NPS, outside of this NASA PEIS process.

2.1.1.2.12 Recreation

Land Use Description

Recreation areas include parks, outdoor fitness, athletic fields, recreation buildings, centers and clubs for use by KSC employees. Examples of recreation land uses include KARS Park North and KARS Park South complexes (KARS I and KARS II). Coastal beaches and supporting facilities are part of the Canaveral National Seashore and are classified as Operational Buffer/Public Use. Hunting, fishing, wildlife observation and photography, environmental education, and interpretation associated with the Merritt Island National Wildlife Refuge are also classified as Operational Buffer/Public Use.

Future Development

Additional Recreation land use areas are not planned, so future development and/or expansion of recreational functions, if necessary, would occur within the already established recreational land areas.

2.1.1.2.13 Research and Development

Land Use Description

The Research and Development (R&D) land use classification includes non-program specific laboratories, related facilities, and associated land areas that perform research, experimentation and testing in support of developing new technologies, procedures and products to enhance existing and future programs at KSC.
Light industrial and manufacturing functions, as well as commercial uses, may also be accommodated within R&D land use areas. Integration of educational institutions offering advanced degrees in disciplines supporting space-related research and development activities provide enhancement and support reinforcing R&D collaboration between KSC, private industry and the educational community. Examples of R&D land uses include: chemical and physical standards and laser testing laboratories; missile research and testing facilities; centers for experimentation, innovative science and technology; and life science activities accommodated in Exploration Park.

Future Development

Additional R&D development would be directed to the Industrial Area with non-NASA development designated for west of C Avenue or within Exploration Park in order to provide separation from NASA operational areas. New NASA R&D facilities and recapitalization of existing NASA R&D facilities would be directed to Central Campus in the designated area east of C Avenue.

2.1.1.2.14 Seaport

Land Use Description

The Seaport land use classification includes: port, harbor, wharves, docks and associated land areas to accommodate authorized delivery or embarkation of materials, equipment or people via access to the mainland through means of seagoing vessels. Land areas contiguous to wharves and docks that are used for the staging, off-loading, transfer and storage/processing of materials, equipment or people are also classified as Seaport land use.

Future Development

Additional land areas are designated as Seaport to support future development of the sea-based transportation capability to further leverage quinti-modal functionality and to also capitalize on surrounding area water accessibility and linkage to Port Canaveral.

A future seaport is designated to the west of the SLF to provide water access in support of horizontal launch and landing operations via the Indian River.

An additional seaport is designated to the south of the Assembly, Testing, and Processing Area on the east side of the Industrial Area. This seaport would provide water access to support all operations and functional areas within the Industrial Area.

2.1.1.2.15 Renewable Energy

Land Use Description

Land areas designated to accommodate varying forms of renewable energy are designated Renewable Energy land use. Corresponding to fallow agricultural land and other underutilized property, land areas designated as Renewable Energy also include research and production facilitating KSC’s goal for achieving increased on-site generation of its power from renewable sources. This includes current and future accommodation of solar array fields, as well as other renewable energy technologies that may be developed in the future.
Future Development

Former citrus groves that have now become fallow are designated as future land areas to accommodate Renewable Energy uses. Additional land for renewable energy use is also designated in the Industrial Area and can be accommodated as secondary uses for parking lots. Existing surface parking lots may also produce electricity as a secondary use, as many will become increasingly underutilized as the central campus concept matures.

2.1.1.2.16 Operational Buffer

Land Use Description
Buffer zones provide adequate safety to the surrounding civilian communities for vehicle launches and other KSC activities. The buffer land and water area includes the beach; hunting and fishing areas; trails; submerged areas; areas vulnerable to inundation by rising waters under storm events and/or climate change impacts; and areas of high value for species of critical concern such as Florida scrub-jay, red knot, West Indian manatees, and sea turtles. The two sub-categories of Operational Buffer are Public Use and Conservation.

Operational Buffer/Public Use
Operational Buffer/Public Use areas correspond to publically accessible areas of Merritt Island NWR and Canaveral National Seashore for recreational use in the northern portion of KSC; use of these areas is conditional subject to the operational activities associated with KSC’s mission.

Operational Buffer/Conservation
Operational Buffer/Conservation areas correspond to land areas in the southern portion of KSC that may never have been developed, or sites that may have reverted to a natural environment over the years. The proposed Port Canaveral Rail Extension would cross Operational Buffer/Conservation lands.

Future Development
Development planned in Operational Buffer areas totals nearly 4,000 acres and may include infrastructure, operations of low impact, or small footprint facilities that may be required for support of space launch or landing operations. Although not part of the CMP and this PEIS, Space Florida's proposed Shiloh Launch Complex is located within KSC’s Operational Buffer/Public Use zone; Space Florida's proposal is currently being evaluated in a separate EIS by the FAA. See Section 3.2.2.

2.1.2 Future Development Plan

The Future Development Plan builds upon the core strategies described in the Future Development Concept (FDC) (NASA, 2011a), including:

- **Evolving toward a multi-user spaceport:** Moving from a monolithic NASA program field installation to a multi-user spaceport on federal property. The evolution to a multi-user spaceport is not necessarily timeline dependent, but rather based on increased users and operators in line with space market demand.

- **Going leaner and greener:** Operational, fiscal and environmental sustainability.
• **Divesting without diminishing**: Divesting of assets without eliminating capability to serve critical government missions and programs while encouraging the growth of commercial space transportation market needs.

• **Ensuring the successful implementation of NASA Programs**. Successfully supporting programs including the Launch Services Program, International Space Station, Space Launch System and Multi-Purpose Crew Vehicle.

Building upon this strategic foundation, the Future Development Plan describes the stages that would facilitate KSC’s transformation to an economically sustainable multi-user spaceport. To support this transformation, the Future Development Plan outlines a comprehensive strategy that integrates development, land use, the consolidation of NASA assets, and transportation and utility infrastructure in order to support a multi-user spaceport which meets the strategies of the FDC by:

• Right-sizing NASA operations without impacting mission objectives

• Supporting the proliferation of non-NASA aerospace opportunities and partnerships at KSC.

2.1.2.1 Development Program

The CMP’s Development Program describes the strategy that NASA must undertake to support the expansion of non-NASA operations at KSC (NASA, 2013b). A multi-user spaceport model is the foundation of KSC’s future operational state, and the Development Program, used as an extension of the Asset Plan, outlines a strategy to sustain KSC’s ability to meet current and future mission requirements; consolidate NASA’s operations in fewer, more efficient and cost-effective facilities while maintaining technical capabilities; and address agency footprint reduction goals.

In support of this multi-user spaceport model, it is essential that an analysis be completed to “right size” NASA operations at KSC in an effort to reduce NASA’s footprint and consolidate operations into specific functional areas. The Development Program expands this analysis to the anticipated future list of users and their activities to describe possible future facility usage patterns at KSC. Development of the Central Campus is a major component in supporting the right-sizing efforts of KSC as a means to reduce operational overhead and support the transition to the multi-user model.

The Development Program describes continuing NASA programs and missions in the context of the planning horizon. These timeframes correspond to a phased approach that is not time-specific but dependent on federal funding, economic influences, and financial commitment from non-NASA entities:

• Baseline (2010)
• Near-Term
• Medium-Term
• Long-Term

NASA Programs that would be carried out at the KSC include:
• **Launch Services Program (LSP):** The LSP provides safe, reliable, and cost-effective scheduled launch services for NASA and NASA-sponsored payloads seeking launch on expendable launch vehicles (ELVs).

• **International Space Station (ISS):** The ISS is a habitable artificial satellite in Low Earth Orbit (LEO) whose first component was launched in 1998. Its mission is currently slated to conclude in the medium-term but could be extended into the long-term time frame.

• **Commercial Resupply Services (CRS):** CRS provide for agreements between NASA and commercial entities to deliver cargo in support of ISS operations.

• **Orion Multi-Purpose Crew Vehicle (Orion MPCV):** The Orion MPCV is a spacecraft that would serve as the primary crew vehicle for missions beyond LEO. The spacecraft would serve as the exploration vehicle that would carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA conducted a successful unmanned test flight of the Orion spacecraft on December 5, 2014 (Figure 2.1-7).

• **Space Launch System (SLS):** SLS is an advanced, heavy-lift launch vehicle that would carry the Orion MPCV, as well as important cargo, equipment and science experiments, to deep space destinations.

• **Commercial Crew Program (CCP):** Operating out of KSC, CCP supports the development of a commercial capability to safely launch crew to the ISS and low-earth orbit.

NASA administrative uses that would take place at KSC include such functions as executive management, operations support, and human resources.

Figure 2.1-7. Launch of Orion MPCV unmanned test flight, December 5, 2014
2.1.3 Launch, Landing, Operations and Support

2.1.3.1 Vertical Launch and Landing

2.1.3.1.1 Associated Activities

KSC plans on using a variety of areas around the Center for the vertical launch and landing of vehicles. This EIS will discuss the possible environmental impacts that performing vertical launches and landings would have at different areas across KSC.

Vertical launch is described as the activities that occur at the launch pad. These activities and characteristic events can include:

- Preparation for launch including fueling and testing operations
- Launch operations
- Noise and acoustics
- Recovery operations

Vertical landing is described as the activities that occur when a vehicle lands at a designated landing site. These activities can include:

- Noise and acoustics
- Safing operations
- Transportation operations

Four possible classes of launch vehicles would perform vertical launch and landing at KSC: small, medium, heavy and super heavy class.

2.1.3.1.2 Small Class Launch Vehicle (SCLV)

SCLV’s weigh up to 200,000 lbs. and have a thrust range up to 496,000 pound force (lbf). (The lbf is a unit of force equal to the gravitational force exerted on a mass of one avoirdupois pound on the surface of Earth.) Propellants used include Solid, Rocket Propellant-1 (RP-1), Liquid Oxygen (LOX), Monomethylhydrazine (MMH), Dinitrogen Tetroxide (N2O4), Hydrazine (N2H4), Isopropyl Alcohol (IPA), and Liquid Methane (LCH4). SCLV’s can have from one to five stages.

2.1.3.1.3 Medium Class Launch Vehicle (MCLV)

MCLV’s weigh between 200,000 lbs. and 798,000 lbs. and have a thrust range between 496,000 and 1.4 million lbf. Propellants used include Solid, RP-1, Liquid Hydrogen (LH2), LOX, MMH, Aerozine 50 (A-50), N2H4, Diazine (N2H2), N2O4, and LCH4. MCLV’s can have from one to four stages.

2.1.3.1.4 Heavy Class Launch Vehicle (HCLV)

HCLV’s weigh between 798,000 lbs. and 1.2 million lbs. and have a thrust range between 1.4 million lbf and 1.9 million 4 million lbf. Propellants used include LOX, LH2, and RP-1.

2.1.3.1.5 Super Heavy Class Launch Vehicle (SHCLV)

SHCLV’s weigh between 1.2 million and 2.4 million lbs. and have a thrust range between 1.9 million and 7.2 million lbf. Propellants used include Solid, LOX, LH2, RP-1, and LCH4. They have two stages.
Table 2.1-2 summarizes the major features of Vertical Launch Vehicle Classes.

<table>
<thead>
<tr>
<th></th>
<th>SCLV</th>
<th>MCLV</th>
<th>HCLV</th>
<th>SHCLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Weight (lbs.)</td>
<td>200,000</td>
<td>798,000</td>
<td>1,200,000</td>
<td>2,400,000</td>
</tr>
<tr>
<td>Max Thrust (lbf)</td>
<td>496,000</td>
<td>1,400,000</td>
<td>1,900,000</td>
<td>7,200,000</td>
</tr>
<tr>
<td>Gases Used (up to 6,000 psi)</td>
<td>GN2/GHe/GH, Tridyne</td>
<td>GN2/GHe/GH, Tridyne</td>
<td>GN2/GHe/GH, Tridyne</td>
<td>GN2/GHe/GH, Tridyne</td>
</tr>
<tr>
<td>Launch Sites</td>
<td>USAF WR/USAER/NASA’s WFF/Canary Islands/Kwajalein</td>
<td>USAF WR/USAER/NASA’s WFF/Canary Islands/Kwajalein</td>
<td>USAF WR/USAER</td>
<td>USAF ER</td>
</tr>
</tbody>
</table>

Key to acronyms in Table 2.1-2:

- **Fuels:**
 - A-50: Aerozine 50
 - IPA: Isopropyl Alcohol
 - LCH4: Liquid Methane
 - LH2: Liquid Hydrogen
 - LOX: Liquid Oxygen
 - N2H2: Diazene
 - MMH: Monomethylhydrazine
 - N2O4: Dinitrogen tetroxide
 - N2H4: Hydrazine

- **Gases:**
 - GN2: Gaseous Nitrogen
 - GHe: Gaseous Helium
 - GH: Gaseous Hydrogen

2.1.3.2 Horizontal Launch and Landing

There are many different configurations and sizes of horizontally launched vehicles. Horizontal launch and landing of vehicles by Space Florida would increase SLF operations in the following broad categories: commercial spaceflight program and mission support aviation, aviation test operations including Unmanned Aerial Systems (UAS), airborne research and technology development and demonstration, parabolic flight missions, experimental spacecraft testing (e.g. Project Morpheus), and ground-based research and training. To take full advantage of the capabilities of the SLF, new construction by Space Florida would occur at both the south-field and mid-field sites. This EIS will discuss the possible environmental impacts of performing horizontal launches and landings across different areas of KSC.

Horizontal launch consists of those activities and events that occur at a horizontal spaceport runway from which launch vehicles are launched horizontally before, during, and after a vehicle has taken off from the runway. These activities can include fueling and launch operations. Table 2.1-3 shows some general characteristics of potential horizontal launch vehicles.

Horizontal landing consists of those activities and events that occur at a horizontal spaceport runway on which vehicles land horizontally before, during, and after a vehicle has landed on the runway. These activities may include landing and safing operations.
Table 2.1-3. General characteristics of potential horizontal launch vehicles*

<table>
<thead>
<tr>
<th></th>
<th>Rocket Launch</th>
<th>Carrier Assist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Weight</td>
<td>600,000 lbs.</td>
<td>1,300,000 lbs.</td>
</tr>
<tr>
<td>Stages</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Propellant Used</td>
<td>Solid(TP-H1260, class 1.3, HTPB)/RP-1/ LH2/ LOX/ MMH/A-50/N2H4/N2H2/N2O4/LCH4</td>
<td>Aviation Fuel, Jet A</td>
</tr>
<tr>
<td>Gases Used</td>
<td>GN2/GHe/GH, Tridyne</td>
<td>N/A</td>
</tr>
<tr>
<td>(up to 6000 psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Sites</td>
<td>SLF</td>
<td>SLF</td>
</tr>
</tbody>
</table>

Source: EIS Launch Vehicle Info (KSC, 2013a).

* Since the horizontal launch vehicle market is still in its early stages, this is an example of potential types of vehicles that could utilize this capability.

2.1.3.3 Launch Operations and Support

KSC plans on using a variety of areas around the Center for launch operations and support. Launch Operations apply to launch vehicles as well as the payload/spacecraft. Please see Figure 2.1-1 for these potential locations.

2.1.3.3.1 Launch Vehicle Operations

Launch vehicle operations entail transportation to the launch complex, command, control and telemetry feedback during the final launch operation. They also include the ancillary support operations such as security, SCAPE (self-contained atmospheric protective ensemble) team support, wildlife control, public viewing, and theodolite shoots.

During launch operations, Mission Command & Control (MCC) broadcasts and receives Radio Frequency (RF) communications around KSC. Other operations around the Center must stand down as to not interfere with the launch or vice versa; the launch operations RF may interfere with other operations’ activities and potentially could ignite ordnance or create erroneous test results. During final alignment for Guidance, Navigation, and Control, there can be theodolite shoots which entail low power laser measuring devices. Lasers are pointed from specific points on the ground to points on the launch vehicle to help ensure that it is properly aligned.

2.1.3.3.2 Payload Operations

Payload operations entail the transportation to the launch complex for final integration or stowage, command, control and telemetry feedback from the payload/spacecraft during the final launch operations. Payloads fueled with hydrazine are transported across KSC to the launch complex. There may potentially be SCAPE support for fuel/oxidizer spills as well as security for transportation. Payloads with science experiments are transported for late stowage; these can include animals or other sensitive biological elements.

2.1.3.4 Assembly, Testing and Processing

KSC plans on using a variety of areas around the Center for manufacture, assembly, testing and processing. These activities include component testing, vibration analyses and ground support.
systems verification and validation. Please see Figure 2.1-1 for potential locations of these facilities.

2.1.4 Climate Change

Much of KSC land areas are low-lying, poorly drained, and vulnerable to inundation by periodic storm events. These low-lying areas are also most at risk to be affected by global climate change in future decades. Consistent with NASA land management practices and the Office of Strategic Infrastructure addressing a climate adaptation strategy, KSC would implement elevation-based zoning and development controls to ensure that any future development is constructed at an elevation of six feet above mean sea level. Land areas that do not naturally offer this condition would be avoided or would incur the cost of fill and drainage improvements, potentially making them economically less attractive. Areas of existing facilities or structures that are less than three feet above mean sea level must be hardened or raised to accommodate future climate and weather or relocated to ground six feet or above mean sea level. Critical facilities are to be moved outside the 500-year flood plain or, if not practicable, hardened to withstand a hurricane event.

2.1.5 Functional Area Plans

Existing development is characterized by concentrations of similar functions and activities, that is, by functional areas. Functional areas are also a means to describe future asset and facility strategies. Facility and asset specific planning actions corresponding to planning timeframes, providing additional detail within land use areas/districts correlated to facility footprints and site plans area, are organized by functional area.

Concentrations of functions and uses correspond to the following functional areas:

- Industrial Area
- Exploration Park
- Vehicle Assembly Building (VAB) Area
- Contractors Road Area
- Launch Complex - 39B
- Launch Complex - 39A
- Launch Complex - 41
- Shuttle Landing Facility (SLF) Area
- Central Telemetry Area (TEL IV)
- KSC Visitor Complex
- Kennedy Athletic & Recreation Social Park (KARS) Area
- CCAFS - Industrial Area

2.1.6 Future Transportation Plan

2.1.6.1 Overview

The Transportation Plan component outlines opportunities and planning initiatives that would build upon the quinti-modal baseline to expand the strategic advantage of the transportation
network as a mechanism of KSC’s evolution to a multi-user spaceport. These future transportation planning initiatives are intended to guide the decision-making process with the primary purpose of right-sizing NASA operations at KSC while meeting the expected transportation and logistics demands of both the NASA and non-NASA users. To achieve these ends, the CMP furthers the existing discussion of transportation infrastructure divestiture and has identified additional transportation elements and modifications that would support the expansion of transportation capabilities to meet the demands of future operations at KSC (NASA, 2013b).

2.1.6.2 Roads and Bridges

2.1.6.2.1 Roads

Road Improvements
Over the next five years, repair and resurfacing of over 29 miles of Kennedy Parkway is anticipated. Repair and resurfacing is also planned for over three miles of NASA Parkway east of Kennedy Parkway. The two and four-lane sections east of the Industrial Area toward the Banana River Bridge would also be repaired.

Central Campus
In support of the Central Campus concept, the near term would see the elimination of D Avenue access between NASA Parkway and 2nd Street SE to clear the way for construction on Central Campus Phase 1. The north segment of this road would be used for access to parking for the new facility.

As the Central Campus concept develops over the medium and long term, additional infrastructure changes may be required to support the consolidation and security of NASA operations in the area.

Road Easements

Contractors Road Expansion
A road easement should be recognized that would make it possible, if future demand requires, for access to new development capabilities contributing to non-NASA vertical launch support operations. This easement would support access to new development and serve as a barrier to further development to the east.

Access to New Vertical Launch Capabilities
To further promote KSC’s multi-user concept, a commercial entity may require the development of new vertical launch capabilities that meet their specific needs. Should the market necessitate this expansion, the development would be directed to areas north of LC39B along Beach Road. To support this added capability, a road easement is proposed that would support access from Beach Road to the pad location with such a road expansion being funded by a Non-NASA entity.

2.1.6.2.2 Bridges

Current plans call for a complete replacement of both the eastbound and westbound spans of the Indian River Bridge by fiscal year 2025. The current bascule configuration is planned to be replaced with a fixed high-span configuration meeting Coast Guard regulations. These regulations require a minimum of 65 feet of vertical clearance above the mean high water line and a required horizontal clearance of 125 feet.
The Haulover Canal Bridge (Figure 2.1-8) and the Banana River Bridge are also scheduled for replacement by 2032.

![Haulover Canal Bridge](image)

Figure 2.1-8. Haulover Canal Bridge

2.1.6.2.3 Divestiture

Road Divestiture

A majority of the roads at KSC are the product of the intense federal investment in infrastructure that was made at the dawn of the space program in the 1960’s. At that time, Merritt Island was sparsely populated and the space program required significant federal dollars to achieve its ends. However, at present, many miles of those federal roads have uses that other than NASA programs and operations. In efforts to right-size NASA and decrease the funding allocated to infrastructure – that is used by the Space Center and the community as a whole – it is essential that the agency dedicate its attention and energies to supporting the divestiture of the road infrastructure as long as it meets three **two** criteria:

1. Divestiture would not impact the security of NASA programmatic activities, including launches.
2. Divestiture would not impact the operations of NASA programs.
3. Divestiture would not diminish the existing transportation network and spaceport accessibility for non-NASA programs and users of the Cape Canaveral Spaceport.

The identified roads that that meet these criteria are:

- Titusville Road
- Beach Road (west of State Rte. (SR) 3 only)
Additionally, the following road segments have also been identified as candidates for divestiture with only the portions of the road outside of the secured perimeter meeting all criteria. These segments include:

- Kennedy Parkway North from the north property line to Beach Road
- Kennedy Parkway South from the south property line to Space Commerce Way
- NASA Parkway from the western property line to Space Commerce Way

While the initial exercise of this divestiture process would be complicated, it would provide the benefit of allowing NASA to redirect resources to programmatic objectives and provide a process that would support additional transportation divestiture activities as the multi-user spaceport model evolves. The advantages of a quinti-modal spaceport are both accessibility related and financial in nature. Leveraging federal, state and other public funding options increases the viability and sustainability of the multi-user spaceport.

Bridge Divestiture

All of the bridges serving KSC are close to the end of their design life and require increasing resources to support operations and maintenance activities in order to prolong that design life. Currently, recapitalization plans call for replacement of most bridges during the medium and long term planning horizons at a large expense to NASA. In the near term, it is necessary to begin dialogue to divest bridge infrastructure to a non-NASA, public entity. Divesting these assets would allow NASA to reinvest some, or all, of these resources to meet programmatic and operational objectives.

Currently the assets which, if divested, would have the least impact on NASA missions have been identified as:

- Indian River Bridge, eastbound
- Indian River Bridge, westbound
- Haulover Canal Bridge

Rail Divestiture

The KSC rail system, including the Jay Jay Railroad Bridge, is not required for NASA Programs until approximately 2017 at the earliest. Replacement possibilities are currently being determined and would be based on the functional requirements of the SLS Program. However, there is an opportunity to leverage the cost of replacement with the granting of a rail easement that would provide a rail connection between the Florida East Coast railway and Port Canaveral via the KSC railroad. Such an approach would support Port Canaveral’s ability to increase market competitiveness while potentially retaining a strategic transportation asset and allowing for greater rail and sea access to KSC for the emerging market. The environmental impacts of this divestiture and the construction and operation of a rail connection between Port Canaveral and KSC are the subject of a separate environmental impact statement that is currently underway by the U.S. Surface Transportation Board. See Section 3.2.3 in this PEIS for a description of that EIS.
2.1.6.2.4 Parking

In the near term, as developable land is limited due to environmental concerns, underutilized parking areas should be identified as possible sites for non-NASA entities to build parking facilities (e.g., multi-level structures) to support their operations.

The possibility of utilizing partnerships in the near term to repurpose underutilized parking areas in support of agency sustainability goals is an ideal alternative. One such opportunity would involve leasing space to commercial companies who can develop solar-powered electrical vehicle charging stations that would be available to employees and visitors of NASA facilities. Such infrastructure would support the utilization of alternative fueled vehicles amongst the workforce at minimal cost to the agency.

Underutilized parking facilities that are unable to be repurposed should, ideally, be demolished to increase permeable land on Center as a suitable alternative to being abandoned in place.

2.1.6.3 Water

Access via waterways is a primary transportation capability at KSC. Currently, waterway access is limited to the Turn Basin in the VAB Area and the wharf at Hangar AF on the CCAFS. The expansion of this capability to other functional areas at KSC would be appropriate if the market demands such a capability. To support the expansion of this transportation capability, the CMP has identified three areas with potential future rail spurs that would be ideal for the development of additional seaports to support future non-NASA spaceport operations.

- An area adjacent to the Industrial Area provides water access to future manufacturing and research and development areas on the east side of the Center.
- A seaport accessing the west side of the SLF would provide access to the mode for operations there.
- An expansion of the Turn Basin capability could provide increased access from the Banana River Channel to the VAB area.

These new seaports, if future market demand exists, would be funded by non-NASA sources.

2.1.6.4 Air

2.1.6.4.1 Runways

It is anticipated that over the near, medium, and long term, the SLF would be utilized mainly for Horizontal Launch and Landing activities. The 2012 update to the Horizontal Launch and Landing ADP recommended improvements to the SLF in four phases at 5-year, 10-year, and 20-year intervals. Modifications to facilities, infrastructure, the runway, and other airfield systems are planned to primarily support commercial aerospace activities. Plans include an expansion of hangars and taxiways, new fuel storage facilities, and updated storm water systems.

To support the expansion of the Horizontal Launch and Landing capability, a location for a new east-west runway east of the SLF has been identified south of Beach Road should the non-NASA operator of the SLF determine an expansion of capacity is necessary.
2.1.6.4.2 Airspace

Airspace and safety criteria for the SLF would continue to be in accordance with Federal Aviation Regulation (FAR) Part 77 Airport Aeronautical Surfaces and Airspace.

2.1.7 Environmental Remediation

Numerous sites are known to have been environmentally contaminated by past practices, which under the Proposed Action, would continue to be monitored and remediated proportional to available funding. Environmental baseline studies documenting existing conditions and identification of any past contamination would be carried out by NASA prior to allowing any new uses to develop or redevelop KSC property and facility sites. Any new users would accept liability for their future activities, outlined in a corresponding commercial agreement.

2.1.8 Strategic Partnerships

KSC cultivates strategic partnerships with other federal, state, public, private and academic organizations to capitalize on complementary strengths of each organization in managing the Kennedy Space Center. Under the Proposed Action, KSC would continue to invest in existing partnerships, such as those with Cape Canaveral Air Force Station (CCAFS, an installation of the U.S. Air Force Space Command’s 45th Space Wing, headquartered at nearby Patrick Air Force Base), Brevard County government, National Park Service – Canaveral National Seashore, U.S. Department of Energy, Federal Aviation Administration (FAA) Office of Commercial Space Transportation (FAA-AST), Florida Department of Transportation (FDOT) , U.S. Fish and Wildlife Service – Merritt Island National Wildlife Refuge, and Patrick Air Force Base (PAFB).

Some of these partnering agencies have permitting authority. Under the Proposed Action, for example, as a multi-user spaceport, future commercial space customers would be subject to FAA licensing, including Order 1050.1E Order 1050.1F, as well as Section 4(f) eventually. Projects that require FAA licensing, and U.S. DOT Section 4(f) review at KSC, with NASA as the jurisdictional authority, would be covered in more specific detail in EAs that tier from this PEIS, if appropriate. Applicability of Section 4(f) will be determined by the FAA on a project-by-project basis.

2.2 Alternative 1

Section 1.4 of this PEIS states: “Input from scoping thus helps shape the direction that analysis takes, helping analysts decide which issues merit consideration. Public input also helps in the development of alternatives to the Proposed Action, which is an integral part of NEPA.”

The KSC Center-wide PEIS began once the CMP was released in May 2014. As part of this process, the CMP and the proposed future land use map were reviewed by cooperating agencies and the general public. As a direct result of input and feedback received from the public and stakeholders during the PEIS scoping process, an alternative to the Proposed Action was developed: Alternative 1. Under Alternative 1, as in the Proposed Action, KSC would also transition to a multi-user spaceport. This alternative is illustrated on Future Land Use Map Alternative 1 (Figure 2.2-1).
Figure 2.2-1. Proposed future land use at the Kennedy Space Center under Alternative 1
Figure 2.3-1. Existing land use at the Kennedy Space Center – maintained under the No Action Alternative
Alternative 1 consists of four major land use changes:

- **Vertical Launch:** The two vertical launch areas northwest of Pad 39-B were consolidated into one contiguous notional area, LC-49, with greater separation from 39-B. The launch area south of 39-A has been designated LC-48. Based on public and cooperating agency comments, Spaceport Planning determined that two launch pads in this area were not feasible; one larger notional area also provides a wider range of development options for a non-NASA entity to develop vertical launch capabilities based on its concept of operations, launch trajectory, rocket type, etc.

- **Vertical Landing:** The vertical landing area was condensed and moved farther south away from the Canaveral National Seashore to potentially reduce impacts to recreational access and park operations. Relocating this land use closer to the vertical launch area provides opportunities to co-locate this capability next to a vertical launch area for more efficient operations.

- **Horizontal Launch & Landing:** The horizontal launch and landing area adjacent to Beach Road was condensed and changed to “Notional Future Horizontal Launch Area.” Based on public and agency comments, this large area of a land use could potentially deter recreational access to the Canaveral National Seashore and also duplicate capabilities that exist elsewhere. Establishing this as “notional future horizontal launch” preserves the ability to develop this area in the future once/if horizontal launch technological capabilities advance to the point of making this area feasible to develop.

- **Seaport:** Two areas designated as seaports, one southwest of the SLF along the Indian River and one southeast of the Industrial Area along the Banana River, were eliminated. Based on public and cooperating agency comments, the development of these two seaports would require additional dredging of the Indian and Banana Rivers. Along with upgrades occurring at the turn basin, the Spaceport Planning Office determined that the environmental costs from the construction of two additional seaports were too great.

All other elements of Alternative 1 would be essentially same as the Proposed Action. That is, under Alternative 1, KSC would also transition over a 20-year period (2012-2032) to a multi-user spaceport. The revised KSC Master Plan in this alternative would continue to promote the right-sizing of NASA operations at KSC – consolidation into a smaller geographic footprint – and aim to attract non-NASA investment by providing them more operational autonomy. The Future Development Plan; Launch, Landing, Operations and Support; climate change adaptations; Functional Area Plans (except as noted above) and Transportation Plan under Alternative 1 would be essentially the same as under the Proposed Action.

Table 2.2-1 lists existing and proposed future land uses at KSC under Alternative 1 as well as the areas (acreage) of each.
Table 2.2-1. Existing and proposed future land uses at KSC under Alternative 1

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Existing Acreage</th>
<th>Future Acreage</th>
<th>Change in Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>104.76</td>
<td>40.72</td>
<td>-64.03</td>
</tr>
<tr>
<td>Assembly, Testing and Processing</td>
<td>475.41</td>
<td>1,894.77</td>
<td>1,419.36</td>
</tr>
<tr>
<td>Central Campus</td>
<td>NA²</td>
<td>138.75</td>
<td>138.75</td>
</tr>
<tr>
<td>Horizontal Launch and Landing</td>
<td>501.25</td>
<td>1,806.62</td>
<td>1,305.37</td>
</tr>
<tr>
<td>Launch Operations and Support</td>
<td>398.75</td>
<td>491.59</td>
<td>92.84</td>
</tr>
<tr>
<td>Open Space</td>
<td>1,873.64</td>
<td>NA</td>
<td>-1,873.64</td>
</tr>
<tr>
<td>Operational Buffer/Conservation</td>
<td>44,583.14</td>
<td>41,297.17</td>
<td>-3,285.97</td>
</tr>
<tr>
<td>Operational Buffer/Public Use</td>
<td>34,844.14</td>
<td>34,824.72</td>
<td>-19.42</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>216.01</td>
<td>522.13</td>
<td>306.12</td>
</tr>
<tr>
<td>Recreation</td>
<td>161.36</td>
<td>161.36</td>
<td>0.00</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>66.54</td>
<td>1,109.85</td>
<td>1,043.31</td>
</tr>
<tr>
<td>Research and Development</td>
<td>88.36</td>
<td>867.49</td>
<td>779.13</td>
</tr>
<tr>
<td>Seaport</td>
<td>30.92</td>
<td>30.92</td>
<td>0</td>
</tr>
<tr>
<td>Support Services</td>
<td>723.91</td>
<td>471.40</td>
<td>-252.51</td>
</tr>
<tr>
<td>Utility Systems</td>
<td>1,327.23</td>
<td>1,329.60</td>
<td>2.37</td>
</tr>
<tr>
<td>Vertical Launch</td>
<td>360.32</td>
<td>728.08</td>
<td>367.76</td>
</tr>
<tr>
<td>Vertical Landing</td>
<td>NA</td>
<td>40.56</td>
<td>40.56</td>
</tr>
<tr>
<td>Water</td>
<td>55,541.81</td>
<td>55,541.81</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>141,297.54</td>
<td>141,297.54</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Total difference in size between current land use and future land use for each category. Numbers in red represent a future land use amount that is SMALLER than the current amount for the category while numbers in green signify that the future land use amount would be LARGER than the current amount for the category.

² Not Applicable

2.3 No Action Alternative

2.3.1 Overview

The National Environmental Policy Act requires that an agency “include the alternative of no action” as one of the alternatives it considers (40 CFR 1502.14[d]). The No Action Alternative serves as a baseline against which the impacts of the Proposed Action and other action alternatives are compared. Under the No Action Alternative for this PEIS, the status quo at KSC would be maintained and the proposed future (2012-2032) developments described in the 2013 Center Master Plan Update (the Proposed Action) would not proceed or be implemented.

In the No Action Alternative (Figure 2-3.1), KSC management would continue its emphasis on dedicated NASA Programs and would not transition in the coming years towards a multi-user spaceport. Rather, each NASA Program would continue to be operated as an independent entity to a significant degree, to be funded separately, and to manage activities and buildings in support of its own program. There would continue to be a limited non-NASA presence at KSC.
Under the KSC-MINWR agreement between NASA and USFWS, the USFWS manages all non-operational areas of KSC (both inside and outside of the Security Area) and maintains some wildlife responsibilities within the operational areas. Further, both NPS and USFWS have management responsibilities in the CANA/MINWR overlap area, with the USFWS generally managing east of Beach Road and with NPS taking the lead on cultural resources in the overlap. Thus, the USFWS/MINWR has management lead for approximately 135,000 acres of non-operational areas and has some responsibilities within the extracted areas (approximately 5,000 acres) at KSC. CANA and MINWR overlap on approximately 34,345 acres.

An Interagency Management Agreement is the current vehicle under which the USFWS and NASA operate at MINWR; an original permit was replaced by this agreement, which has been updated over time. Jurisdictional overlaps and overlays at KSC, MINWR, and CANA are complicated and can be confusing, but the three agencies have collaborated successfully as partners for decades. As shown in Figure 1.2-1, areas may be KSC/MINWR, KSC/CANA, KSC/MINWR/CANA, CANA only, or MINWR only.

Under the No Action Alternative (as well as the Proposed Action and Alternative 1), these institutional arrangements and agreements would stay in place. The total land and water area under jurisdiction of KSC would remain at approximately 140,000 acres. Of this total area, about 85,000 acres would continue to be owned by NASA and the remaining 55,000 acres by the State of Florida and dedicated for the exclusive use of the U. S. Government under Deeds of Dedication. This entire 140,000-acre area, in association with adjacent water bodies, would continue to serve as buffer zones to afford adequate safety to the surrounding civilian communities for vehicle launches and other KSC activities. A portion of the seashore on the eastern edge of the Center would continue to be available for public recreation purposes on a non-interference basis. It is further assumed that the KSC workforce would remain under 13,000, of which approximately 2,100 are employees of the federal government, and the remainder employees of companies working under contract to NASA or other federal agencies or employees of commercial or other non-NASA spaceport users and tenants.

The environmental, social, and economic conditions described as the affected environment would not be affected by construction or operations as described under the Proposed Action or Alternative 1. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions proposed from the Proposed Action or any of the alternatives may proceed but would have to do so after environmental assessment under separate environmental documentation.

2.3.2 Land Use

Under the No Action Alternative, current land uses and their configuration at KSC would remain unchanged for the duration of the 20-year planning horizon (2012-2032). Existing land uses are shown in Figure 2.3-1. The same land use classifications are used to describe the primary activity of all existing facilities and associated land areas as are used in the Proposed Action above.
2.3.3 Transportation

KSC’s transportation infrastructure is one of the most unique systems in the world, incorporating five modes of transportation: roads, rail, air, sea and space. This quinti-modal transportation system is an integral component of Florida's Strategic Intermodal System (SIS), which integrates individual facilities, services, forms of transportation (modes) and linkages into a single, integrated transportation network (NASA, 2013b).

Under the No Action Alternative, the existing KSC transportation system would remain essentially unchanged except for routine maintenance.

2.3.4 Environmental Remediation

Numerous sites are known to have been environmentally contaminated by past practices, which under the No Action Alternative (as well as the Proposed Action and Alternative 1), would continue to be monitored and remediated proportional to available funding. Environmental baseline studies documenting existing conditions and identification of any past contamination would be carried out by NASA prior to allowing any new uses to develop or redevelop KSC property and facility sites. Any new users would accept liability for their future activities, outlined in a corresponding commercial agreement.

2.3.5 Climate Change

Much of KSC’s land area is low-lying, poorly drained, and vulnerable to inundation by periodic storm events. Low-lying areas are also most at risk to be affected by global climate change and sea level rise in future decades. Under the No Action Alternative, KSC would not implement elevation-based zoning and development controls to insure that any future development is constructed at an elevation of six feet above mean sea level, although this would not be consistent with NASA land management practices and Office of Strategic Infrastructure climate adaptation guidance and strategy. Areas of existing facilities or structures that are less than 3 feet above mean sea level would not be hardened or raised to accommodate future climate and weather, nor would they be relocated to ground at or above six feet MSL. Critical facilities would not be moved outside the 500-year flood plain or hardened to withstand a hurricane activity.

2.3.6 Strategic Partnerships

KSC cultivates strategic partnerships with other federal, state, public, private and academic organizations to capitalize on complementary strengths of each organization in managing the Kennedy Space Center. Under the No Action Alternative, KSC would continue to invest in existing partnerships, such as those with Cape Canaveral Air Force Station (CCAFS, an installation of the U.S. Air Force Space Command’s 45th Space Wing, headquartered at nearby Patrick Air Force Base), Brevard County government, National Park Service – Canaveral National Seashore, U.S. Department of Energy, Federal Aviation Administration (FAA) Office of Commercial Space Transportation (FAA-AST), Florida Department of Transportation (FDOT), U.S. Fish and Wildlife Service – Merritt Island National Wildlife Refuge, and Patrick Air Force Base (PAFB).
2.3.7 NASA Programs

In the No Action Alternative, the following continuing NASA Programs would be the principal users of KSC facilities. These are existing programs that are also listed and described briefly above as part of the Proposed Action.

- Launch Services Program (LSP)
- International Space Station (ISS)
- Commercial Resupply Services (CRS)
- Orion Multi-Purpose Crew Vehicle (Orion MPCV)
- Space Launch System (SLS)
- Commercial Crew Program (CCP)

Ongoing NASA administrative uses that would continue to occur at KSC under the No Action Alternative include such functions as executive management, operations support, and human resources.

2.3.8 Launch, Landing, Operations and Support

Under the No Action Alternative, KSC would continue to use a variety of areas around the Center for the vertical launch and landing of vehicles. In general, vertical launch and landing of NASA missions and non-NASA commercial missions under the No Action Alternative would take place at a reduced rate or frequency (launches/landings per year) from that anticipated under the Proposed Action.

Under the No Action Alternative, in contrast to the Proposed Action, no new construction would occur at both the south-field and mid-field sites along the SLF.

All existing vehicles that currently launch and/or land at KSC (and are listed and described under the Proposed Action) would continue to do so under the No Action Alternative, and at current levels of activity.

KSC would continue to use a variety of areas around the Center for assembly, testing and processing (described above in Section 2.1.3.4) under the No Action Alternative.

2.4 Agency-Preferred Alternative

NASA’s preferred alternative is Alternative 1. This alternative would allow for implementation of the CMP while at the same time protecting natural resources and the environment to a greater extent than the Proposed Action.

2.5 Alternatives Considered But Eliminated

NEPA provides guidance on alternatives development. Reasonable alternatives include those that are practical or feasible from technical and economic standpoints and using common sense, rather than simply being desirable. All reasonable alternatives must fulfill the program’s purpose and need, as well as address significant environmental issues. The selection of alternatives under
NEPA criteria includes consideration of a reasonable range of alternatives that meet the program purpose and need and that are economically and technically feasible.

A number of alternatives suggested during scoping or otherwise developed have been eliminated from detailed study. These alternatives were evaluated using the following criteria to determine which alternatives would be addressed in detail in the Final PEIS and which would be eliminated from detailed study:

1. Does the alternative meet the program purpose and need?
2. Does the alternative resolve environmental or resource conflicts?
3. Is the alternative available? and/or
4. Is the alternative feasible, in terms of cost, current technology, and logistical capability?

These criteria were used to narrow the list of potential alternatives for consideration in the Final PEIS and based upon these criteria, the following alternatives were considered but eliminated from further study:

Alternatives Based on Differential Flight Rates. One of the possible ways of delineating action and no-action alternatives would have been to base them on the High, Assumed, and Low Flight Rates shown for the different categories of operations/missions in the table labeled “2012-2031 Planning Envelope Forecasts, Average Annual Launch/Landing Flight Operations Departing from or Arriving at KSC” in the Future Development Concept. However, the figures shown in this table were too conjectural.

Alternative Based on Shifting Activities, Facilities and Infrastructure to CCAFS. It was suggested in certain comments received during public scoping that NASA could reduce future impacts to biological resources and outdoor recreation at Merritt Island National Wildlife Refuge and Canaveral National Seashore by shifting a portion of its activities (e.g., launches), facilities and infrastructure to already-developed sites at the CCAFS.

This alternative was considered but not subjected to detailed analysis along with the Proposed Action and No Action Alternatives because of the different overall mission of the Department of Defense (DOD). While CCAFS and KSC coexist successfully on a daily, routine basis, sharing close proximity and several leased facilities, as well as interconnected infrastructure systems, CCAFS abides by different operational standards with different primary objectives than NASA and its commercial partners. These differing missions and philosophies do not support shifting a high number of NASA activities to land and facilities operated on CCAFS.

2.6 Comparison of Alternatives

This section compares the three alternatives – Proposed Action, Alternative 1, and No Action – considered and evaluated in some detail in Chapter 3. Table 2.6-1 compares the acreages of the designated land uses at KSC proposed under each of the three alternatives. Table 2.6-2 is the impact comparison matrix, which summarizes the environmental consequences discussed for each of the alternatives in Chapter 3.
Table 2.6-1. Acreages of designated land uses at KSC under the three alternatives

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>40.72</td>
<td>40.72</td>
<td>104.76</td>
</tr>
<tr>
<td>Assembly, Testing and Processing</td>
<td>1,894.77</td>
<td>1,894.77</td>
<td>475.41</td>
</tr>
<tr>
<td>Central Campus</td>
<td>138.75</td>
<td>138.75</td>
<td>NA</td>
</tr>
<tr>
<td>Horizontal Launch and Landing</td>
<td>2,838.84</td>
<td>1,806.62</td>
<td>501.25</td>
</tr>
<tr>
<td>Launch Operations and Support</td>
<td>506.14</td>
<td>491.59</td>
<td>398.75</td>
</tr>
<tr>
<td>Open Space</td>
<td>NA¹</td>
<td>NA</td>
<td>1,873.64</td>
</tr>
<tr>
<td>Operational Buffer/Conservation</td>
<td>40,196.64</td>
<td>41,297.17</td>
<td>44,583.14</td>
</tr>
<tr>
<td>Operational Buffer/Public Use</td>
<td>34,824.72</td>
<td>34,824.72</td>
<td>34,844.14</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>522.13</td>
<td>522.13</td>
<td>216.01</td>
</tr>
<tr>
<td>Recreation</td>
<td>161.36</td>
<td>161.36</td>
<td>161.36</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>1,109.85</td>
<td>1,109.85</td>
<td>66.54</td>
</tr>
<tr>
<td>Research and Development</td>
<td>867.49</td>
<td>867.49</td>
<td>88.36</td>
</tr>
<tr>
<td>Seaport</td>
<td>317.26</td>
<td>30.92</td>
<td>30.92</td>
</tr>
<tr>
<td>Support Services</td>
<td>471.40</td>
<td>471.40</td>
<td>723.91</td>
</tr>
<tr>
<td>Utility Systems</td>
<td>1,329.60</td>
<td>1,329.60</td>
<td>1,327.23</td>
</tr>
<tr>
<td>Vertical Launch</td>
<td>536.42</td>
<td>728.08</td>
<td>360.32</td>
</tr>
<tr>
<td>Vertical Landing</td>
<td>75.73</td>
<td>40.56</td>
<td>NA</td>
</tr>
<tr>
<td>Water</td>
<td>55,541.81</td>
<td>55,541.81</td>
<td>55,541.81</td>
</tr>
</tbody>
</table>

¹ Not Applicable
Table 2.6-2. Impact comparison matrix

<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils and Geology</td>
<td>• Impacts on upland and wetland soils and geology from clearing, grubbing, grading, excavating, and filling.</td>
<td>• Impacts on upland and wetland soils and geology from clearing, grubbing, grading, excavating, and filling.</td>
<td>• Soils and geology would not be affected by construction or operations from new projects described under the Proposed Action.</td>
</tr>
<tr>
<td></td>
<td>• Ground-disturbing construction activities would occur in some areas where soils have previously been disturbed, but activities would also occur in undisturbed areas.</td>
<td>• Ground-disturbing construction activities would occur in some areas where soils have previously been disturbed, but activities would also occur in undisturbed areas.</td>
<td>• Any existing activities or operations would occur in accordance with existing laws and permits and within the footprint of existing developed areas.</td>
</tr>
<tr>
<td></td>
<td>• Soil erosion from use of heavy equipment could occur as a result of ground disturbance leading to detachment of soils and transport of freshly disturbed surfaces in wind and storm flow runoff.</td>
<td>• Soil erosion from use of heavy equipment could occur as a result of ground disturbance leading to detachment of soils and transport of freshly disturbed surfaces in wind and storm flow runoff.</td>
<td>• Effects on soils and geology from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels.</td>
</tr>
<tr>
<td></td>
<td>• Disturbing soils could create habitat for colonization by invasive species.</td>
<td>• Disturbing soils could create habitat for colonization by invasive species.</td>
<td>• The No Action Alternative would not have any additional impacts on soils and geology.</td>
</tr>
<tr>
<td></td>
<td>• Spills and leaks of hazardous materials during construction could lead to soil contamination and toxicity.</td>
<td>• Spills and leaks of hazardous materials during construction could lead to soil contamination and toxicity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Best Management Practices (BMPs) would be implemented during project activities to prevent or reduce soil erosion into water surfaces and minimize adverse soil impacts.</td>
<td>• Best Management Practices (BMPs) would be implemented during project activities to prevent or reduce soil erosion into water surfaces and minimize adverse soil impacts.</td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Soils and Geology</td>
<td>• Potential indirect effects of soil destabilization and erosion would be dust generation and off-site deposition.</td>
<td>• Potential indirect effects of soil destabilization and erosion would be dust generation and off-site deposition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts of proposed project activities on soils and geology would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, types of soils occurring onsite, and whether impervious surfaces would be placed over soils and geological materials.</td>
<td>• Impacts of proposed project activities on soils and geology would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, types of soils occurring onsite, and whether impervious surfaces would be placed over soils and geological materials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts on soils and geology would be less than significant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical and horizontal launches may result in local adverse impacts on soils and geology from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances); elevated metal concentrations and changes in soil pH would be expected from such deposition within a small radius of the launch pad.</td>
<td>• Vertical and horizontal launches may result in local adverse impacts on soils and geology from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances); elevated metal concentrations and changes in soil pH would be expected from such deposition within a small radius of the launch pad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Overall effects of vertical and horizontal launches and landings on soils and geology are expected to be short-term to medium-term, direct, adverse,</td>
<td>• Overall effects of vertical and horizontal launches and landings on soils and geology are expected to be short-term to medium-term, direct, adverse, and minor to</td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Soils and Geology</td>
<td>and minor to moderate. Impacts would be less than significant. On a regional scale, there would be additional minor, adverse cumulative effects on soils and geology. With the utilization of BMPs that are a requirement of any major construction project, these adverse impacts, though widespread, would not be significant.</td>
<td>moderate. Impacts would be less than significant. On a regional scale, there would be additional minor, adverse cumulative effects on soils and geology. With the utilization of BMPs that are a requirement of any major construction project, these adverse impacts, though widespread, would not be significant.</td>
<td>Overall impacts of Alternative 1 on soils and geology would be slightly less than the Proposed Action.</td>
</tr>
</tbody>
</table>
| Water Resources | • Erosion caused by site runoff and contamination by chemical spills could impact surface water quality.
• Non-point sources could potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table.
• Impervious or semi-impervious surfaces would likely contribute to more surface drainage than at present.
• Elevated levels of turbidity from erosion could also lead to | • Erosion caused by site runoff and contamination by chemical spills could impact surface water quality.
• Non-point sources could potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table.
• Impervious or semi-impervious surfaces would likely contribute to more surface drainage than at present.
• Elevated levels of turbidity from erosion could also lead to | • Water resources would not be affected by construction or operations from new projects described under the Proposed Action.
• Any existing activities or operations would occur in accordance with existing laws and permits.
• Existing uses would continue at current levels. Effects on water resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Resources</td>
<td>decreases in primary production and dissolved oxygen levels. There could also</td>
<td>decreases in primary production and dissolved oxygen levels. There could also</td>
<td>unchanged from current levels.</td>
</tr>
<tr>
<td>(continued)</td>
<td>be increased short-term fine sediment and loss of benthic food resources.</td>
<td>be increased short-term fine sediment and loss of benthic food resources.</td>
<td>• Would not have any additional impacts on water resources.</td>
</tr>
<tr>
<td></td>
<td>• Some risk of an accidental fuel or chemical spill, which could adversely</td>
<td>• Some risk of an accidental fuel or chemical spill, which could adversely</td>
<td>• However, the long-term cumulative impacts on water quality in the IRL</td>
</tr>
<tr>
<td></td>
<td>affect water quality if the spill were to enter ground or surface water.</td>
<td>affect water quality if the spill were to enter ground or surface water.</td>
<td>described under the Proposed Action could still well occur if other</td>
</tr>
<tr>
<td></td>
<td>• BMPs limiting the amount of disturbance to just the project footprint would</td>
<td>• BMPs limiting the amount of disturbance to just the project footprint would</td>
<td>reasonably foreseeable projects were to take place and if population</td>
</tr>
<tr>
<td></td>
<td>be implemented to reduce adverse impact to wetlands, floodplains, and riparian</td>
<td>be implemented to reduce adverse impact to wetlands, floodplains, and riparian</td>
<td>projections and associated development are realized in the decades ahead,</td>
</tr>
<tr>
<td></td>
<td>areas, but there could still be some adverse effects that would be inevitable.</td>
<td>areas, but there could still be some adverse effects that would be inevitable.</td>
<td>fostering increases in non-point source pollution that have already</td>
</tr>
<tr>
<td></td>
<td>• Impacts of proposed project activities on water resources would be short-</td>
<td>• Impacts of proposed project activities on water resources would be short-</td>
<td>damaged the lagoon.</td>
</tr>
<tr>
<td></td>
<td>term and long-term, direct, adverse, and minor to moderate depending on the</td>
<td>term and long-term, direct, adverse, and minor to moderate depending on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extent of the project, site topography, and proximity to surface water.</td>
<td>extent of the project, site topography, and proximity to surface water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts on water resources would be less than significant with implementation</td>
<td>• Impacts on water resources would be less than significant with implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of BMPs and adherence to permit conditions.</td>
<td>of BMPs and adherence to permit conditions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical & horizontal launches may result in local adverse</td>
<td>• Vertical & horizontal launches may result in local adverse</td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Water Resources (continued)</td>
<td>impacts on freshwater and marine systems, from deposition associated with rocket engine emissions, the deposition of spent launch vehicle equipment, or landing of a reentry vehicle or its associated equipment.</td>
<td>impacts on freshwater and marine systems, from deposition associated with rocket engine emissions, the deposition of spent launch vehicle equipment, or landing of a reentry vehicle or its associated equipment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• At launches, deluge and washdown water would be supplied by the existing water distribution system and would have a negligible impact on system capacity or surface and groundwater resources.</td>
<td>• At launches, deluge and washdown water would be supplied by the existing water distribution system and would have a negligible impact on system capacity or surface and groundwater resources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wastewater would be processed through the existing wastewater handling and treatment systems. Local and regional water resources would not be affected since there would be no substantial increase in use of surface or groundwater supplies.</td>
<td>• Wastewater would be processed through the existing wastewater handling and treatment systems. Local and regional water resources would not be affected since there would be no substantial increase in use of surface or groundwater supplies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimal adverse impacts to water resources from contaminated water are expected to result from launch operations.</td>
<td>• Minimal adverse impacts to water resources from contaminated water are expected to result from launch operations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts from HCl (formed during rocket launches) on surface waters would be restricted to the area immediately adjacent to the launch pad. No substantial impacts on surface waters of nearby oceans,</td>
<td>• Impacts from HCl (formed during rocket launches) on surface waters would be restricted to the area immediately adjacent to the launch pad. No substantial impacts on surface waters of nearby oceans,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lagoons, or large</td>
</tr>
</tbody>
</table>
Water Resources (continued)

<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| | lagoons, or large inland water bodies should occur due to the buffering capacities of these bodies. A normal launch would have no substantial impacts on local water quality.
 - Launch accidents could result in impacts on local water bodies due to contamination from rocket propellant.
 - Overall, impacts of proposed project activities on water resources would be short-term and long-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of water to the launch or landing sites. Impacts on water resources would be less than significant.
 - Direct cumulative impacts from reasonably foreseeable projects are likely to be minor and adverse.
 - To the extent that reasonably foreseeable projects contribute to long-term economic and population growth and development of the Space Coast region, they may contribute indirectly to continuing cumulative impairment of the Indian River Lagoon complex as a result of an increase in the area | inland water bodies should occur due to the buffering capacities of these bodies. A normal launch would have no substantial impacts on local water quality.
 - Launch accidents could result in impacts on local water bodies due to contamination from rocket propellant.
 - Overall, impacts of proposed project activities on water resources would be short-term and long-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of water to the launch or landing sites. Impacts on water resources would be less than significant.
 - Direct cumulative impacts from reasonably foreseeable projects are likely to be minor and adverse.
 - To the extent that reasonably foreseeable projects contribute to long-term economic and population growth and development of the Space Coast region, they may contribute indirectly to continuing cumulative impairment of the Indian River Lagoon complex as a result of an increase in the area |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Water Resources (continued) | Indian River Lagoon complex as a result of an increase in the area of impervious surfaces and non-point source loadings of sediments, nutrients, and contaminants.

- Cumulative impacts on water quality could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing septic fields.

- Overall impacts of Alternative 1 on water resources would be slightly less than the Proposed Action. | of impervious surfaces and non-point source loadings of sediments, nutrients, and contaminants.

- Cumulative impacts on water quality could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing septic fields.

- Under the No Action alternative, the status quo would be maintained at KSC.

- There would be no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC. | | | |
| Hazardous Materials and Waste | • The impact of transitioning to a multi-user spaceport on hazardous materials and waste is confined to an increase in quantity, rather than an influx of new materials. Those materials considered as part of the Proposed Action are materials that are currently used at KSC.

- KSC currently handles solvents, surface coatings, propellants and fuels. Procedures for handling, transporting, storing or disposing of hazardous materials would be unaffected by the Proposed Action. | • The impact of transitioning to a multi-user spaceport on hazardous materials and waste is confined to an increase in quantity, rather than an influx of new materials. Those materials considered as part of the Proposed Action are materials that are currently used at KSC.

- KSC currently handles solvents, surface coatings, propellants and fuels. Procedures for handling, transporting, storing or disposing of hazardous materials would be unaffected by the Proposed Action. | • Under the No Action alternative, the status quo would be maintained at KSC.

- There would be no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Hazardous Materials and Waste | • Action.
 • Because of the increase in exposure and the activities related to these materials, the risks associated with them are also slightly increased. The importance of adhering to proper safety procedures must be viewed as a top priority for future operations to minimize the risks of accidental release and personnel exposure.
 • The probability of an accidental release would increase due to the increased activities and quantity of materials, but best practices would ensure this increase in risk is small, with the probability of a major spill kept at a minimum.
 • Overall, adverse impacts on hazardous materials and waste would be of slight precedence, negligible to minor magnitude, and long-term duration.
 • Cumulative impacts are not expected. | • Action.
 • Because of the increase in exposure and the activities related to these materials, the risks associated with them are also slightly increased. The importance of adhering to proper safety procedures must be viewed as a top priority for future operations to minimize the risks of accidental release and personnel exposure.
 • The probability of an accidental release would increase due to the increased activities and quantity of materials, but best practices would ensure this increase in risk is small, with the probability of a major spill kept at a minimum.
 • Overall, adverse impacts on hazardous materials and waste would be of slight precedence, negligible to minor magnitude, and long-term duration.
 • Cumulative impacts are not expected.
 • Effects of Alternative 1 would be essentially identical to those of the Proposed Action. | • Would result in no additional effect on air quality. |
<p>| Air Quality | • Would have short- and long-term minor adverse effects. | • Would have short- and long-term minor adverse effects. | |</p>
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality (continued)</td>
<td>• Could affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic.</td>
<td>• Could affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic.</td>
<td>• Involves continuing existing activities and environmental programs at KSC. Because the number and type of activities would remain relatively constant under the No Action Alternative, similar levels of emissions of air pollutants would be expected.</td>
</tr>
<tr>
<td></td>
<td>• Short-term effects from demolition of aging or obsolete facilities would be from airborne dust and other pollutants.</td>
<td>• Short-term effects from demolition of aging or obsolete facilities would be from airborne dust and other pollutants.</td>
<td>• Ambient air quality would remain unchanged when compared to existing conditions.</td>
</tr>
<tr>
<td></td>
<td>• Long-term effects would be from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic.</td>
<td>• Long-term effects would be from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In addition to criteria pollutants, the products of combustion from solid rocket boosters would also include other common products of combustion including aluminum oxide, hydrogen chloride, hydrogen, nitrogen, carbon dioxide, and water. These components are predominately inert and would be emitted in limited amounts.</td>
<td>• In addition to criteria pollutants, the products of combustion from solid rocket boosters would also include other common products of combustion including aluminum oxide, hydrogen chloride, hydrogen, nitrogen, carbon dioxide, and water. These components are predominately inert and would be emitted in limited amounts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Liquid hydrazine fuels typically</td>
<td>• Liquid hydrazine fuels typically</td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Air Quality</td>
<td>use dinitrogen tetroxide as the oxidizer; while these fuels are hypergolic and are very hazardous, when burned as fuel the products of combustion are mostly non-hazardous.</td>
<td>use dinitrogen tetroxide as the oxidizer; while these fuels are hypergolic and are very hazardous, when burned as fuel the products of combustion are mostly non-hazardous.</td>
<td></td>
</tr>
</tbody>
</table>
| | • Future launches at a re-tasked KSC could possibly result in an increase in the production of criteria pollutants over levels that have been emitted in under past KSC operations. However, vehicle launches alone would only exceed *de minimis* levels if a large number of SHCLV launches, coupled with numerous other classes of vehicle launches, were to be conducted during the calendar year.
• All components of the Proposed Action are completely within an attainment area and would not inherently lead to a violation of any Federal, state, or local air regulation. Therefore, effects would be less than significant.
• Would have short- and long-term minor adverse cumulative effects. | | |
| | | • Future launches at a re-tasked KSC could possibly result in an increase in the production of criteria pollutants over levels that have been emitted in under past KSC operations. However, vehicle launches alone would only exceed *de minimis* levels if a large number of SHCLV launches, coupled with numerous other classes of vehicle launches, were to be conducted during the calendar year.
• All components of Alternative 1 are completely within an attainment area and would not inherently lead to a violation of any Federal, state, or local air regulation. Therefore, effects would be less than significant.
Would have short- and long-term minor adverse cumulative effects. | | |
<p>| | | • Overall effects on air quality would be essentially identical to those of the Proposed Action. | |</p>
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Climate Change | - Climate change impacts globally include overall warmer temperatures, rising sea levels, a melting polar ice cap, changes in rainfall patterns, a greater frequency of extreme weather events (e.g., droughts, deluges, severe storms, floods, prolonged heat waves) and other associated and often interrelated effects.
 - CEQ guidance advises that actions subject to NEPA compliance should be evaluated along two dimensions relative to climate change impacts: (1) the effects of GHG emissions from a Proposed Action and alternative actions on global climate change; and (2) the effects of climate change effects to a Proposed Action or alternatives, including the relationship to proposal design, environmental impacts, mitigation and adaptation measures.
 - Sea level rise is the single largest hazard to continued KSC/CCAFS operations and regional land management activities.
 - More frequent and extreme high temperatures and humidity may cause increased risk of heat-related ailments among outdoor workers. | - Climate change impacts globally include overall warmer temperatures, rising sea levels, a melting polar ice cap, changes in rainfall patterns, a greater frequency of extreme weather events (e.g., droughts, deluges, severe storms, floods, prolonged heat waves) and other associated and often interrelated effects.
 - CEQ guidance advises that actions subject to NEPA compliance should be evaluated along two dimensions relative to climate change impacts: (1) the effects of GHG emissions from a Proposed Action and alternative actions on global climate change; and (2) the effects of climate change effects to a Proposed Action or alternatives, including the relationship to proposal design, environmental impacts, mitigation and adaptation measures.
 - Sea level rise is the single largest hazard to continued KSC/CCAFS operations and regional land management activities.
 - More frequent and extreme high temperatures and humidity may cause increased risk of heat-related ailments among outdoor workers. | - KSC would not implement elevation-based zoning and development controls to insure that any future development is constructed at an elevation of six feet above mean sea level, although this would not be consistent with NASA land management practices and Office of Strategic Infrastructure climate adaptation guidance and strategy.
 - Areas of existing facilities or structures that are in 0-3 foot above mean sea level zones would not be hardened or raised to accommodate future climate and weather, nor would they be relocated to ground at or above six feet MSL.
 - Critical facilities would not be moved outside the 500-year flood plain or hardened to withstand a hurricane activity.
 - NASA would continue to update plans to integrate consideration of climate change into agency operations and overall mission objectives. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Climate Change | workers; higher cooling costs; decreased utility reliability; damage to buildings.
- More frequent and intense droughts and seasonal shifts in water cycle may cause reduced water availability, higher water costs, salt water intrusion, and groundwater changes.
- More intense precipitation events may cause more frequent flooding of low-lying indoor and outdoor areas.
- Sea level rise may cause loss of usable land and inundation of coastal ecosystems.
- More frequent and intense coastal flood events may cause coastal erosion and have safety implications for surrounding communities.
- Hardening, improving, or moving facilities in adaptation to potential climate change impacts will require financial investment and funding, which might reasonably be considered impacts of climate change on the Proposed Action.
- Consolidation of NASA operations at KSC into a smaller geographic footprint can be achieved. | workers; higher cooling costs; decreased utility reliability; damage to buildings.
- More frequent and intense droughts and seasonal shifts in water cycle may cause reduced water availability, higher water costs, salt water intrusion, and groundwater changes.
- More intense precipitation events may cause more frequent flooding of low-lying indoor and outdoor areas.
- Sea level rise may cause loss of usable land and inundation of coastal ecosystems.
- More frequent and intense coastal flood events may cause coastal erosion and have safety implications for surrounding communities.
- Hardening, improving, or moving facilities in adaptation to potential climate change impacts will require financial investment and funding, which might reasonably be considered impacts of climate change on Alternative 1.
- Consolidation of NASA operations at KSC into a smaller geographic footprint can be achieved. | KSC would also continue to implement its Strategic Sustainability Performance Plan (SSPP), which established a Scope 1 & 2 GHG emissions reduction target of 18.3 percent relative to an FY 2008 baseline estimate.
- NASA operations at KSC would be at somewhat greater risk from the impacts of sea level rise, more frequent and intense coastal flood events, and more intense precipitation events than they be if the additional actions were taken.
- Would add a negligible amount to the U.S. emissions contributing to global climate change. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Climate Change (continued) | • Continued and increased efforts to power NASA’s facilities, programs, and activities using renewable sources of energy will have a beneficial impact on climate change by reducing greenhouse gas emissions.
• Would add a negligible amount to the U.S. emissions contributing to global climate change. | • Continued and increased efforts to power NASA’s facilities, programs, and activities using renewable sources of energy will have a beneficial impact on climate change by reducing greenhouse gas emissions.
• Would add a negligible amount to the U.S. emissions contributing to global climate change.
• Both the effect of climate change on Alternative 1 and the effect of Alternative 1 on climate change would be essentially the same as under the Proposed Action. | |
| Acoustic Environment (Noise) | • Short- and long-term minor adverse effects would be expected.
• Would result in the continuation of many of the types of noise presently occurring at KSC but potentially in greater amounts.
• Short-term increases in noise would result from the use of heavy equipment during construction and demolition | • Short- and long-term minor adverse effects would be expected.
• Would result in the continuation of many of the types of noise presently occurring at KSC but potentially in greater amounts.
• Short-term increases in noise would result from the use of heavy equipment during construction and demolition | • The No Action Alternative would result in no changes in the impact to the ambient noise environment.
• KSC operations and the current levels of activities would continue without changes, and the noise environment would remain unchanged when compared to existing conditions. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic Environment</td>
<td>activities.</td>
<td>• Long-term effects would be from the addition of stationary sources of noise such as standby generators, and changes in both vertical and horizontal launch activities.</td>
<td>• Minor short- and long-term cumulative effects would be expected.</td>
</tr>
<tr>
<td></td>
<td>• Long-term effects would be from the addition of stationary sources of noise such as standby generators, and changes in both vertical and horizontal launch activities.</td>
<td>• Increases in traffic volumes and changes in traffic patterns would have insignificant effects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Increases in traffic volumes and changes in traffic patterns would have insignificant effects.</td>
<td>• The Proposed Action would not (1) result in the violation of applicable Federal, state, or local noise ordinance; (2) create incompatible land uses for areas with sensitive noise receptors outside the KSC boundary; or (3) be loud enough to threaten or harm human health.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The Proposed Action would not (1) result in the violation of applicable Federal, state, or local noise ordinance; (2) create incompatible land uses for areas with sensitive noise receptors outside the KSC boundary; or (3) be loud enough to threaten or harm human health.</td>
<td>• In general, the overall effects of the action and its components would be less than significant.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In general, the overall effects of the action and its components would be less than significant.</td>
<td>• Minor short- and long-term cumulative effects would be expected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minor short- and long-term cumulative effects would be expected.</td>
<td>• Noise impacts of Alternative 1 would be very similar if not identical to those of the Proposed Action.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Noise impacts of Alternative 1 would be very similar if not identical to those of the Proposed Action.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Biological Resources | • Reduction of 4,406 acres of operational buffer, both public use and conservation components, meaning that 4,406 acres of mostly native vegetation communities (both upland and wetland) would be eliminated.
• Some native trees, shrubs, and ground cover located in the project footprint may need to be cleared, which would cause long-term adverse impacts on existing vegetation.
• Disturbance from construction may allow invasive plant establishment, soil erosion or compaction, a lessened litter layer, decreased soil microbial activity, reduced plant biomass and cover of native species, decreased reproductive success, changes in genetic structure of plant populations, and alteration of wildlife habitats.
• Impacts of proposed project activities on native upland vegetation would be short-term and long-term, direct, adverse, and negligible to moderate depending on whether the site is already disturbed or not, extent of the project area, and type of vegetation occurring onsite. | • Reduction of 3,305 acres of operational buffer, both public use and conservation components, meaning that 3,305 acres of native vegetation communities (both upland and wetland) would be eliminated.
• Some native trees, shrubs, and ground cover located in the project footprint may need to be cleared, which would cause long-term adverse impacts on existing vegetation.
• Disturbance from construction may allow invasive plant establishment, soil erosion or compaction, a lessened litter layer, decreased soil microbial activity, reduced plant biomass and cover of native species, decreased reproductive success, changes in genetic structure of plant populations, and alteration of wildlife habitats.
• Impacts of proposed project activities on native upland vegetation would be short-term and long-term, direct, adverse, and negligible to moderate depending on whether the site is already disturbed or not, extent of the project area, and type of vegetation occurring onsite. | • Upland vegetation would not be affected by construction or operations as described under the Proposed Action.
• Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels.
• Effects on upland vegetation from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels.
• Would not have any additional impacts on upland vegetation.
• Wildlife and aquatic species would continue to be affected to a negligible to minor degree from continuation of activities at KSC under the No Action Alternative.
• Many cumulative impacts on the IRL would be expected with or without implementation of the Proposed Action. That is, the No Action |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td>• Impacts on native upland vegetation would be less than significant.</td>
<td>• Impacts on native upland vegetation would be less than significant.</td>
<td>Alternative would neither substantially increase nor decrease their magnitude.</td>
</tr>
<tr>
<td>(continued)</td>
<td>• Impacts to native vegetation from invasive species would be long-term, direct, adverse, and minor to moderate, but not significant.</td>
<td>• Impacts to native vegetation from invasive species would be long-term, direct, adverse, and minor to moderate, but not significant.</td>
<td>• Because of combined habitat loss and fragmentation, potential cumulative impacts on the Florida scrub-jay could be adverse and significant.</td>
</tr>
<tr>
<td></td>
<td>• Impacts on special status species would be short-term and long-term, direct and indirect, adverse, and minor to moderate, but less than significant.</td>
<td>• Impacts on special status species would be short-term and long-term, direct and indirect, adverse, and minor to moderate, but less than significant.</td>
<td>• Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread or large extent, and possibly significant, even under the No Action Alternative.</td>
</tr>
<tr>
<td></td>
<td>• Vertical and horizontal launches may result in local adverse impacts on native upland and wetland vegetation. Such impacts would result from the deposition of rocket engine emissions, but would not likely result in the permanent removal or loss of a particular vegetative community.</td>
<td>• Vertical and horizontal launches may result in local adverse impacts on native upland and wetland vegetation. Such impacts would result from the deposition of rocket engine emissions, but would not likely result in the permanent removal or loss of a particular vegetative community.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Overall, the effects of vertical and horizontal launches and landings on upland and wetland vegetation are expected to be short-term to medium-term, direct, adverse, and minor to moderate.</td>
<td>• Overall, the effects of vertical and horizontal launches and landings on upland and wetland vegetation are expected to be short-term to medium-term, direct, adverse, and minor to moderate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts on native upland vegetation would be less than significant.</td>
<td>• Impacts on native upland vegetation would be less than significant.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adverse upland vegetation impacts associated with Proposed Alternative would neither substantially increase nor decrease their magnitude.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>Actions would be minor as compared to cumulative past, present, and foreseeable future effects. • When all projects are considered in combination, cumulative impacts on upland vegetation may shift from minor and adverse to moderate and adverse, but they would still not likely be major or significantly adverse. • Construction of two new seaports would occupy 286 additional acres, much or most of which is wetlands. Unless mitigated, this would constitute a permanent, adverse, medium-scale, moderate to major, potentially significant impact on wetlands and waters of the U.S. • Under its Section 404 Clean Water Act permitting authority, the U.S. Army Corps of Engineers would require avoidance or compensatory mitigation for construction in wetlands on this scale, which would reduce impacts to below the level of significance. • Except for the case of the seaports, impacts of proposed project activities on native wetland vegetation would be impacts associated with Alternative 1 would be minor compared to cumulative past, present, and foreseeable future effects. • When all projects are considered in combination, cumulative impacts on upland vegetation may shift from minor and adverse to moderate and adverse, but they would still not likely be major or significantly adverse. • Alternative 1 would avoid impacts to wetlands and wetland wildlife of the Proposed Action because it does not include two proposed seaports. • Impacts of proposed project activities on native wetland vegetation would be short-term and long-term, direct and indirect, adverse, and minor to moderate depending on the extent of the project area and whether or not the wetland has been previously disturbed. • Impacts on wetland vegetation are likely to become negligible to minor with mitigation and less than significant. • Impacts of Alternative 1’s activities on invasive wetland vegetation would be long-term,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biological Resources (continued)

<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| | short-term and long-term, direct and indirect, adverse, minor to moderate, and less than significant. | - Impacts of proposed project activities on invasive wetland vegetation would be long-term, direct, adverse, minor to moderate, and less than significant.
- Impacts of proposed project activities on wetland special status species would either not occur, or would be short-term and long-term, direct and indirect, adverse, minor to moderate, and less than significant.
- Adverse wetland vegetation impacts associated with the Proposed Action would be minor and adverse as compared to cumulative past, present, and foreseeable future effects.
- Overall, the largest loss of wildlife habitat would result from conversion of up to 4,386 acres of operational buffer/conservation to more developed land uses. These 4,386 acres constitute 9.8% of the total existing acreage of operational buffer/conservation lands as well as 5.1% of the future non-water land uses at KSC, making it a substantive but likely minor, adverse, long-term impact on KSC habitats in general for wildlife species whose populations are currently well-distributed and not stressed. | |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td>future non-water land uses at KSC, making it a substantive but likely minor, adverse, long-term impact on KSC habitats in general for wildlife species whose populations are currently well-distributed and not stressed by other factors across KSC. • Habitat quality changes would result where new facilities are sited in previously unbroken areas of uniform habitat. Fragmentation would be greatest where linear features such as roads or pipeline/cable rights-of-way are cut through larger areas of relatively uniform habitat. • Some benefit would be derived in terms of habitat recovery as well as improvements in habitat quality from reducing the footprint of Administration facilities and Support Services facilities which would result in a net gain of 317 acres of unused land that could be restored to wildlife habitat. • Special status terrestrial species may be adversely affected by the land use changes under the Proposed Action including the federally protected Eastern indigo snake and Florida scrub-jay, the southeastern beach mouse, piping plover, and Roseate tern. • Many invasive species may benefit from habitat disturbance and the presence of human development so their numbers may slightly increase due to new activities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>plover, and Roseate tern.</td>
<td>overall, the effects of vertical and horizontal launches and landings on upland wildlife and habitat are expected to be direct, adverse, localized, short-term to medium-term, and minor to moderate.</td>
<td>It is unlikely that Florida scrub-jay, least tern, or wood stork populations would incur long-term adverse impacts from launches.</td>
</tr>
<tr>
<td>(continued)</td>
<td>• Many invasive species may benefit from habitat disturbance and the presence of human development so their numbers may slightly increase due to new construction.</td>
<td>• Overall, the effects of vertical and horizontal launches and landings on upland wildlife and habitat are expected to be direct, adverse, localized, short-term to medium-term, and minor to moderate.</td>
<td>• It is unlikely that Florida scrub-jay, least tern, or wood stork populations would incur long-term adverse impacts from launches.</td>
</tr>
<tr>
<td></td>
<td>• Overall, the effects of vertical and horizontal launches and landings on upland wildlife and habitat are expected to be direct, adverse, localized, short-term to medium-term, and minor to moderate.</td>
<td>• Although launches could cause short-term effects on two protected bird species, five protected reptiles or amphibians, and two protected mammals, the launches would not be likely to adversely affect the long-term well-being, reproduction rates, or survival of any of these species.</td>
<td>• Although launches could cause short-term effects on two protected bird species, five protected reptiles or amphibians, and two protected mammals, the launches would not be likely to adversely affect the long-term well-being, reproduction rates, or survival of any of these species.</td>
</tr>
<tr>
<td></td>
<td>• It is unlikely that Florida scrub-jay, least tern, or wood stork populations would incur long-term adverse impacts from launches.</td>
<td>• Launches at KSC would likely continue to have recurring, short-term, localized to medium, minor to moderate adverse impacts to aquatic habitats and fish for the duration of the Center Master Plan. These impacts would not be significant because aquatic habitats and wildlife have proved resilient in the face of these environmental stresses over the</td>
<td>• Launches at KSC would likely continue to have recurring, short-term, localized to medium, minor to moderate adverse impacts to aquatic habitats and fish for the duration of the Center Master Plan. These impacts would not be significant because aquatic habitats and wildlife have proved resilient in the face of these environmental stresses over the</td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Biological Resources (continued) | duration of the Center Master Plan. These impacts would not be significant because aquatic habitats and wildlife have proved resilient in the face of these environmental stresses over the past 50 years.
• Would add incrementally and cumulatively to the impacts of numerous other factors affecting the wildlife and aquatic species of KSC.
• With the exception of the Florida scrub-jay, overall cumulative impacts on wildlife would be long-term, of medium extent and moderate magnitude, but not significant.
• Because of combined habitat loss and fragmentation, potential cumulative impacts on the Florida scrub-jay could be adverse and significant.
• Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread, and possibly significant.
• Could disrupt ongoing turtle and endangered species bird nesting monitoring and studies due to the potential for increased operations and related beach closures. | past 50 years.
• Would add incrementally and cumulatively to the impacts of numerous other factors affecting the wildlife and aquatic species of KSC.
• With the exception of the Florida scrub-jay, overall cumulative impacts on wildlife would be long-term, of medium extent and moderate magnitude, but not significant.
• Because of combined habitat loss and fragmentation, potential cumulative impacts on the Florida scrub-jay could be adverse and significant.
• Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread, and possibly significant.
• Could disrupt ongoing turtle and endangered species bird nesting monitoring and studies due to the potential for increased operations and related beach closures. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources (continued)</td>
<td>monitoring and studies due to the potential for increased operations and related beach closures.</td>
<td>• All activities under Alternative 1 that may have adverse effects on cultural resources at KSC would be managed in accordance with the KSC Cultural Resources Management Plan.</td>
<td>• Cultural resources would not be affected by construction or operations as described under the Proposed Action.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>• All activities under the Proposed Action that may have adverse effects on cultural resources at KSC would be managed in accordance with the KSC Cultural Resources Management Plan.</td>
<td>• Appropriate surveys and studies would be conducted so that the effect of the undertaking upon the cultural resources can be determined.</td>
<td>• Any existing activities or operations would occur in accordance with existing laws, regulations, and policies.</td>
</tr>
<tr>
<td></td>
<td>• As the project locations are defined, the NHPA Section 106 process would be initiated and determinations would be made for the APE and potentially impacted cultural resources.</td>
<td>• Consultations would be undertaken on a project-by-project basis with the respective SHPO or THPO and interested or affected Native American tribes.</td>
<td>• Effects on cultural resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels.</td>
</tr>
<tr>
<td></td>
<td>• Appropriate surveys and studies would be conducted so that the effect of the undertaking upon the cultural resources can be determined.</td>
<td>• Should previously undiscovered artifacts or features be unearthed during any of the proposed projects, work would be stopped in the immediate vicinity of the find, a determination of significance made, and a mitigation plan formulated.</td>
<td>• Would not have any additional impacts on cultural resources.</td>
</tr>
<tr>
<td></td>
<td>• Consultations would be undertaken on a project-by-project basis with the respective SHPO or THPO and interested or affected Native American tribes.</td>
<td>• As the project locations are defined, the NHPA Section 106 process would be initiated and determinations would be made for the APE and potentially impacted cultural resources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Should previously undiscovered artifacts or features be unearthed during any of the proposed projects, work would be stopped in the immediate vicinity of the find, a determination of significance made, and a mitigation plan formulated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impacts would be essentially the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact Topic

Cultural Resources (continued)

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Would consolidate existing NASA operations into a smaller geographic footprint.</td>
<td>● Would consolidate existing NASA operations into a smaller geographic footprint.</td>
<td>● Current land uses and their configuration at KSC would remain unchanged for the duration of the 20-year planning horizon.</td>
</tr>
<tr>
<td>● These possible land use and land cover changes would be minor to moderate in magnitude, of small extent, long-term, and beneficial.</td>
<td>● These possible land use and land cover changes would be minor to moderate in magnitude, of small extent, long-term, and beneficial.</td>
<td></td>
</tr>
<tr>
<td>● Acreage at KSC currently used for administration, open space, and operational buffer (for both conservation and public use), and support services would decrease.</td>
<td>● Acreage at KSC currently used for administration, open space, and operational buffer (for both conservation and public use), and support services would decrease.</td>
<td>● Total land and water area under jurisdiction of KSC would remain at approx. 140,000 acres. Of this total area, about 85,000 acres would continue to be owned by NASA and the remaining 55,000 acres by the State of Florida and dedicated for the exclusive use of the U. S. Government.</td>
</tr>
<tr>
<td>● No change to acreage associated with water or recreation - as distinct from the Operational Buffer/Public Use category, which may also be used for recreation, but which, as noted above, is slated to decrease.</td>
<td>● No change to acreage associated with water or recreation - as distinct from the Operational Buffer/Public Use category, which may also be used for recreation, but which, as noted above, is slated to decrease.</td>
<td>● Because there would be no change to existing land uses, there would be no additional impacts on this resource.</td>
</tr>
<tr>
<td>● Acreage currently used for Assembly, Testing, and Processing; Central Campus; Horizontal Launch and Landing; Launch Operations and Support; Public Outreach; Renewable Energy; Research and Development; Seaport; Utility Systems; Vertical Launch; and Vertical Landing would increase.</td>
<td>● Acreage currently used for Assembly, Testing, and Processing; Central Campus; Horizontal Launch and Landing; Launch Operations and Support; Public Outreach; Renewable Energy; Research and Development; Seaport; Utility Systems; Vertical Launch; and Vertical Landing would increase.</td>
<td></td>
</tr>
<tr>
<td>● As implementation of the CMP Update occurs, NASA would work closely with USFWS and</td>
<td>● As implementation of the CMP Update occurs, NASA would work closely with USFWS and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Land Use | NPS to determine the appropriate methods for, locations of, and mitigations pertaining to projects within KSC, MINWR, and CANA.

- Due to the proposed changes, construction, and demolition activities that would occur, and BMPs that would be followed, in conjunction with the implementation of all projects, impacts to land use are anticipated to be of minor to moderate, depending on the acreage impacted, the land cover to be changed, and the number or type of projects to be carried out in that area.

- Impacts are anticipated to be of small to medium extent, long-term, and possible.

- Overall cumulative impacts to land use over the coming several decades would likely be moderate in magnitude. | NPS to determine the appropriate methods for, locations of, and mitigations pertaining to projects within KSC, MINWR, and CANA.

- Due to the proposed changes, construction, and demolition activities that would occur, and BMPs that would be followed, in conjunction with the implementation of all projects, impacts to land use are anticipated to be of minor to moderate, depending on the acreage impacted, the land cover to be changed, and the number or type of projects to be carried out in that area.

- Impacts are anticipated to be of small to medium extent, long-term, and possible.

- Overall cumulative impacts to land use over the coming several decades would likely be moderate in magnitude. | Overall, impacts from Alternative 1 would be very similar to those of the Proposed Action, but somewhat less pronounced, because the two proposed seaports would not be built and the horizontal launch and landing area north of Beach Road might not be built. Moreover, new |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| **Land Use** (continued) | - Would result in the continuation of many of the modes of transportation presently occurring at KSC but potentially in greater amounts.
 - Short- and long-term minor adverse effects would be expected.
 - Short-term increases in traffic would result from construction worker commutes during construction and demolition activities.
 - Long-term effects would be primarily due to additional worker commutes and changes in traffic patterns near more centralized activities at KSC.
 - Increased traffic volumes and changes in traffic patterns, and changes in both vertical and horizontal launch activities would have minor effects, and there would be some long-term beneficial effects from upgrades in transportation infrastructure.
 - The Proposed Action is not expected to have appreciable changes in the overall traffic volume at KSC; | - Would result in the continuation of many of the modes of transportation presently occurring at KSC but potentially in greater amounts.
 - Short- and long-term minor adverse effects would be expected.
 - Short-term increases in traffic would result from construction worker commutes during construction and demolition activities.
 - Long-term effects would be primarily due to additional worker commutes and changes in traffic patterns near more centralized activities at KSC.
 - Increased traffic volumes and changes in traffic patterns, and changes in both vertical and horizontal launch activities would have minor effects, and there would be some long-term beneficial effects from upgrades in transportation infrastructure.
 - Alternative 1 is not expected to have appreciable changes in the overall traffic volume at KSC; | - Would result in no changes in the impact to traffic and transportation.
 - KSC operations and the current levels of activities would continue without changes, and traffic and transportation would remain unchanged when compared to existing conditions. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>volume at KSC; however, some components could affect the LOS at intersections or roadways both on and off the facility.</td>
<td>however, some components could affect the LOS at intersections or roadways both on and off the facility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• With one important exception, the direct, indirect, and cumulative impacts of Alternative 1 would be like those of the Proposed Action.</td>
<td>• Exception is that under Alternative 1, two proposed new seaports that are part of the Proposed Action would not be constructed and operated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Exception is that under Alternative 1, two proposed new seaports that are part of the Proposed Action would not be constructed and operated.</td>
<td>• In this respect, Alternative 1 would be like the No Action Alternative.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In this respect, Alternative 1 would be like the No Action Alternative.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>• KSC would continue to be a retail electricity, natural gas, and fuel oil customer.</td>
<td>KSC would continue to be a retail electricity, natural gas, and fuel oil customer.</td>
<td>Utility systems would continue to age and would require upgrades or replacements as they become less efficient or fail.</td>
</tr>
<tr>
<td></td>
<td>• Construction of new facilities or sites within KSC would require the construction of new utilities rights-of-way and installation of new utility lines or extensions for power, water, and telecommunications.</td>
<td>Construction of new facilities or sites within KSC would require the construction of new utilities rights-of-way and installation of new utility lines or extensions for power, water, and telecommunications.</td>
<td>However, current utility systems and their configuration at KSC would remain relatively unchanged aside from regular maintenance for the duration of the 20-year planning horizon (2012-2032).</td>
</tr>
<tr>
<td></td>
<td>• Depending on the location and size of the systems to be installed or expanded, the land clearing, trenching, excavation, and other activities associated</td>
<td>Depending on the location and size of the systems to be installed or expanded, the land clearing, trenching, excavation, and other activities associated</td>
<td>The affected environment as described in this resource</td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Utilities (continued)</td>
<td>with the preparation of ROWs and installation of utility lines could have direct and indirect environmental impacts.</td>
<td>with the preparation of ROWs and installation of utility lines could have direct and indirect environmental impacts.</td>
<td>section would not be affected by the construction or operations described under the Proposed Action.</td>
</tr>
<tr>
<td></td>
<td>• Because a large portion of the KSC site is already developed, impacts from new and utility systems would not be as substantial as they may be if the site were still pristine, undeveloped land. Additionally, over time, the site as a whole may actually consume less energy and water due to the achievement of greater efficiency and right-sizing under the proposed CMP.</td>
<td>• Because a large portion of the KSC site is already developed, impacts from new and utility systems would not be as substantial as they may be if the site were still pristine, undeveloped land. Additionally, over time, the site as a whole may actually consume less energy and water due to the achievement of greater efficiency and right-sizing under the proposed CMP.</td>
<td>• Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels.</td>
</tr>
<tr>
<td></td>
<td>• Overall, impacts from the installation and expansion of utility systems at KSC under the Proposed Action are anticipated to be minor to moderate and of small to medium extent.</td>
<td>• Overall, impacts from the installation and expansion of utility systems at KSC under Alternative 1 are anticipated to be minor to moderate and of small to medium extent.</td>
<td>• Individual actions conducted as part of the Proposed Action impacting utilities may proceed, but would have to do so after environmental assessment under separate environmental documentation.</td>
</tr>
<tr>
<td></td>
<td>• Development at and near the site by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS may spur further utility needs in the local or regional area, which could create further impacts to soils, water resources, biological resources, and to the local</td>
<td>• Development at and near the site by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS may spur further utility needs in the local or regional area, which could create further impacts to soils, water resources, biological resources, and to the local</td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Utilities | community as a result of noise or visual disturbances during installation of utility corridors/systems. The capacity of regional utility service providers could potentially be exceeded.
 • Impacts could be moderate, of medium extent, long-term, and possible. | community as a result of noise or visual disturbances during installation of utility corridors/systems. The capacity of regional utility service providers could potentially be exceeded.
 • Impacts could be moderate, of medium extent, long-term, and possible.
 • Direct, indirect and cumulative impacts of Alternative 1 would be very similar to those of the Proposed Action, but on a somewhat smaller scale. | No Action would occur to Brevard or Volusia counties.
 • Since ongoing activities would be substantially the same as those already occurring, no significant additional change in community character and setting would be anticipated.
 • Existing conditions would remain substantially unchanged and have no effect on the populations of concern.
 • There would be no change to population, housing, |
| Socioeconomics | • Overall, the direct, economic impacts as a result of the Proposed Action would be beneficial but not significant.
 • Would potentially create beneficial impacts of minor to moderate magnitude due to the creation of jobs and labor income, most of which would occur during 2016 as part of the Development Program.
 • Extent of impacts would be medium (localized), since most of the jobs would be filled by area residents.
 • Indirect and long-term impacts from non-NASA (second and | • Overall, the direct, economic impacts as a result of Alternative 1 would be beneficial but not significant.
 • Would potentially create beneficial impacts of minor to moderate magnitude due to the creation of jobs and labor income, most of which would occur during 2016 as part of the Development Program.
 • Extent of impacts would be medium (localized), since most of the jobs would be filled by area residents.
 • Indirect and long-term impacts from non-NASA (second and | |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Socioeconomics (continued) | third priority) projects on the local economy depend on external factors such as interest and financial commitment from non-NASA entities.
- In the long-term, with KSC having leveraged its position as a multi-user spaceport and positioned itself to attract new tenants, indirect economic impacts would be beneficial and significant.
- Future employees from non-NASA projects at KSC would represent new purchasing power that would support additional jobs and payroll at local retail and service establishments in the ROI.
- There is a larger multiplier effect associated with the consumer spending of employees directly supported by KSC (though these future employees would not directly be employed by NASA). Through this spending, the Proposed Action could indirectly support thousands of indirect and induced jobs. | third priority) projects on the local economy depend on external factors such as interest and financial commitment from non-NASA entities.
- In the long-term, with KSC having leveraged its position as a multi-user spaceport and positioned itself to attract new tenants, indirect economic impacts would be beneficial and significant.
- Future employees from non-NASA projects at KSC would represent new purchasing power that would support additional jobs and payroll at local retail and service establishments in the ROI.
- There is a larger multiplier effect associated with the consumer spending of employees directly supported by KSC (though these future employees would not directly be employed by NASA). Through this spending, Alternative 1 could indirectly support thousands of indirect and induced jobs. | employment, income characteristics, economic activity, taxes and revenues, or quality of life conditions.
- Fluctuations or changes would occur at rates consistent with historical trends. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomics</td>
<td>• Changes in KSC’s land use, actions to meet KSC’s mission and core competencies, and future development, transportation facilities, and activities would have both adverse and beneficial impacts on recreational resources and ecosystem services. Long-term consolidation of support services and expansion of existing facilities would create impacts of lesser magnitude compared to the construction of new facilities on pristine land, since infrastructure such as access roads and utilities have already been constructed. • Development of horizontal launch infrastructure could hinder or delay access to Playalinda Beach; construction activities would contradict its natural attributes that contribute to its beauty and aesthetic quality, or the cultural services it provides.</td>
<td>• Changes in KSC’s land use, actions to meet KSC’s mission and core competencies, and future development, transportation facilities, and activities would have both adverse and beneficial impacts on recreational resources and ecosystem services. Long-term consolidation of support services and expansion of existing facilities would create impacts of lesser magnitude compared to the construction of new facilities on pristine land, since infrastructure such as access roads and utilities have already been constructed. • Might not hinder or delay access to Playalinda Beach because launch and landing facilities might not be constructed north of Beach Road. • Future development of two seaports would not occur, so that associated impacts on recreation</td>
<td>• Land use would not change on Operational Buffer and Public Use areas. • Without future development of horizontal launch and vertical landing facilities, vertical launch pads, and seaports, the value of ecosystem services at CANA and MINWR would not change (or would fluctuate with market forces). • The continued increase in visitor numbers, as well as urban development of the area surrounding the national seashore, will likely degrade visitor experience and the uncrowded beach and lagoon experience at CANA. • With more users, noise levels and the demand for services and facilities will likely increase, as well as</td>
</tr>
<tr>
<td>Recreation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Topic</td>
<td>Proposed Action</td>
<td>Alternative 1</td>
<td>No Action</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Recreation (continued) | - Launch and landing activities would likely generate intermittent, adverse effects on the visitor experience due to beach closures, and would not exceed the threshold of significance.
- Future development of two seaports could include the removal of saltwater marsh or mangroves, which would hinder natural flood control, degrade finfish and shellfish spawning grounds and nurseries, impact boating and fishing experiences, and further impact the Florida manatee with the introduction of motorized boating.
- Adverse impacts of the seaports to ecosystem services would occur in both the short- and long-term and could be significant.
- Development north of Beach Road associated with the Proposed Action (vertical landing and horizontal launch and landing facilities) would have adverse, long-term effects on recreation opportunities at Playalinda Beach and CANA.
- Negative impacts to Playalinda would also mean adverse impacts to Bio Lab Road and adverse would be avoided.
- Potential cumulative impacts including the proposed Shiloh complex would include adverse effects on visitor experience, access, hunting and fishing activities, and wildlife observation at MINWR, as well as negative impacts to recreation at CANA.
- Local population growth, climate change, and sea level rise will likely have adverse long-term effects. | - Sea level rise and erosion from climate change, or the need to protect certain areas or species, may alter visitor access to certain parts of CANA and MINWR.
- Visitation for birding and fishing may change if new species shift northward; or extant species move northward or have dramatic declines in population, as might occur with the temperature-sensitive manatee. | - the likelihood of resource damage. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Recreation | • Impacts to access to Eddy Creek Boat Ramp and Mosquito Lagoon (MINWR).
• Potential cumulative impacts including the proposed Shiloh complex include adverse effects on visitor experience, access, hunting and fishing activities, and wildlife observation at MINWR, as well as negative impacts to recreation at CANA.
• Local population growth, climate change, and sea level rise will likely have adverse long-term effects. | • Neither Brevard County nor Volusia County constitutes an environmental justice population because neither county has more than 50 percent minorities nor a substantially higher percentage of minorities than the state.
• Disproportionate impacts to minorities in both Brevard and Volusia Counties would therefore be negligible.
• Brevard County and Volusia County do not constitute an environmental justice population since poverty levels coupled with median household income levels are lower or comparable with the state.
• Neither Brevard County nor Volusia County constitutes an environmental justice population because neither county has more than 50 percent minorities nor a substantially higher percentage of minorities than the state.
• Disproportionate impacts to minorities in both Brevard and Volusia Counties would therefore be negligible.
• Brevard County and Volusia County do not constitute an environmental justice population since poverty levels coupled with median household income levels are lower or comparable with the state. | • Would continue KSC’s ongoing program at the current level of operations.
• No new potential for environmental justice effects or increased risk to children would be anticipated under this alternative.
• In general, all members of the affected communities would experience both the potential beneficial and adverse effects of the No Action Alternative equally.
• Minority or low-income individuals would unlikely experience high or severe adverse effects under this alternative. |
<table>
<thead>
<tr>
<th>Impact Topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
<th>No Action</th>
</tr>
</thead>
</table>
| Environmental Justice and Protection of Children | rest of Florida.
• Disproportionate impacts to the health and safety of children in Brevard and Volusia counties would not occur. | rest of Florida.
• Impacts of Alternative 1 would be virtually identical to those of the Proposed Action.
• Disproportionate impacts to the health and safety of children in Brevard and Volusia counties would not occur. | disproportionate effects from the actions to be taken under this alternative.
• Disproportionate impacts to the health and safety of children in Brevard and Volusia counties would not occur. |
3.0 ENVIRONMENTAL ANALYSIS

This chapter of the EIS describes the environment in and around the KSC that could be affected by the Proposed Action and alternatives and analyzes the impacts of implementing each alternative on that environment. Much of the information here is derived from the most recent Environmental Resources Document (NASA, 2010a, 2015), a report which contains comprehensive data on the natural resources, environmental features, and programs at KSC.

3.1 Methodology

The interdisciplinary study team (see “Chapter 6. List of Preparers”) followed a structured process to analyze the potential environmental impacts, or effects, resulting from the No Action, Proposed Action, and Alternative 1. This procedure, called the cause-effects-questions (C-E-Q®) process, is described in the text box below.

<table>
<thead>
<tr>
<th>Causes-Effects-Questions: A Structured Analytic Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Identify the specific activities, tasks, and subtasks involved in the proposed action(s) and alternative(s).</td>
</tr>
<tr>
<td>Step 2: For each specific activity, task, and subtask, determine the full range of direct effects that each could have on any environmental resource. For example, removing vegetation could cause soil erosion.</td>
</tr>
<tr>
<td>Step 3: For each conceivable direct effect, identify which further effects could be caused by the direct effects. For example, soil erosion could cause stream sedimentation, which could harm or kill aquatic macroinvertebrates, which could diminish the food supply for fish, leading to decreased fish populations. This inquiry can identify multisteped chains of potential causes and effects.</td>
</tr>
<tr>
<td>Step 4: Starting at the beginning of each chain of causes and effects, work through a series of questions for each potential effect:</td>
</tr>
<tr>
<td>• Would this effect actually occur from this project? If not, why not?</td>
</tr>
<tr>
<td>• What would preclude it from happening?</td>
</tr>
<tr>
<td>• If the effect cannot be ruled out, characterize which types of data, other information, and analyses are needed to determine the parameters of the effect, including its extent, duration, and intensity.</td>
</tr>
<tr>
<td>• Identify the sources from which the data are to be obtained.</td>
</tr>
<tr>
<td>Step 5: Gather the data and conduct the analyses identified by the above steps, utilizing only relevant information.</td>
</tr>
<tr>
<td>Step 6: Document the results of this study process.</td>
</tr>
</tbody>
</table>
Using this process, both direct and indirect effects that could occur as a result of implementing the two action alternatives were identified. As mentioned above, direct effects are immediate impacts caused by an action at approximately the same time and place as the action. Indirect effects are impacts caused by the action(s) that occur at some distance in space and/or time from the action, or, as described above, by means of a longer chain of cause-and-effect linkages.

Environmental Impact Statement Significance Criteria

A project such as the proposed Kennedy Space Center Master Plan can have a wide variety of impacts on different components of the environment. The importance, or “significance,” of each of these diverse impacts depends on several factors. Some of these factors are matters of objective fact. For example, if a Federal law would clearly be violated by any aspect of the action alternatives, then that would obviously be a significant impact. Other factors affecting significance are matters of judgment, such as the importance of losing some amount of wildlife habitat. The Council on Environmental Quality (CEQ) regulations on NEPA provide a list of factors to be considered in determining impact significance. These factors are presented in the text box at the right.

The EIS study team used an assessment methodology that combines these multiple factors into an overall assessment of significance. During the planning stage of the EIS study, the study team reviewed similar projects and documentation to ascertain the activities associated with the action alternatives, and the types of impacts they could cause. Research was supplemented by professional judgment concerning impacts of typical concern for any large construction project. A preliminary environmental evaluation diagram (i.e., the C-E-Q diagram) which lists the potential impacts for that activity, was developed for each activity associated with the alternatives.

Factors considered in the impact analysis and in determinations of significance include:

CEQ Regulations on Significance
(40 CFR 1508.27)

The rating of an impact as “significant” in NEPA requires consideration of both the context and intensity of the impact.

Context: The significance of an action must be analyzed in several contexts, including society as a whole, the affected region, the affected interests, and the locality. Both short- and long-term effects on an action should be analyzed.

Intensity: Intensity refers to the severity of an impact. In evaluating the intensity of an impact of the proposed action, the following should be considered:

- Impacts that may be both beneficial and adverse;
- Effects on human health and safety;
- Unique characteristics of the geographic area;
- Highly controversial effects;
- Highly uncertain or risky effects;
- Potential for the action to set a precedent for future actions with significant effects;
- Cumulative effects;
- Adverse effects on significant scientific, cultural, or historic resources;
- Adverse effects on a threatened or endangered species or its habitat; and
- Whether the action violates or threatens a Federal, State, or local law or requirement.
• Magnitude of the impact (how much);
• Duration or frequency of the impact (how long or how often);
• Extent of the impact (how far);
• Likelihood of the impact occurring (probability); and
• Precedence and uniqueness of the impact (e.g., unique setting, unprecedented impacts, uncertain impacts, and controversiality).

For these factors, the team identified several useful levels of that factor, as shown below:

Magnitude:
- major
- moderate
- minor
- negligible

Duration:
- permanent
- long term
- medium term (intermittent)
- short term

Areal Extent:
- large
- medium (localized)
- small (limited)

Likelihood:
- probable
- possible
- unlikely

The team then identified which combinations of these factors would constitute various overall ratings of significance. Given this general structure, applied to all types of impacts on all environmental resources, each member of the study team then determined which of these terms best demonstrate the level of impact, and the significance or non-significance of that impact.

For the fifth major factor presented above—Precedence and Uniqueness—the study team developed a set of definitions, based on intensifying factors, for each level that are applicable to impacts in essentially all resources areas. In other words, no resource-specific definitions are needed for intensity. These definitions are as follows:

Severe:
Impacts occur in such close proximity to national parks, properties eligible for the National Register of Historic Places, or national historic landmark sites, or other especially valued, unique, or protected sites, that the valued features of those nearby sites are severely jeopardized;

OR

Impacts are completely unprecedented; no similar impacts have ever been known to occur;

OR
The types, extent, or probability of the impacts cannot be reasonably predicted;

OR

There is substantial and sustained dispute among subject matter experts, agencies, organizations, and/or citizens about the nature or importance of the impacts.

Moderate:
Impacts would occur at sufficient distance from any protected site that the valued features would be perceptibly altered but not severely compromised or jeopardized;

OR

There is moderate confidence in the accuracy of the predictions as to types, extent, and likelihood of the impacts;

OR

There is moderate dispute among subject matter experts, agencies, organizations, and/or citizens about the nature or importance of the impacts.

Slight:
Impacts would occur at sufficient distance from any protected site that the valued features would be imperceptibly altered;

OR

The types, extent, or probability of the impacts can be reasonably predicted with only slight uncertainty;

OR

There is very limited dispute among subject matter experts, agencies, organizations, and/or citizens about the nature or importance of the impacts.

With this structure established for this study, the team then conducted the EIS study. Through the use of this approach, diverse impacts will be assessed on a common footing. If a biological impact is rated by the study team as “very significant,” the team intends that rating to have approximately the same meaning as a “very significant” impact rating in any other resource area; however, depending on the type of action and its setting and context, some similarly rated impacts would in fact be weighted differently by the public and decision makers.

As indicated above, assessing significance does involve discretion and professional judgment, as well as some degree of subjectivity as to what to value and how much to value it, and this approach does not remove that element from the process. What this method does is organize the analysts’ judgment, and make the bases for their judgment more explicit and more uniform. Accordingly, the study team does not present their assessments as indisputable facts, but rather as the considered judgments of the professional team based on the explicit factors and considerations as described here.
Impacts determined to be “below significant” or “insignificant” are not dismissed as unimportant or nonexistent. Rather, these impacts, while adverse (or beneficial, as the case may be) are not considered to have crossed the threshold of significance.

Definitions

Discussions of environmental consequences in the following sections utilize a general vocabulary including some of the terms and definitions below:

Types of Impact

Beneficial – A positive change in the condition or appearance of the resource, or a change that moves the resource toward a desired condition.

Adverse – A change that moves the resource away from a desired condition or detracts from its appearance or condition.

Direct – An effect that is caused by an action and occurs in the same time and place.

Indirect – An effect that is caused by an action but is later in time or farther removed in distance, but is still reasonably foreseeable.

Duration of Impact

Permanent – Impact would last indefinitely.

Long term – Impact would likely last more than 2 years, or over the lifetime of the project and possibly longer, exceeding the project lifetime.

Medium term – Impact would extend past the transition phase, or construction phase for future developments, but would not last more than 5 years, at most.

Intermittent – Impact would not be constant or continuous but may last indefinitely.

Short term – Impact would occur during a transition phase only, or in the case of potential future developments, during the site preparation and construction phases only. Once these phases have ended, resource conditions are likely to return to pre-transition/construction conditions.

Extent of Impact

Large – Impacts would affect the resource on a regional level, extending well past the immediate project site.

Medium or Localized – Impacts would affect the resource only on the project site or its immediate surroundings, and would not extend into the region.

Small or Limited – Impacts would affect the resource over a fraction of the project site.
Magnitude of Impact

Major – Substantial impact or change in a resource area that is easily defined, noticeable, and measurable, or exceeds a standard.

Moderate – Noticeable change in a resource occurs, but the integrity of the resource remains intact.

Minor – Change in a resource area occurs, but no substantial resource impact results.

Negligible – The impact is at the lowest levels of detection—barely measurable and with no perceptible consequences.

Likelihood of Impact

Probable – More likely to occur than not, i.e., approximately 50 percent likelihood or higher.

Possible – Some chance of occurring, but probably below 50 percent.

Unlikely – A non-zero but very small likelihood of occurrence.

3.2 Past, Present, and Reasonably Foreseeable Future Projects

This section describes projects, actions, and trends considered in the analysis of cumulative impacts. Cumulative impacts are defined by the CEQ regulations in 40 Code of Federal Regulations (CFR) 1508.7 as “the impact on the environment which results from the incremental impact of the [proposed] action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such actions. Cumulative impacts can result from individually minor, but collectively significant, actions taking place over a period of time.”

Cumulative impacts include the direct and indirect impacts of a project together with the reasonably foreseeable future actions of other projects. According to CEQ’s cumulative impacts guidance, the cumulative impact analysis should be narrowed to focus on important issues at a national, regional, or local level. The analysis should look at other actions that could have similar effects and whether a particular resource has been historically affected by cumulative actions.

3.2.1 General Growth and Development Since the Founding of KSC

At least until the recession that began in 2008, both Volusia and Brevard counties have witnessed rapid population growth and economic development since NASA’s Launch Operations Center and the portions of CCAFS that were used by NASA were renamed the John F. Kennedy Space Center in 1963. Brevard County’s population almost quadrupled in the 30 years from 1960 to 1990, while Volusia County’s nearly tripled in that same time period (Table 3.2-1). Each county
grew by more than 100,000 residents from 1990 to 2010. Growth has slowed in both counties since the onset of the “Great Recession” toward the end of the first decade in the new century, which hit Florida especially hard.

Table 3.2-1. Population growth in Brevard and Volusia counties, 1960-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Brevard County</th>
<th>% growth in previous period</th>
<th>Volusia County</th>
<th>% growth in previous period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>111,435</td>
<td>371%</td>
<td>125,319</td>
<td>69%</td>
</tr>
<tr>
<td>1970</td>
<td>230,006</td>
<td>106%</td>
<td>169,487</td>
<td>35%</td>
</tr>
<tr>
<td>1980</td>
<td>272,959</td>
<td>19%</td>
<td>258,762</td>
<td>53%</td>
</tr>
<tr>
<td>1990</td>
<td>398,978</td>
<td>46%</td>
<td>370,712</td>
<td>43%</td>
</tr>
<tr>
<td>2000</td>
<td>476,320</td>
<td>19%</td>
<td>443,343</td>
<td>20%</td>
</tr>
<tr>
<td>2010</td>
<td>543,376</td>
<td>14%</td>
<td>494,593</td>
<td>12%</td>
</tr>
<tr>
<td>2013</td>
<td>550,823</td>
<td>1%</td>
<td>500,800</td>
<td>1%</td>
</tr>
</tbody>
</table>

Source: USCB, 2015

Greater populations in the two counties into which KSC extends tend to signify greater effects on the local environment. Higher populations and associated development, especially within the watersheds discharging into the Mosquito Lagoon and Indian River, would increase the number of source and non-point sources of water pollution into these important waterbodies, including nutrients like phosphorus and nitrogen, urban runoff, sediments, and a variety of contaminants. Higher population would also mean higher mobile and non-mobile sources of criteria pollutant emissions to the local airshed. Higher populations and rapid population growth are also associated with greater levels of economic activity, traffic, noise, and use of recreational sites, including Merritt Island National Wildlife Refuge, Canaveral National Seashore, Mosquito Lagoon and the Indian River.

While fewer jobs at KSC since the termination of the Shuttle Program have also resulted in slower population growth in the surrounding communities, given overall background demographic trends in Florida both counties are expected to continuing growing substantially in the future, albeit at a somewhat slower rate than in the latter half of the 20th century. By 2040, Brevard County is projected to have 668,020 residents (an increase of more than 100,000 from the population at present), and Volusia County is projected to have 591,980 residents, an increase of nearly 100,000 from the present (EDR, 2015).

These projected population increases will likely be associated with increases in paved and impervious surfaces, greater peak storm runoff, more non-point sources and higher pollutant loadings, more traffic, and greater visitation to and use of recreational facilities and natural areas in and around KSC.

3.2.2 Proposed Shiloh Launch Complex

Space Florida is an Independent Special District of the State of Florida. It was created by Chapter 331, Part II, Florida Statutes, for the purposes of promoting the growth and development of a sustainable and world-leading space industry in Florida (Space Florida, 2010). Space Florida is proposing to develop a non-Federal launch site at the northern edge of KSC that would be both State-controlled and State-managed. Its goal is to provide launch site options other than
Federal installations/ranges. Under a Proposed Action that is now the subject of an EIS being prepared by the Federal Aviation Administration (FAA), and for which NASA is a cooperating agency, Space Florida would construct and operate a commercial space launch site – known as the Shiloh Launch Complex – consisting of two vertical launch facilities and two off-site operations support areas (FAA, 2014).

The proposed Shiloh Launch Complex would provide up to 24 launches per year (12 launches per vertical launch facility), in addition to up to 24 static fire engine tests or wet dress rehearsals per year (12 static fire engine tests or wet dress rehearsals per vertical launch facility). Launches would include liquid fueled, medium- to heavy-lift class orbital and suborbital vertical launch vehicles. All launches would be conducted to the east over the Atlantic Ocean. The first stage of the launch vehicle could return to and land at the proposed Shiloh Launch Complex or it could land in the Atlantic Ocean (FAA, 2015).

The FAA is the lead federal agency in the preparation of the proposed Shiloh Launch Complex EIS. The U.S. Army Corps of Engineers, NASA, USFWS, NPS, and the Florida Department of State, Division of Historical Resources, State Historic Preservation Office are all serving as cooperating agencies (FAA, 2015).

3.2.3 Proposed Port Canaveral Rail Extension

The Canaveral Port Authority (CPA) intends to file a request with the Surface Transportation Board (STB) for the authority to construct and operate approximately 11 miles of new rail line to Port Canaveral in Brevard County. The proposed Port Canaveral Rail Extension would also utilize approximately 17 miles of existing rail line at KSC to connect with a main line of the Florida East Coast Railway. The proposed rail line would begin near the Port’s North Cargo Area, extend west over the Banana River, enter KSC on Merritt Island south of KARS Park, and then turn north through KSC grounds where it would connect with KSC’s existing rail line. Once the rail extension was operational, approximately three to four trains per week would use the new tracks, with the trains moving at approximately 10 miles per hour (STB, 2014).

The Surface Transportation Board determined that construction and operation of the proposed rail extension has the potential to result in significant environmental impacts; therefore, the Board’s Office of Environmental Analysis (OEA) determined that preparation of an EIS was appropriate, pursuant to NEPA; scoping began in October 2014.

On November 9, 2015, OEA granted CPA’s request to temporarily suspend its environmental (NEPA) review of the rail extension while CPA and a new project partner conduct a feasibility study of a potential rail alternative through the CCAFS for possible inclusion in the EIS (STB, 2015; Johnson, 2016).
3.3 Soils and Geology

3.3.1 Affected Environment

3.3.1.1 Soils

Soil is a collective term for the inorganic and organic substrate covering bedrock in which vegetation grows and a multitude of organisms reside. Soil resources provide a foundation for both plant and animal communities by establishing a substrate for plant growth and vegetative cover for animal habitat and feeding. These resources are equally important in both terrestrial and aquatic environments. Soils are surveyed nationwide by county.

Although the soil mantle varies widely from place to place, all soils share common traits. They are all composed of minerals, organic matter, living organisms, water, and air in varying proportions, depending on the type of soil. Soils form as the result of processes at work on materials deposited or accumulated by geological processes. Soil properties at any given site are determined by five factors: (1) physical and mineralogical composition of the parent material, (2) climate under which the soil material accumulated and has existed since accumulation, (3) plant and animal life atop and within the soil, (4) topography, or the “lay of the land,” and (5) length of time that the forces of soil formation have acted on the parent material (NRCS, no date).

The system of soil classification in use today has six categories. Beginning with the broadest, these are: order, suborder, great group, subgroup, family and series. A series consists of soils that formed in a particular kind of material and have horizons (horizontal layers) that, except for texture of the surface soil or of the underlying substratum, are similar in differentiating characteristics and in arrangement within the soil profile. Among these characteristics are color, texture, structure, reaction, consistence, and mineral and chemical composition. A soils complex is a mapping unit of two or more kinds of soil occurring in such an intricate pattern that they cannot be shown separately on a soil map at the selected scale of mapping and publication. A soil association is a group of soils geographically associated in a characteristic repeating pattern and defined and delineated as a single mapping unit (SCS, 1980).

The soils at KSC were mapped by the Soil Conservation Service (now the Natural Resources Conservation Service or NRCS) and its Florida partners in the soil surveys for Brevard County (SCS, 1974) and Volusia County (SCS, 1980). Fifty-eight soil series and land types occur at KSC, even though Merritt Island is a relatively young landscape and one formed from coastal plain deposits (NASA, 2010a, 2015). Some differences in soil parent material do occur. In particular, soils that formed in deposits over limestone, coquina, or other alkaline material differ greatly in properties from those formed in sand.

Coquina
Coquina (Spanish for ‘cockle’) is a sedimentary rock, that is, one formed from sediments deposited in the ocean. It is composed entirely or almost entirely of transported, abraded, sorted and cemented shell fragments. The shells are made of the mineral calcite, that is, calcium carbonate (CaCO₃), and the shell makers are mollusks, trilobites (a now-extinct class of marine arthropods), brachiopods, or other invertebrates.
Textural differences in parent material such as that between loam or clay material and sand also influence soil properties.

The primary source of parent material for KSC soils is sands of mixed terrestrial and biogenic (biological) origin. The terrestrial material originated from rivers carrying sediments eroded from highly weathered Coastal Plain and Piedmont soils; these sediments consist of quartzose (a very hard mineral composed of silica) with a low content of feldspar (another common mineral). These sediments moved south along the Atlantic coast through long-shore transport and may have been reworked repeatedly. The biogenic carbonate fraction of the sand is primarily of mollusk or barnacle origin with smaller concentrations of coralline algae; some may be reworked from offshore deposits of coquina and oolitic limestone (NASA, 2010a, 2015).

Soils of the Cape Canaveral-Merritt Island complex are not all of the same age. Soils on Cape Canaveral, False Cape, and the barrier island section on the east side of Mosquito Lagoon are younger than those of Merritt Island and therefore have had less time to weather. Well-drained soil series (e.g., Palm Beach, Canaveral) in these areas still retain shell fragments in the upper layers, while those inland on Merritt Island (e.g., Paola, Pomello) do not. The presence of shell fragments affects soil nutrient levels, particularly calcium and magnesium, as well as pH (acidity). The eastern section of Merritt Island inland to about State Route 3 has a marked ridge-swale topography presumably retained from its initial formation as a barrier island; west of State Route 3, the island is flatter, without obvious ridges and swales, probably due to the greater age of this topography (NASA, 2010a, 2015).

Differences in age and parent material account for some soil differences, but on landscapes of Merritt Island with similar age, topography has a dramatic effect on soil formation. Relatively small changes in elevation cause marked differences in the position of the water table. This, in turn, influences leaching, accumulation of organic matter, and formation of soil horizons. In addition, proximity to the lagoons affects soil salinity.

Five general soil associations have been identified in the Brevard County section of KSC. These are:

- **Paola-Pomello-Astatula association** – consists of nearly level to strongly sloping, excessively to moderately drained soils that are sandy throughout the profile. In the KSC area, these soils are located on long, narrow ridges between the Indian River and the Banana River and along the Kennedy Parkway.

- **Canaveral-Palm Beach-Welaka association** – includes soils that are nearly level to gently sloping, moderately well drained to excessively drained, and sandy throughout that occur primarily on the outer barrier island and Cape Canaveral.

- **Myakka-Eau Gallie-Immokalee association** – consists of nearly level, poorly drained soils, sandy throughout to a depth of 40 in (102 cm) and loamy below; these soils are associated with flatwoods vegetation.

- **Copeland-Wabasso association** – includes soils that are nearly level, very poorly drained to poorly drained, sandy to a depth of 40 in (102 cm) and loamy below; these soils are associated with hammock vegetation.
• Salt Water Marsh-Salt Water Swamp association – consists of nearly level, very poorly drained, saline to brackish soils of variable textures; these soils are associated with salt marsh and mangrove vegetation.

Similar but differently-named soil associations have been mapped in the Volusia County section of KSC (NASA, 2010a, 2015).

The above soil associations are too generic for many purposes, but there are too many soil series and land types to address each individually. As part of a baseline characterization of soil, groundwater, surface water and sediment at KSC, 10 soil classes were developed based on similarities (NASA, 2010a, 2015). First, soils were divided into four groups: Upland, Wetland, Agricultural, and Disturbed (Table 3.3-1).

Table 3.3-1. Soil classification for the Kennedy Space Center

<table>
<thead>
<tr>
<th>Division</th>
<th>Subdivision</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland</td>
<td>Well-drained</td>
<td>Coastal</td>
<td>Recent, coastal, alkaline soils – vegetation is coastal dunes, coastal strand, or coastal scrub</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acid Scrub</td>
<td>Old, inland, acid soils – vegetation is scrub or scrubby flatwoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coquina Scrub</td>
<td>Inland, circumneutral* soils over coquina – vegetation is scrub or xeric hammock</td>
</tr>
<tr>
<td></td>
<td>Poorly-drained</td>
<td>Flatwoods</td>
<td>Acid, sandy soils – vegetation is flatwoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hammocks</td>
<td>Circumneutral to alkaline soils over coquina or limestone – vegetation is hammock</td>
</tr>
<tr>
<td>Wetland</td>
<td>Freshwater</td>
<td>Freshwater Wetland</td>
<td>Inland, freshwater soils – vegetation is freshwater marshes or hardwood swamps</td>
</tr>
<tr>
<td></td>
<td>Saline</td>
<td>Saltwater Wetland</td>
<td>Coastal, brackish to saline soils – vegetation is saltmarsh or mangroves</td>
</tr>
<tr>
<td>Agricultural</td>
<td>Scrub soil</td>
<td>Citrus Scrub</td>
<td>Active or abandoned citrus on acid or coquina scrub soils</td>
</tr>
<tr>
<td></td>
<td>Hammock soil</td>
<td>Citrus Hammock</td>
<td>Active or abandoned citrus on hammock soils</td>
</tr>
<tr>
<td>Disturbed</td>
<td>Disturbed</td>
<td>Disturbed</td>
<td>Soils modified by construction or filling</td>
</tr>
</tbody>
</table>

* “Circumneutral” soils are neither acidic nor alkaline, having a pH between 6.5 and 7.5.

Upland soils are not flooded for substantial periods, while wetland soils have standing water for substantial periods. Flooding affects organic matter accumulation, oxidation-reduction conditions, and other chemical properties of soils. Upland soils were then subdivided into well-
drained and poorly drained categories. Well-drained, upland soils were divided into three classes: 1) geologically recent, alkaline, sandy soils of coastal dunes where the vegetation is coastal dunes, coastal strand, or coastal scrub; 2) old, inland, leached, acid, sandy soils where the vegetation is oak-saw palmetto scrub or scrubby flatwoods; and 3) inland, circumneutral soils formed over coquina where the vegetation is oak-saw palmetto scrub or xeric hammock. Poorly-drained, upland soils were divided into two classes: 1) acid, sandy soils with flatwoods vegetation; and 2) circumneutral to alkaline soils formed over coquina or limestone where the vegetation is mesic hammock (NASA, 2010a, 2015). Poorly drained soils accumulate more organic matter, which forms the cation exchange capacity in these soils retaining nutrients and metals.

The primary division of wetland soils was between: 1) inland, freshwater wetlands where the vegetation was freshwater marshes or hardwood swamps; and 2) coastal, brackish to saline wetlands where the vegetation was salt marshes or mangroves.

Agricultural soils are of two types: 1) active or abandoned citrus groves on scrub soils; and 2) active or abandoned citrus on hammock soils. Disturbed soils included various types modified by construction. This group could be heterogeneous, but there was no apparent division into homogeneous subgroups.

The acreage of KSC soil classes listed in the right-most column of Table 3.3-1 is shown in Table 3.3-2. Figure 3.3-1 depicts the distribution of these soil classes at KSC.

<table>
<thead>
<tr>
<th>Class</th>
<th>Area – acres (hectares)</th>
<th>Percent of soil area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal</td>
<td>2,714.0 (1,098.3)</td>
<td>3.30</td>
</tr>
<tr>
<td>Acid Scrub</td>
<td>3,847.2 (1,556.9)</td>
<td>4.76</td>
</tr>
<tr>
<td>Coquina Scrub</td>
<td>668.2 (270.4)</td>
<td>0.81</td>
</tr>
<tr>
<td>Flatwoods</td>
<td>25,779.5 (10,432.6)</td>
<td>31.32</td>
</tr>
<tr>
<td>Hammocks</td>
<td>4,917.6 (1,990.1)</td>
<td>5.97</td>
</tr>
<tr>
<td>Freshwater Wetland</td>
<td>15,207.6 (6,154.3)</td>
<td>18.48</td>
</tr>
<tr>
<td>Saltwater Wetland</td>
<td>23,786.8 (9,626.2)</td>
<td>28.90</td>
</tr>
<tr>
<td>Citrus Scrub</td>
<td>863.1 (349.3)</td>
<td>1.05</td>
</tr>
<tr>
<td>Citrus Hammock</td>
<td>1,581.5 (640.0)</td>
<td>1.92</td>
</tr>
<tr>
<td>Disturbed</td>
<td>2,946.5 (1,192.4)</td>
<td>3.58</td>
</tr>
</tbody>
</table>

Source: NASA, 2010a, 2015

3.3.1.2 Geology

Florida has a complex geologic history with repeated periods of deposition when the Florida Plateau was submerged under the ocean and erosion when it receded. The oldest formations known to occur beneath KSC were deposited in the early Eocene Epoch (56 to 43 million years ago) in an open ocean. The sea then receded and a period of erosion ensued. In the late Eocene, the seas advanced again and limestones of the Ocala group were deposited. In the next cycle, the Hawthorn formation of calcareous clay, phosphatic limestone, phosphorite, and radiolarian clay
was deposited in the late Miocene Epoch (23 to 5.3 million years ago). Overlying these strata are unconsolidated beds of fine sand, shells, clay, and calcareous clay of late Miocene or Pliocene age. Surface strata in Brevard County are primarily unconsolidated white to brown quartz sand containing beds of sandy coquina of Pleistocene and Holocene age (NASA, 2015).

During the Pleistocene Epoch or Ice Age from 1.6 million to 13,000 years ago, repeated glaciation of the Northern Hemisphere produced dramatic fluctuations in the sea level. At the maximum of the Wisconsinian glaciation (ca. 18,000 years ago), sea levels were on the order of 100 m (over 300 feet) lower than at present, and substantial additional areas were exposed along the Atlantic and Gulf coasts, including Florida.
Figure 3.3-1. Distribution of soil classes at Kennedy Space Center

Source: NASA, 2010a, 2015
The alternating high and low sea stands of the Pleistocene and Holocene (since ca. 13,000 years ago) shaped the surface of Brevard County. The outer barrier island and Cape Canaveral formed after sea levels rose when the Wisconsinian glaciers retreated. Cape Canaveral is mapped by geologists as Holocene in age, beginning to form about 7,000 years ago. Cape Canaveral is part of a prograding barrier island complex (i.e., one that builds seaward), the result of southward growth of an original cape at the site of the present False Cape. Multiple dune ridges on Cape Canaveral suggest that alternating periods of deposition and erosion occurred. The barrier island separating Mosquito Lagoon from the Atlantic Ocean also originated about 7,000 years ago. However, its history has been marked by erosion, overwash, and landward migration rather than progradation; these processes are continuing even today. Some areas of the barrier island south of Cape Canaveral have a history of overwash, while others have been more stable (NASA, 2010a, 2015).

Merritt Island also formed as a prograding barrier island complex; the eastern edge of Merritt Island at its contact with the Mosquito Lagoon and the Banana River forms a relict cape aligned with False Cape. Multiple dune ridges apparently represent successive stages in this growth. The western portion of Merritt Island is substantially older than the east. Erosion has reduced the western side to a nearly level plain.

Lithology, stratigraphy and geologic structure are important determinants of groundwater quality, the distribution of aquifers and confining beds, and the availability of groundwater. Four distinct geologic units are characteristic of the coastal area of East-Central Florida and lie beneath KSC (Table 3.3-3). In descending order these are: Pleistocene and Recent age sands with interbedded shell layers, Upper Miocene and Pliocene silty or clayey sands, Central and Lower Miocene compacted silts and clays, and Eocene limestones (NASA, 2010a, 2015).

Lithology and Stratigraphy

Lithology refers to the general physical properties of rocks in a given area.

Stratigraphy refers to the order and relative positions of rock strata, as well as their relationship to the geologic time scale.

3.3.1.2.1 Pleistocene and Holocene (Recent) Deposits

The Pleistocene period was characterized by a wide range of sea level fluctuations. These deposits are, therefore, characterized by 35 to 45 stratigraphic feet (10.7-13.7 m) of fine-medium sands with varying amounts of shell and interbedded layers of shell deposited by long shore currents and wave action (high energy environments) and subjected to varying degrees of oxidation. The upper limits of Pleistocene deposits range from 5 to 8 ft. (1.5-2.4 m) above mean sea level (MSL) or the elevation of the Silver Bluff terrace, the youngest terrace formed as the result of the Pleistocene age sea level fluctuation. The characteristics of these Pleistocene deposits have been altered by cementation and compaction; in the upper horizons discontinuous layers of limerock hardpan, dark brown humic sandstone hardpan, silt, and clay can be found (NASA, 2010a, 2015).
3.3.1.2.2 Undifferentiated Upper Miocene and Pliocene Silts, Sands and Clays

Visually, there is little difference between the upper Hawthorn and Upper Miocene deposits. They generally occur between a top elevation of -30 ft. (9.1 m) MSL and a base elevation of -115 feet (35.0 m) MSL, and consist primarily of sands, silts, and clays with minor occurrences of limestone and shelly sands. They were deposited in shallow marine and lagoonal environments subjected to numerous sea level fluctuations, resulting in numerous interbedded, discontinuous strata of local area extent. The upper limits of these undifferentiated deposits are equivalent to the Caloosahatchee Marl Formation and in the northern edge of Merritt Island the top of the Pliocene Tamiami Formation is at approximately -87 ft. (26.5 m) MSL.

Table 3.3-3. Generalized stratigraphy at the Kennedy Space Center

<table>
<thead>
<tr>
<th>Geologic Age</th>
<th>Formation Name</th>
<th>Aquifer</th>
<th>Physical and Water-bearing Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td></td>
<td></td>
<td>Highly variable and undifferentiated deposits.</td>
</tr>
<tr>
<td>(Recent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td>Anastasia Formation</td>
<td>Surficial Aquifer System</td>
<td>Sand, shell, clay, coquina, and mixtures. Yields moderate amounts of water, depending on permeability of deposits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Tamiami Formation</td>
<td>Surficial Aquifer System</td>
<td>Interbedded limestone, coquina, sand and clay (eastern). Shell, sand, clay and cemented zones (western).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Hawthorn Formation</td>
<td>Intermediate Confining Unit</td>
<td>Sand clay, green and brown clays, and some limestones. Generally impermeable; poor water yield except for some thin shell and limestone beds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligocene</td>
<td>Suwanee Limestone</td>
<td>Floridan Aquifer System</td>
<td>Gray to cream colored, clayey, granular limestone. Poor water yields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Ocala Limestone</td>
<td>Floridan Aquifer System</td>
<td>Gray to cream colored, porous massive limestone, generally yields good quantity of water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Avon Park Limestone</td>
<td>Floridan Aquifer System</td>
<td>Cream colored to tan, porous, chalky, and hard crystalline limestone and dense dolomite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Lake City Limestone</td>
<td>Floridan Aquifer System</td>
<td>Cream colored to tan, porous, chalky, and hard crystalline limestone and dense dolomite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Oldsmar Limestone</td>
<td>Floridan Aquifer System</td>
<td>Not commonly tapped by wells.</td>
</tr>
</tbody>
</table>

Source: NASA, 2010a, 2015

A narrow band of shelly conglomerate or medium hard limestone lies within the Tamiami Formation. The contact between the undifferentiated sediments and the overlying surficial sands is conformable and gradational over approximately three stratigraphic feet (0.9 m), but is nonetheless distinct (NASA, 2010a, 2015).

3.3.1.2.3 Lower and Middle Miocene Silts and Clays

The Ocala limestone was submerged during the Miocene Epoch, at which time the Hawthorn Formation was uniformly deposited on the karst Ocala limestone surface. The top of the
Hawthorn Formation is located approximately -115 ft. (35.0 m) MSL and extends down to the Ocala limestone. It consists of calcareous clays and silts, sandy phosphatic limestone, and phosphatic clays. These massive beds of marine clays and silts are identified by varying amounts of phosphatic material (formed from residue of shallow marine life) and a dramatically high natural gamma ray signature on geophysical well logs.

Associated with this formation are at least two thin (approximately 2-3 ft. [0.6-0.9 m]), discontinuous conglomerate limestone/ sandstone beds. The upper bed, although not always present, is located near the -120 ft. (36.6 m) MSL mark and the location of the lower bed ranges between approximately -130 ft. (39.6 m) MSL and -140 ft. (42.7 m) MSL depending on the presence or absence of faulting. Its thickness depends on the extent to which the Ocala limestone surface has been eroded. The top of the Hawthorn Formation gradually changes to Upper Miocene silts and clays. The exact upper limits of the formation have not been described; however, it is assumed to be the change from firm compact sediments to looser, less consolidated materials. Numerous geophysical logs (natural gamma) indicate the diagnostic signatures of the Hawthorn Formation beginning at approximately -110 ft. (33.5 m) MSL to -120 ft. (36.6 m) MSL (NASA, 2010a, 2015).

3.3.1.2.4 Eocene Limestones

At least four limestone formations from the Eocene Epoch make up the Floridan aquifer system in the KSC area (Table 3.3-3). The upper limestones, the Ocala group, are the best defined as they have been test drilled numerous times for the design of facilities for the Manned Lunar Landing Program and have been utilized for an artesian water source. The Ocala limestone is of late Eocene age and was formed in a shallow sea environment. This limestone was later exposed to subaerial processes above sea level where it developed karst topography complete with sinks, cavities, and solution channels (NASA, 2010a, 2015).

3.3.2 Environmental Consequences Including Cumulative Impacts

Soils and geology can be altered through three processes: (1) physical degradation, such as wind and water erosion, and compaction; (2) chemical degradation such as toxification, salinization, and acidification; and (3) biological degradation, which includes declines in organic matter, carbon, and the activity and diversity of soil fauna. While there are few applicable regulations regarding soils, proper conservation principles can reduce erosion, decrease turbidity, and generally improve adjacent surface water quality.

3.3.2.1 Proposed Action

3.3.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Impacts of the Land Use Plan, Future Development Plan, and Functional Area Plans on upland and wetland soils and geology are considered in this section. Actions from these plans that could affect upland and wetland soils and geology include ground-disturbing construction of:

- Vertical launch pads and landing areas
- Horizontal launch and landing areas
- Launch operations and support areas
- Assembly, testing, and processing areas
- Utility systems areas and corridors
- Administration facilities
- Central Campus facilities
- Support Services facilities
- Public Outreach facilities
- Research and Development facilities
- Renewable energy areas

The acreage of some land use areas would increase, while others would decrease (see Table 2.1-1). Overall, the effort to reduce NASA’s footprint and consolidate operations into specific functional areas would result in an increase of 75.73 additional acres of land in use as part of the KSC complex. However, 5,850 acres that are currently part of the operational buffer, both public use and conservation components, and open space would be allocated for other land uses where soils and geology would be disturbed during development (Table 2.1-1). Concentrations of functions and uses would occur in functional areas as listed in Section 2.1.5, which would minimize impacts to soils and geology over the long-term.

Actions under the Land Use Plan, Future Development Plan, and Functional Area Plans would result in impacts on upland and wetland soils and geology from clearing, grubbing, grading, excavating, filling, etc. Ground-disturbing construction activities would occur in some areas where soils have previously been disturbed, but activities would also occur in undisturbed areas. In previously disturbed areas, adverse impacts on soils would be considered minimal as soil structure and function have already been destroyed or altered. Additionally, some areas where project activities would occur are likely to consist of fill or road base material placed during previous construction, thus there would not be any natural soils present. Where disturbance of intact natural soils may occur as a result of project activities, the impacts would be greater. These types of impacts are described below.

The use of heavy equipment would be short-term during project activities, and the degree of soil impacts would depend on the types of soils occurring onsite (disturbed vs. natural), site topography, and the size of the project area. Proposed activities may expose previously undisturbed earthen materials. If any natural soil horizons exist, they would likely be disturbed during the earthwork. Heavy equipment may compact or loosen and destroy the structure and function of the organic soil horizon and mineral soils and reduce soil moisture, potentially resulting in increased runoff and erosion. Severe soil compaction could inhibit revegetation in denuded areas.

Soil erosion from use of heavy equipment could occur as a result of ground disturbance leading to detachment of soils and transport of freshly disturbed surfaces in wind and storm flow runoff. The tires and tracks of heavy equipment may potentially erode soils and carry sediment from construction sites to paved areas, which would drain into ditches and catch basins during rain events, or cause dust in dry periods. Disturbing soils could create habitat for colonization by invasive species. Spills and leaks of hazardous materials during construction can lead to soil contamination and toxicity. Proper control of hazardous materials during construction and prompt response to spills or releases would, however, reduce this impact. Best Management
Practices (BMPs) would be implemented during project activities to prevent or reduce soil erosion into water surfaces and minimize adverse soil impacts.

Activities that do not involve heavy equipment could expose and compact soils to varying degrees in the short-term. As with use of heavy equipment, any new areas that would be repeatedly compacted by vehicles during project activities would have adverse impacts on soils. Off-road vehicular traffic can decrease soil porosity, decreasing the transfer of air and water through the soil and causing decreased vegetative productivity due to root restriction. If any natural soil horizons exist, they would likely be lost. Exposed soils would be subject to erosion until stabilized or revegetated. Rutting could occur if proper drainage is not implemented. Soil compaction could also result from foot traffic during construction activities; however, these impacts would likely be minimal and limited to the area immediately surrounding the project site.

During construction and preparation activities, topsoil should be removed and stockpiled wherever possible and reused in the area from which it was salvaged. After construction is complete, the establishment of a native vegetative cover in disturbed areas would aid in reestablishing biological activity in the soil. Other than areas where impervious surfaces are placed, it is likely that adverse impacts on soils would not occur over the long-term as mitigation actions such as topsoil replacement and re-establishment of native vegetation would help reduce erosion by facilitating site recovery.

Exposure and disturbance of soils could increase the potential for accelerated soil erosion from sites affected by construction. Disturbance of soils would impede soil development, including soil structure and profile development. Excavation, transportation, and placement of topsoil also could promote the breakdown of soil aggregates into loose soil particles, increasing the potential for wind and water erosion of stockpiled soils. Blading and/or excavation of remaining subsoil materials to achieve desired grades and soil conditions for the facilities could result in steeper slopes on exposed soils, mixing of soil materials, and the additional breakdown of subsoil aggregates. Soil biological activity (especially with mycorrhizea-root association) and nutrient cycling would be substantially reduced or eliminated during stockpiling as a result of anaerobic conditions created in deeper portions of the stockpiles.

Although stripping, stockpiling, and redistribution adversely affect soil characteristics, including alterations of soil profiles and soil structures, the benefits of using soil for revegetation outweigh the adverse effects of soil handling. Revegetation efforts would return some areas of soil disturbance to a productive state following construction, thereby reducing the duration and magnitude of impact. Loss of soil or discontinuation of natural soil development, decreased infiltration and percolation rates, decreased available water-holding capacities, breakdown of soil structures, and loss of organic material as a result of the Proposed Action would be lessened by natural soil development over the long-term.

Potential indirect effects of soil destabilization and erosion would be dust generation and off-site deposition. Wind erosion of disturbed soils could result in deposition of soil particles off-site. Off-site stream sedimentation would be minimized by the use of erosion control practices such as sediment catchment basins placed around the base of soil stockpile and dump slopes. Dust
generated by vehicular traffic would be reduced by using dust abatement techniques such as the application of wetting and binding agents on roads.

The appropriate foundation type to support the proposed new structures as part of the Proposed Action depends on many factors, including subsurface conditions, types of loads that the structure would support, environmental concerns, and surface constraints. Digging to install facility foundations would, in some cases, disturb and damage subsurface geological materials. However, such impacts would be localized and would not affect the overall geology of the area.

Impacts of proposed project activities on soils and geology would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, types of soils occurring onsite, and whether impervious surfaces would be placed over soils and geological materials. Impacts on soils and geology would be less than significant.

3.3.2.1.2 Launch, Landing, Operations and Support

Impacts of Launch, Landing, Operations and Support on soils and geology are considered in this section. Proposed Action activities that could affect soils and geology include:

- Vertical launches and landings
- Horizontal launches and landings

Other activities associated with launches and landings, such as preparation for launch, safing operations, and payload operations would not affect soils and geology as they would occur on already developed and hardened surfaces, so there would be no ground disturbance.

Vertical and horizontal launches may result in local adverse impacts on soils and geology. Impacts would result from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances based on the propellant type and characteristics). Solid rocket propellant typically consists of aluminum powder fuel, ammonium perchlorate (AP) oxidizer and a binder. The main combustion products of these fuels are solid aluminum oxide (Al₂O₃) particulate, hydrogen chloride (HCl) gas, water vapor (H₂O), nitrogen (N₂) and carbon dioxide (CO₂). Based on findings from past studies, elevated metal concentrations and changes in soil pH would be expected from such deposition within a small radius of the launch pad. Far-field deposition may be sufficiently dispersed and variable from launch-to-launch that successive launches would seldom affect the same areas.

Past studies indicate that the pH of leachate from soils exposed to near-field deposition decreased immediately post-launch; however, leachate pH recovered to pre-launch values within seven days (NASA, 2010a, 2015). Over the course of the study, a cumulative decline of 0.35 pH units in the background soil pH was noted in the highly exposed soils. With each loading of hydrochloric acid by the launch exhaust cloud, metal concentrations (e.g., aluminum, copper, iron, and zinc) increased in soil leachates due to increased metal solubility at lower pH. Between launches, as leachate pH recovered to near background levels, metal concentrations in the leachate declined, probably due to the formation of less soluble metal oxides and hydroxides, at circumneutral pH. Cation concentrations, particularly calcium and magnesium, were elevated immediately post-launch and between launches probably due in part to dissolution of shell fragments prevalent in these coastal soils. Other contaminants found in soils post-launch were benzo(a)pyrene, arsenic, and nickel.
Studies also found that in non-saline soils, there were increases in conductivity, calcium, potassium, sodium, and zinc and decreases in phosphorus, nitrogen from nitrates (NO₃), and nitrogen from ammonium (NH₄) post-launch (NASA, 2010a, 2015). In saline soils, there were increases in calcium, potassium, sodium, zinc, and phosphorus but not conductivity and decreases in ammonium nitrogen but not nitrate nitrogen. Increases in conductivity, calcium, potassium, and sodium (Na) may be due to leaching of soil material including shell fragments; increases in zinc could be from soil leaching or from deposition of material derived from paint or plating on pad structures. Soils in the impact area remained well buffered; even after many launches and soil pH was still alkaline. Since pH was still high, the aluminum deposited by the exhaust cloud was not exchangeable.

RP-1, Jet-A and LCH4 (liquid methane) can all be classified as liquid hydrocarbon propellants. These fuels commonly use Liquid Oxygen (LOX) as the oxidizer. Jet-A propellant typically contains sulfur. As carbon is a main ingredient in the fuel, hydrocarbon propellants produce a large amount of carbon dioxide and water vapor as products of combustion, which would not adversely affect soils. Other minor constituents include CO and sulfur dioxide SO₂, which could be deposited on soils and cause local impacts.

Cryogenic engines (liquid hydrogen (LH₂)/ liquid oxygen (LOX)) are in a category by themselves. Water vapor is the only product of combustion, thus there would be no impacts on soils and geology.

Propellants categorized as using liquid hydrazine fuels typically use dinitrogen tetroxide as the oxidizer. These fuels are hypergolic with the oxidizer and are very hazardous; however, when burned as fuel, the products of combustion are mostly non-hazardous. Combustion of these propellants produces mostly water vapor and nitrogen, as well as smaller quantities of carbon dioxide, carbon monoxide and nitrous oxides. The nitrogen deposited on soils could cause local impacts.

Mitigation measures could include sediment blocks in areas with outfalls outside the launch perimeter fence to prevent off-site migration of soils containing elevated metal concentrations.

The deposition of launch vehicle (LV) stages (i.e., booster rockets) or the landing of a reentry vehicle (RV) would result in an adverse impact on soils and geology in the event they are deposited on land rather than water. Soils and substrates may be compacted or otherwise disturbed by the impact of LV stages or RVs.

Overall, the effects of vertical and horizontal launches and landings on soils and geology are expected to be short-term to medium-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of soils to the launch or landing site. Impacts on soils and geology would be less than significant.

3.3.2.1.3 Future Transportation Plan

Impacts of the Future Transportation Plan on soils and geology are considered in this section. Actions from this plan that could affect soils and geology include:
• Road improvements, repair, and resurfacing
• Bridge replacement
• Parking lot repurposing or demolition
• Expansion of the Horizontal Launch and Landing capability with a new runway, facilities, infrastructure, and other airfield systems

Other actions in this Plan that would impact soils and geology would need separate NEPA analysis and would not be covered under this Programmatic EIS. These actions include development of railroads and seaports.

Activities that require construction, renovation, or replacement of facilities would have similar impacts on soils and geology as described for ground-disturbing construction in Section 3.3.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans. It is likely that actions such as road improvements or bridge replacement would impact road shoulders and other areas that have been previously disturbed, thus effects on soils and geology would be minimal. If construction occurs in larger areas that are undisturbed, such as building new runways, impacts would be much greater. Parking lot demolition would have beneficial effects if the site is then revegetated and soils allowed to recover.

Impacts of proposed project activities on soils and geology would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, types of soils occurring onsite, and whether impervious surfaces would be installed. Overall impacts on soils and geology would be less than significant.

3.3.2.1.4 Cumulative Impacts
Cumulative impacts on soils and geology at KSC would be expected from past, present, and foreseeable future activities such as road repair and construction; infrastructure development; wetland conversion; vegetation clearing; USFWS (MINWR) management activities (e.g., prescribed fire management, water level management, invasive species management, and visitor services); and NPS (CANA) management activities. Adverse impacts would include soil compaction, channelization of runoff from impervious surfaces, erosion of soils and mass movement, loss of ecological function where soils are under impervious surfaces, and land subsidence. The cumulative effect of sediment transport from neighboring projects could affect sediment deposits into streams. Adverse soils impacts associated with the Proposed Action would be small as compared to cumulative past, present, and foreseeable future effects. Cumulative impacts from the Proposed Action would vary with the nature and extent of projects, and impacts would be expected to be minor and adverse.

3.3.2.2 Alternative 1
Impacts from Alternative 1 on soils and geology would be almost the same as those described for the Proposed Action, but on a somewhat smaller scale and covering a slightly smaller area.
Under this alternative, the two proposed new seaports under the Proposed Action would be not be constructed, and thus the impacts on soils associated with these actions would not occur. Also under Alternative 1, construction of the Proposed Action’s Horizontal Launch and Landing
functional area north of Beach Road may not happen. If it were not built, impacts to soils in this undeveloped area would thus be avoided.

Cumulative impacts from Alternative 1 would be essentially the same as from the Proposed Action.

3.3.2.3 No Action Alternative

Under the No Action Alternative, soils and geology would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits and within the footprint of existing developed areas. Existing uses would continue at current levels. Effects on soils and geology from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus the No Action Alternative would not have any additional impacts on soils and geology.

3.4 Water Resources

3.4.1 Affected Environment

This section describes the water resources in and around KSC that could be affected by the Proposed Action and alternatives. Much of the information here is derived from the most recent Environmental Resources Document (NASA, 2010a, 2015), a report which contains comprehensive data on the natural resources, environmental features, and programs at KSC.

3.4.1.1 Surface Waters

The KSC is surrounded by the Atlantic Ocean and a portion of the Indian River Lagoon (IRL) system consisting of the Indian River to the west, the Banana River to the southeast, and the Mosquito Lagoon to the north (see Figure 3.4-1). This system was formed by changing sea levels and its prominent features are the southern barrier islands, the Cape Canaveral foreland formation, the western mainland ridges, and the valleys and sloughs between the ridges. The IRL and connected basins are shallow lagoons with depths averaging five feet (1.5 m) and maximum depths of 30 feet (9 m) generally restricted to dredged basins and channels.

The Indian River Lagoon (Figure 3.4-2) is a diverse, shallow-water estuary that extends along fully 40 percent of Florida’s east coast. Extending for 156 miles from Ponce de Leon Inlet in Volusia County to the southern boundary of Martin County, the lagoon is a crucial commercial and recreational fishery and economic resource. Its estimated annual economic value is $3.7 billion and it supports 15,000 full and part-time jobs, while providing recreational opportunities for 11 million people per year (SJRWM, 2013).

The lagoon runs along the entire western boundary of KSC (Figure 3.4-1). The western boundary of KSC is undeveloped and is part of the Merritt Island National Wildlife Refuge (MINWR). Most of the shoreline on KSC/MINWR is impounded with no direct runoff into the lagoon. The eastern shore of the IRL is highly developed in the area from Titusville south with many areas of point and non-point runoff (NASA, 2010a, 2015).
Figure 3.4-1. Major surface water bodies surrounding KSC
Mosquito Lagoon and the Indian River are connected by Haulover Canal and the Intracoastal Waterway. Water flow between these two systems is primarily driven by wind. Because of various man-made modifications related to the space program and mosquito control, circulation between Mosquito Lagoon and the Banana River was blocked in the early 1960s.

The Indian and Banana Rivers mix in the southern region near Eau Gallie and through a man-made canal located just south of KSC. This navigation canal accesses the Atlantic Ocean through the Port Canaveral Locks, whose oceanic waters influence surface water quality in the northern Banana River. The northernmost Banana River reaches inside KSC property and is closed to motorized boat traffic. It is part of the Merritt Island National Wildlife Refuge and its water quality is one of the best in the Indian River Lagoon System. The region of the Banana River north of the NASA Causeway includes Pintail Creek and Max Hoek Back Creek. Very little tidal fluctuation occurs here, and water movement in this area is influenced primarily by wind and evaporation (NASA, 2010a, 2015).

Banana Creek drains the area adjacent to the Space Shuttle launch pads via a canal located northwest of the VAB to the Indian River. Salinity usually increases in a westward direction, but depending on wind direction, the Indian River system can have a greater or lesser effect on Banana Creek water quality. Freshwater inputs to the estuarine system surrounding KSC include direct precipitation, stormwater runoff, discharges from impoundments, and groundwater seepage (NASA, 2010a, 2015).
The aquatic environment in this area is very biologically diverse, including the temperate Carolinian and the subtropical Caribbean zoogeographic provinces. Lagoonal waters surrounding KSC are shallow flats that support dense growths of submerged aquatic vegetation including manatee grass (*Syringodium filiformis*) (Figure 3.4-3), shoal grass (*Halodule wrightii*), widgeon grass (*Ruppia maritima*), gulf halophila (*Halophila engelmanii*) and various macroalgae such as *Gracilaria*, *Caulerpa*, *Sargassum*, *Laurencia*, *Penicillus*, *Acetabularia* and *Acanthophora*. Cool winter temperatures preclude the growth of turtle grass (*Thalassia testudinum*) in the KSC area.

![Figure 3.4-3. As its name suggests, manatee grass is a key food source for manatees](image)

Shorelines of the system near KSC are dominated by white mangrove (*Laguncularia racemosa*) and black mangrove (*Avicennia germinans*) with red mangrove (*Rhizophora mangle*) occurring in small patches; however, this region represents the northern limit of their range and winter freezes in recent decades significantly affected their populations. Fauna in the lagoon system near KSC represents both the Carolinian and subtropical provinces. Among the most common finfish and shellfish species are mullet (*Mugil cephalus*), spotted sea trout (*Cynoscion nebulosus*), red fish (*Sciaenops ocellatus*), sea catfish (*Arius felis*), and blue crab (*Callinectes sapidus*).

Subtropical species of flora and fauna are present but become more prevalent to the south of KSC. Its unique environmental setting makes KSC one of the most ecologically diverse areas in the United States (NASA, 2010a, 2015).

Sea-based transportation capability and surrounding area water accessibility are essential at KSC. Ponce de Leon Inlet is an oceanic connection to Mosquito Lagoon, located approximately 31 miles north of KSC. Port Canaveral provides an oceanic connection to the Banana River, approximately 7.5 miles south of KSC. Navigation locks within Port Canaveral virtually eliminate any significant oceanic influence on the Banana River. Sebastian Inlet, located 50
miles south of KSC, is the next southerly oceanic connection to the Indian River. The remoteness of the estuarine waters from oceanic influence and the restrictions imposed by constructed causeways minimize water circulation within the lagoon basins. Surface water movement and flushing are primarily a function of wind-driven forces, and salinity regimes are mostly controlled by precipitation, upland runoff, evaporation, and groundwater seepage.

Navigable channels including the Intracoastal and the Turning Basin access channel are excavated waterways. The Intracoastal Waterway follows the Indian River through Haulover Canal and proceeds north through Mosquito Lagoon. Dredged material from the construction of the Intracoastal Waterway and the Turning Basin access channel was typically deposited along the waterways as small islands. The Intracoastal Waterway has a variable width and a design depth of 12 ft.

The Turning Basin access channel extends from Port Canaveral north through the Banana River to the VAB area. A channel spur to Hangar AF provides navigable access for two vessels used in the retrieval of solid rocket boosters (SRBs). Public navigational access is prohibited north of the NASA Parkway East.

The Banana River, south to KARS Park, has been closed to powered vessels with the designation of the area as a manatee sanctuary (NASA, 2010a, 2015).

3.4.1.1.1 Surface Water Standards, Regulations and Permits

Surface waters at KSC include “Waters of the United States,” “Navigable Waters,” and “Waters of the State,” in which construction, discharge, or other activities are subject to a number of Federal, state and regional regulations. The Environmental Protection Agency (EPA) regulates the discharge of pollutants into navigable waters of the United States under the Federal Clean Water Act of 1977 (CWA), as amended by the Water Quality Act of 1987. EPA has adopted many regulations to implement the CWA found in Title 40 CFR. The U.S. Army Corps of Engineers (USACE) administers dredge and fill activities in navigable waters through the authority of the Rivers and Harbors Act of 1899 (RHA), and in Waters of the United States (including isolated wetlands) through Section 404 of the CWA.

3.4.1.1.1 Water Quality Standards

The CWA requires each state to adopt water quality standards. These standards are based on the use and values of waters for public water supplies, propagation of fish and wildlife, recreation, agriculture, industry and navigation (NASA, 2010a, 2015).

The EPA was designated under the CWA as the federal agency with regulatory jurisdiction over the discharge of pollutants into waters of the United States. EPA’s regulatory authority is vested in the National Pollutant Discharge Elimination System (NPDES) permit program. NPDES permits are operating permits which ensure compliance with state and federal water quality standards.

State compliance with the CWA has been delegated to the Florida Department of Environmental Protection (FDEP). Today, surface waters in Florida are designated according to five classifications based on their potential use and value:
• Class I – Potable Water Supplies
• Class II – Shellfish Propagation and Harvesting
• Class III – Recreation and Fish and Wildlife Propagation
• Class IV – Agricultural Water Supplies
• Class V – Navigation and Utility and Industrial Use

Minimum water quality standards for surface and groundwaters have been established by FDEP. A complementary water quality classification is provided by the designation of Outstanding Florida Waters (OFW). The regulatory standard for activities in OFW is no reduction of the existing ambient water quality. Additionally, numeric criteria for nutrients in the form of Total Maximum Daily Loadings (TMDLs) have been established for segments of the Indian River and Banana River Lagoons adjoining KSC. The site-specific nature of the OFW water quality standard and TMDL is designed to preclude surface water degradation (NASA, 2010a, 2015).

A Basin Management Action Plan is a blueprint for restoring impaired waters by reducing pollutant loadings to meet the allowable loadings established in a TMDL. It represents a comprehensive set of strategies (e.g., permit limits on wastewater facilities, urban and agricultural best management practices, conservation programs, financial assistance and revenue generating activities.) designed to achieve the pollutant limitations established by the TMDL. These broad-based plans are developed with local stakeholders; they rely on local input and local commitment and are adopted by Secretarial Order to be enforceable. KSC is a stakeholder in this process and borders two of the three sub-basins (North Indian River Lagoon and Banana River Lagoon) of the Indian River Lagoon Basin Management Action Plans.

3.4.1.1.2 Classification of Surface Waters at KSC

The State of Florida has classified all surface waters at and surrounding the KSC (Figure 3.4-4) as either Class II or Class III.

Class II
The entire Mosquito Lagoon within KSC boundaries and the northern-most segment of the Indian River extending from the NASA Railway spur crossing are designated as Class II - Shellfish Propagation or Harvesting (see Figure 3.4-4). Class II waters establish more stringent limitations on bacteriological and fluoride pollution; the discharge of treated wastewater effluent is also prohibited. Dredge and fill projects in Class II waters require a Plan of Procedure to adequately protect the project area from significant damage.

Class III
The remainder of surface waters surrounding KSC is designated as Class III (Recreation-Propagation and Management of Fire and Wildlife). Class III water standards are intended to maintain water quality suitable for body contact sports and recreation and the production of diverse fish and wildlife communities (NASA, 2010a, 2015).
Figure 3.4-4. Surface water classifications at and around KSC
Outstanding Florida Waters

A special classification has been established for certain water bodies which possess demonstrated exceptional recreational or ecological significance. Outstanding Florida Waters (OFW) include waters within national and state parks, wildlife refuges, aquatic preserves, and other State and Federal areas. Areas designated as OFW are afforded the highest protection of any surface waters in the State of Florida. Water quality standards for OFW are established to prevent compromising existing water quality. The Florida Department of Environmental Protection (FDEP) is the principal state agency responsible for the administration of OFW (NASA, 2010a, 2015).

The surface waters within the Merritt Island NWR have been designated as OFW. The OFW designation supersedes other surface water classifications, and water quality standards are based on ambient conditions. These waters cannot be degraded below their existing water quality.

Aquatic Preserves

The Florida Aquatic Preserve Act of 1975 (Chapter 258 F.S.) set aside certain state-owned submerged lands and associated coastal waters in areas which have exceptional biological, aesthetic, and scientific values. The aquatic preserve designation substantially restricts or prohibits activities requiring dredge and fill permits, drilling of gas or oil wells, and the discharge of wastes or effluents. The FDEP is the state agency responsible for the administration of the Aquatic Preserve Program. In this capacity, the FDEP is required to develop and implement management plans for the preservation, protection, and enhancement of the natural resources of each aquatic preserve.

The entire Mosquito Lagoon has been designated by the Board of Trustees of the Internal Improvement Trust Fund as an Aquatic Preserve. The Mosquito Lagoon aquatic preserve management plan has been published, but it has no jurisdiction in federal waters based on agreements with the State that turn their management over to the federal agencies.

The Banana River Aquatic Preserve begins at SR 528 (Bennett Causeway) and extends south to Mathers Bridge and includes that entire section of the Banana River and portions of Sykes Creek and Newfound Harbor. A management plan has been developed for this aquatic preserve. The Banana River Aquatic Preserve does not extend to KSC, and NASA operations are not affected by the implementation of the management plan (NASA, 2010a, 2015).

3.4.1.1.3 Water Use Permitting

The State of Florida has granted the St. Johns River Water Management District (SJRWMD) the authority to issue permits for the withdrawal and consumption of waters of the state. In so doing, the State is attempting to conserve and promote the proper utilization of Florida's surface and groundwaters. KSC is located in the District's Upper St. Johns River Administrative Basin. A Consumptive Use Permit (CUP) is required by the SJRWMD in accordance with the rule criteria set forth in Chapter 40C-2, F.A.C. as amended on August 12, 2008. This rule requires a CUP for the consumptive use of ground or surface water for any of the following:

- Average annual daily withdrawal exceeding one hundred thousand (100,000) gallons average per day; or
• Withdrawal equipment or facilities which have a capacity of more than one million (1,000,000) gallons per day (GPD); or
• Withdrawals from a combination of wells or facilities having a combined capacity of more than one million (1,000,000) GPD; or
• Withdrawals from a well in which the outside diameter of the largest permanent water bearing casing is six inches or greater.

All permits are to include certain limiting conditions set forth in Rule 40C-2.381. When considering permit applications, the SJRWMD prohibits significant adverse impacts on existing offsite land uses and legal uses of water.

KSC recently surrendered its facility-wide Consumptive Use Permit for general water consumption. The SJRWMD determined that it has no authority to require federal facilities to get CUPs for certain projects/activities. However, KSC is still required to obtain CUPs for other activities, such as construction dewatering.

3.4.1.1.1.4 Dredge and Fill Permitting in Waters and Wetlands

Discharge of effluent and pollutants to surface waters is regulated by the waters and wetland resource regulatory authority granted to federal and state agencies. The permitting of dredge and fill activities in Florida is subject to independent review and action by State and Federal regulatory agencies. Despite differing jurisdictional parameters between these agencies, a common joint form permit application has been developed. The joint form application notifies all regulatory authorities of a Proposed Action. Federal authority over dredge and fill operations is established by the CWA of 1977, the Rivers and Harbors Act of 1899, the NEPA, the U.S. Fish and Wildlife Coordination Act, the Safe Drinking Water Act, and the Endangered Species Act of 1973.

The USACE administers the Federal dredge and fill permitting program (referred to as wetlands resource permitting by FDEP) under Section 404 of the Clean Water Act with assistance and review from other federal agencies including the USFWS, the National Marine Fisheries Service (NMFS), and the EPA.

In exercising its authority to permit the discharge of dredge and fill to Waters of the United States, including wetlands, the USACE exerts jurisdiction over all coastal and inland waters, lakes, tributaries to navigable waters, and adjacent wetlands. In addition, as a result of a ruling by the EPA regarding interpretation of the "interstate commerce connection," the USACE has been authorized to have regulatory jurisdiction over all isolated wetlands and surface waters.

Thus, virtually any activity within wetlands or surface waters is subject to the USACE permitting authority. The USACE 1987 Wetland Delineation Manual, used to identify waters and wetlands over which the USACE has jurisdiction (referred to as “jurisdictional wetlands”) was updated in December 2008. Wetlands are generally characterized by the presence of hydric soils, wetland hydrology, and hydrophytic (water-dependent) plants. The landward extent of wetlands as determined by the state and federal agencies is generally the same or very similar.
FDEP is the principal agency for administering the State wetland resource permit process (Chapter 62-312 F.A.C.). Under the provisions of The Warren S. Henderson Wetlands Protection Act of 1984, the FDEP authority to regulate dredge and fill activities was largely consolidated under Chapter 403, F.S. FDEP jurisdiction extends over the "Waters of the State," which are defined to include, but are not limited to, rivers, lakes, streams, springs, impoundments, and all other waters or bodies of water including fresh, brackish, saline, tidal, surface or underground. The Henderson Act clarified FDEP jurisdiction over wetlands by establishing indicator wetland species and soil types. In addition, the Act establishes provisions for the special consideration of OFW in the permit application review process.

FDEP wetland resource permitting authority is supported by the Florida Fish and Wildlife Conservation Commission (FFWCC), which is responsible for the management, protection, and conservation of wild animal life and aquatic freshwater life, and the Florida Department of Environmental Protection-State Lands (formerly Florida Department of Natural Resources), which processes requests for the use of State-owned lands including submerged bottoms.

SJRWMD received authority for wetland resource permitting in 1988. The operating agreement between SJRWMD and FDEP was subsequently amended on July 1, 2007. SJRWMD reviews all wetland resource permit applications when an activity also requires a stormwater discharge permit, with the following exceptions:

- All wetland resource permits for solid, industrial, domestic and hazardous waste treatment facilities will be reviewed by FDEP;
- SJRWMD projects will be permitted by FDEP;
- Power plant siting will be processed by FDEP;
- USACE water resources projects will be permitted by FDEP;
- Marinas (ten or more boat slips); and
- Other activities listed in the delegation agreement.

KSC obtains its potable water under contract from the City of Cocoa, which draws its supplies from the Floridan Aquifer. The water distribution system at KSC is sized to accommodate the short-term, high-volume flows required for launches. On average, the facility utilizes 4.9 million liters (1.3 million gallons) of water per day (NASA, 2008).

3.4.1.1.5 Surface Water Quality

Surface water quality at KSC has been characterized as generally good. The waters tend to be alkaline and have good buffering capacity. The areas of highest water quality are adjacent to undeveloped parts of the lagoon, such as the north Banana River, Mosquito Lagoon, and the northernmost portion of the Indian River.

In order to document the surface water quality in the vicinity, several different monitoring programs are used. NASA, SJRWMD and Brevard County all maintain water quality monitoring stations in and around KSC. The SJRWMD lagoon-wide network maintains two surface water quality monitoring stations within KSC (Figure 3.4-5). Surface water quality data are collected by KSC and are submitted to the SJRWMD for incorporation into a region-wide
database. The surface water quality data from this program are used for long-term trend analysis and play a supportive role in land use planning for the entire Indian River Lagoon.

Eleven sites within the boundary of KSC were monitored quarterly from 1984 until 2000 and biannually from 2000 to the present. The purpose of this monitoring program is to maintain a baseline ecological database of basic surface water quality parameters. Most of the monitoring sites are located away from major facilities and operational areas as background stations to characterize ambient conditions which can be compared to several sites that are located near launch complexes to monitor any short-term or long-term impacts. Parameters collected include nutrients, phenols, grease and oil, color, total suspended solids, total dissolved solids, chlorophyll, turbidity and metals. Most of the basic surface water parameters such as salinity, dissolved oxygen (DO), pH, temperature and conductivity follow seasonal and diurnal patterns typical of the IRL.

In 1998, a comprehensive study to document background chemical composition of soils, groundwater, surface water, and sediments of the KSC was conducted. In addition to the ongoing, long-term surface water quality monitoring sites, forty additional locations were examined. Location of the surface water sampling stations was determined based on the watershed basins. Forty stations were selected to incorporate samples from open lagoonal water, rivers, creeks, ditches, borrow pits, and impoundments. Samples were collected using standard sampling protocols. Basins included Banana Creek, Banana River, Indian River Lagoon, Mosquito Lagoon, saline ditches, and freshwater ditches.

Surface water samples from inland bodies have been analyzed for a number of parameters and contaminants, including organochlorine pesticides, Aroclors (PCBs), chlorinated herbicides, polycyclic aromatic hydrocarbons (PAHs), and metals. Field parameters such as pH, temperature, turbidity, dissolved oxygen (DO), and conductivity were also measured at each sampling location. All of the Aroclors (6) and chlorinated herbicides (18) were below detection limits. One of 25 organochlorine pesticides (Dieldrin) was above detection, as were five of 17 PAHs. The occurrence of Dieldrin, a persistent synthetic insecticide, is probably due to past agricultural use of these lands. Concentrations of PAHs were low and may result from natural sources or regional deposition.

Sixteen of 24 metals were above detection limits; eight of them were always below detection (barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni), vanadium (Vn), and zinc (Zn)). Nine metals were above detection in too few samples to test for differences among watershed basins (antimony (Sb), arsenic (As), beryllium (Be), copper (Cu), lead (Pb), manganese (Mn), selenium (Se), silver (Ag), and thallium (Tl)). Seven metals commonly above detection limits differed among basins (aluminum (Al), calcium (Ca), chloride (Cl), magnesium (Mg), iron (Fe), potassium (K), and sodium (Na)). Patterns of differences varied among metals. For aluminum, Banana Creek was higher than the other basins. Iron was higher in Banana Creek, saline ditches, and freshwater ditches compared to Banana River, Indian River Lagoon, and Mosquito Lagoon. Values of calcium, chlorine, and magnesium occurred in three classes with Banana Creek, Mosquito Lagoon, and Indian River Lagoon the highest, Banana River and saline ditches intermediate, and freshwater ditches low. Potassium was highest in Mosquito Lagoon, intermediate in Banana Creek, Mosquito Lagoon, and Indian River Lagoon the highest,
Figure 3.4-5. Surface water quality sampling stations at KSC
Banana River and saline ditches intermediate, and freshwater ditches low. Sodium was highest in Mosquito Lagoon, intermediate in Banana Creek, Indian River Lagoon, Banana River, and saline ditches, and lowest in freshwater ditches. Na was highest in Mosquito Lagoon and the Indian River Lagoon, intermediate in Banana Creek, Banana River, and saline ditches, and lowest in freshwater ditches (NASA, 2010a, 2015).

The SJRWMD reports that population growth around the lagoon, much of it attributable to the very attractiveness of its features – including its diverse and abundant marine life, plants and animals; its temperate climates; its accessibility and direct links to the Atlantic Ocean – have changed those characteristics over the last century and especially within the past half-century. Fish kills, algal blooms and changes in water quality have always occurred naturally, and the lagoon has had a natural ability to absorb pollutants up to a point. However, when overloaded, the lagoon is stressed and suffers (SJRWMD, 2013).

After years of decreasing water quality as population and development boomed in the surrounding counties that comprise the lagoon’s watershed (Table 3.2-1), its condition improved steadily beginning in the early 1990s in response to a number of restoration and water quality improvement projects and programs. The estuary’s seagrass coverage, used as an indicator of relative water quality, improved slowly and steadily from 1993 through 2009 (Figure 3.4-6).

Figure 3.4-6. Seagrass coverage in the Indian River Lagoon

Source: St. Johns River Water Management District (2013)
After these years of progress, an algal “superbloom” appeared in the portion of the lagoon system known as Banana River Lagoon in the spring of 2011. It ultimately spread into the northern Indian River Lagoon and farther north into the Mosquito Lagoon (Figure 3.4-7). Simultaneously, a smaller bloom extended from just north of Melbourne south to the Vero Beach-Fort Pierce area. Approximately 47,000 acres of seagrasses died during these events, a loss of about 60 percent of the lagoon’s total seagrass coverage (SJRWMD, 2013).

In August 2012, a brown tide bloom began in the Mosquito Lagoon and moved into the northern Indian River Lagoon near Titusville; it reappeared in 2013. Adding to concerns were mortality of manatees and pelicans since July 2012 and bottlenose dolphins since January 2013. The cause(s) of these deaths are still under investigation.

The cause or causes of the superbloom continue to be investigated as well. The SJRWMD emphasizes that there may have been several contributing factors. Before the blooms, long-term droughts had increased lagoon salinity; at the same time, extremely low water temperatures occurred during the winters of 2010 and 2011. These extreme climatic events – in conjunction with chronic, decades-long nutrient enrichment – may have created conditions favoring certain algal species that had never previously reached bloom proportions (SJRWMD, 2013).

The Indian River Lagoon 2011 Consortium is studying the possible causes of the algal blooms and developing strategies to reduce their magnitude, duration and frequency. The SJRWMD’s Indian River Lagoon Protection Initiative focuses on better understanding the sources, cycling and transport of lagoon nutrients and the long-term impacts from the disappearance of the lagoon’s seagrasses, as well as potential strategies aimed at restoring the Indian River Lagoon to a seagrass-dominated ecosystem.

3.4.1.1.6 Stormwater Runoff

Stormwater runoff is controlled by more than 100 onsite surface water management systems and a National Pollutant Discharge Elimination System (NPDES) stormwater permit for industrial activities.
As recognition of the implications of stormwater runoff on water quality and quantity has grown in recent years, stormwater runoff control and management programs have become increasingly important; they will continue to grow in importance to KSC. The Water Quality Control Act of 1987 required EPA to permit industrial and municipal stormwater discharges. In 1990, EPA issued the final rule for the NPDES permit application regulations for stormwater discharges. Applications for stormwater discharges associated with industrial activity were required by March 1991 for a permit through a group application or by November 1991 for an individual permit. In addition, NPDES stormwater permits are required for all construction projects that impact an area one acre or more in size. Construction sites are covered under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities.

FDEP has stormwater permitting authority for discharges to surface water and groundwater. The stormwater rule is designed to minimize permit requirements for stormwater designs which utilize BMPs. FDEP has been authorized to delegate stormwater permitting authority to the State Water Management Districts or Local Governments. Several districts have assumed this regulatory function, including the SJRWMD (NASA, 2010a, 2015).

3.4.1.1.7 Surface Water Management

The Florida Water Resource Act, enacted in 1972, created six Water Management Districts in the state. These districts were assigned to Florida’s major watersheds and were provided with the authority to manage and regulate surface waters. Regulated activities include any construction, alteration, maintenance, or operation of any dam, impoundment, reservoir or works including ditches, canals, conduits, channels, culverts, pipes and other construction that connects to, draws water from, drains water into, or is placed in or across open waters or wetlands. Each water management district has established thresholds, which trigger permit application requirements. KSC is located within the watershed area administered by the SJRWMD. The SJRWMD has a comprehensive surface water management permitting program in place (NASA, 2010a, 2015).

3.4.1.1.8 Wastewater Management

KSC transports its raw domestic wastewater to the CCAFS Regional Treatment Plant located on CCAFS. It also maintains operating permits for two industrial wastewater treatment facilities. Launch Complex (LC)-39 Pads A and B utilize holding tanks to treat industrial wastewater streams generated by fire and sound suppression water, Solid Rocket Booster (SRB) exhaust, and post-launch wash down (NASA, 2008).

3.4.1.2 Groundwater

KSC is underlain by three aquifers, including the surficial aquifer, the secondary semi-confined aquifer and the Floridan Aquifer (see Figure 3.4-8 and Table 3.4-1). The surficial aquifer is largely recharged by rainfall percolation and surface runoff and is used by the areas near KSC for nonpotable uses; however, some locations northwest and south of KSC use this aquifer for public water supply. Surface recharge of the secondary, semi-confined aquifer is minor and depends on leakage through surrounding lower-permeability soils. The Floridan Aquifer is the primary source of potable water in central Florida (NASA, 2008). Of the approximate 55 inches (140 cm) of annual precipitation, approximately 75% is claimed by evapotranspiration and returned to the
atmosphere before it can become either surface or groundwater. The 25% remainder becomes runoff, base flow, and recharges the surficial aquifer.

![Diagram of geohydrological units and aquifers at KSC](image)

Figure 3.4-8. Profile of geohydrological units and aquifers at KSC
Table 3.4-1. General characteristics of aquifers at KSC

<table>
<thead>
<tr>
<th>Aquifer</th>
<th>Geologic Strata</th>
<th>Recharge Area</th>
<th>Discharge Area</th>
<th>Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconfined Water Table Aquifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surficial Aquifer</td>
<td>Pleistocene and Recent deposits – sand, shell, coquina, silt, and marl</td>
<td>Rainfall and direct infiltration, particularly that on central sand ridges of island</td>
<td>Drainage canals and ditches; evapotranspiration including losses from swales; seepage to impoundments, lagoons, and ocean</td>
<td>Fresh in center of island, becomes mineralized toward lagoons and ocean</td>
</tr>
<tr>
<td>Secondary Artesian Aquifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-artesian Shell and Sand Beds</td>
<td>Little freshwater recharge, may act as conduits for seawater intrusion</td>
<td>Unknown</td>
<td>Modestly brackish, generally poorer than Florida aquifer</td>
<td></td>
</tr>
<tr>
<td>Shallow Rock Aquifer</td>
<td>Leakage upward from Floridan aquifer</td>
<td>Tamiami Formation – shelly, partially consolidated quart sand and some limestone</td>
<td>Unknown</td>
<td>Brackish</td>
</tr>
<tr>
<td>Hawthorn Limestone Aquifer</td>
<td>Leakage upward from Floridan aquifer</td>
<td>Thin beds of weathered limestone, sandstone, and sand within the Hawthorn Formation</td>
<td>Unknown</td>
<td>Moderately brackish</td>
</tr>
<tr>
<td>Principal Artesian Aquifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floridan Aquifer</td>
<td>Eocene limestones, Ocala Group, Avon Park Formation</td>
<td>Central Florida-West Osceola, South Orange, and Polk counties; Mims-Titusville ridge</td>
<td>Atlantic Ocean via offshore submarine springs, upward leakage where Hawthorn Formation thins</td>
<td>Highly mineralized, primarily chlorides</td>
</tr>
</tbody>
</table>

In the immediate vicinity of KSC, groundwater from the Floridan Aquifer is highly mineralized. Water quality in the secondary semi-confined aquifer varies from moderately brackish to brackish. Groundwater quality in the surficial aquifer system at KSC is generally good due to immediate recharge, active flushing, and a lack of development. Groundwater from the surficial aquifer meets Florida’s criteria for potable water and national drinking water criteria for all parameters other than iron and total dissolved solids (NASA, 2008). These two main aquifers are separated by nearly impermeable confining units that contain three shallow aquifers referred to as the Intermediate aquifer system.
The surficial aquifer can be divided into several subsystems (Figure 3.4-9). The Dune (Barrier Island) subsystem has a lens of freshwater less than 10 feet (3 m) thick on top of intruded saline water. The primary dune acts as the prime recharge area (Figure 3.4-10). Shallow groundwater flows east of the ridge to the Atlantic Ocean and west to the Banana River, Mosquito Lagoon, or swales; at depth (> 20 ft or 6.1 m) the flow is to the Atlantic Ocean. The Dune-Swale subsystem includes high ridges with permeable sand that favor recharge. This is the only area where the freshwater recharge of the deeper layers of the surficial aquifer occurs.

Figure 3.4-9. Subaquifers of the Surficial aquifer at KSC
During most of the year, shallow groundwater discharges to the swales. At the beginning of the rainy season after the spring drought, swales collect water and remain flooded; lateral and downward seepage from the swales helps to recharge the groundwater. In areas of pine flatwoods and swales, topography is lower and most soils have well-developed hardpans that restrict infiltration. During heavy rains, water perches above the hardpan and infiltrates slowly into the Surficial aquifer. This increases evapotranspiration and reduces recharge relative to the prime groundwater recharge areas. In the West Plain and Marsh (Lowland) subsystems, the water table is typically within about 3 ft. (0.9 m) of the land surface, evapotranspiration losses are high, and the dispersed saline water interface renders water quality variable. In the West Plain south of Banana Creek, a limerock "hardpan" replaces the humic hardpan of the Dune-Swale flatwoods. Along the coastlines, the Surficial aquifer contacts the saline water of the Atlantic Ocean and the brackish lagoons. Seawater intrusion occurs as a wedge at the base of the Surficial aquifer since seawater is denser than fresh water. The position of the fresh-saline water interface fluctuates; when water levels are low, saline water moves inland, and when water levels are high, saline water is forced out, producing a dynamic system (NASA, 2010a, 2015).

Figure 3.4-10. Profile of groundwater circulation patterns in the Surficial aquifer at KSC

3.4.1.2.1 Groundwater Flow Patterns

The primary recharge to the Surficial aquifer system primarily is from direct infiltration of precipitation. Recharge potential varies across the KSC, with the greatest recharge potential in the ridges of eastern Merritt Island and north of Haulover Canal. Groundwater mounds at the prime recharge areas. Groundwater flows from these recharge areas east toward the Banana
River, Mosquito Lagoon, and the Atlantic Ocean and west toward the Indian River. In general, water in the surficial aquifer system near the groundwater divide of the island has potential gradients which tend to carry some of the water vertically downward to the deepest part of the Surficial aquifer system and potentially to the upper units of the Intermediate aquifer system.

Major discharge points for the surficial aquifer system are the estuary lagoons, shallow seepage occurring to troughs and swales, and evapotranspiration.

Internal fresh surface waters are derived mostly from surficial groundwater; shallow groundwater supports freshwater wetlands and groundwater discharge to surrounding saltwater bodies contributes to the maintenance of lagoon salinity. Groundwater underflow is also a major factor in establishing the equilibrium of the fresh-saltwater interface in the surficial aquifer system (NASA, 2010a, 2015).

Because they are under pressure, the Floridan and Intermediate aquifer systems have upward flow potentials; that is, they are artesian or semi-artesian. The great elevation differential between the Floridan aquifer system recharge areas (e.g., Polk and Orange counties) and discharge areas along the Atlantic coast provides the potential for the flowing artesian pressure experienced at KSC. Upward flow is limited by the thickness and the relatively impermeable nature of the confining units. Some upward flow may occur in the northwestern areas of KSC where the Hawthorn Formation thins. In addition, there are cases of free-flowing and abandoned artesian wells that have allowed the deeper saline groundwaters to impact the fresh Surficial aquifer system. The general horizontal direction of flow in the Floridan aquifer system is northerly and northwesterly. Recharge to the Intermediate aquifer system is dependent on leakage through the surrounding beds of lower permeability (NASA, 2010a, 2015).

3.4.1.2.2 Groundwater Quality

The quality of water in any given aquifer is dependent upon its lithology (rock composition), its proximity to highly mineralized waters, the presence or absence of residual saline waters, and the presence/absence of chemical constituents in the aquifer and overlying soils.

3.4.1.2.2.1 Surficial Aquifer System

Unconsolidated surficial aquifers are subject to contamination from both point sources (e.g., effluent emerging from pipes and outfalls) and non-point sources (general land use). Contaminants may include trace elements, pesticides, herbicides, and other synthetic organic substances. Urban and agricultural land uses have affected some Florida aquifers. Point source contamination to the KSC surficial aquifer has occurred at certain facilities.

Groundwater surveys were conducted in 2000 to ascertain baseline conditions of the Surficial aquifer. Six sample sites were located in each subsystem of the Surficial Aquifer for a total of 24 sites. A total of 51 wells were installed at varying depths. Groundwater samples were collected using standard protocols. Groundwater samples were analyzed for organochlorine insecticides, Aroclors, chlorinated herbicides, PAH, total metals, DO, turbidity, pH, specific conductivity, temperature, total dissolved solids (TDS), and total organic carbon (TOC).

The baseline data indicate that widespread contamination of the surficial aquifer on KSC has not occurred. No organochlorine pesticides, Aroclors, or chlorinated herbicides occurred above
laboratory detection limits. Although pesticide residues or degradation products and chlorinated herbicides occurred in some soils, those concentrations were low and migration into the aquifer either has not occurred or has not been widespread. Some PAHs occurred in the shallow wells. PAHs occur in a variety of KSC soils at relatively low concentrations. Some occurrence of PAHs in shallow wells is unsurprising since PAHs have both natural and anthropogenic sources (NASA, 2010a, 2015).

Most trace metals occurring in KSC groundwater above detection limits were at low concentrations. This is consistent with the low concentrations of most trace metals in KSC soils and the primarily quartz composition of the terrigenous deposits comprising the surficial sediments of Merritt Island. Aluminum, iron, and manganese occurred above detection limits more frequently than other trace metals. Aluminum and iron are abundant elements in the earth’s crust and as such are present in KSC soils. Intense leaching, particularly in acid scrub and flatwoods soils, mobilizes aluminum and iron. Iron is a typical constituent of groundwater in the Surficial aquifer in Florida. Manganese is one of the most abundant trace elements and is present in KSC soils at relatively low concentrations. Solution and precipitation of iron and manganese are affected by pH and oxidation-reduction conditions.

The chemical parameters varying most with subaquifer and depth were Ca, Cl-, Mg, K, and Na, as well as conductivity and TDS that are related to these cations (positive charged ions) and anions (negatively charged ions). The trends were generally consistent among these; the shallow wells in the Dune-Swale subaquifer had the lowest values. Concentrations increased with depth within a subaquifer. At a given depth, concentrations in the Dune-Swale and West Plain subaquifers were lower than in the Dune and Marsh subaquifers. These trends reflect increased mineralization with depth and differences between the fresh water Dune-Swale and West Plain subaquifers and the more saline Dune and Marsh systems. The Dune and Marsh subaquifers interact with saline water of the Atlantic Ocean and Indian River Lagoon system, respectively (NASA, 2010a, 2015).

3.4.1.2.2 Intermediate Aquifer System

The groundwater quality in the intermediate aquifer system varies from moderately brackish to brackish due to its recharge by upward leakage from the highly mineralized and artesian Floridan aquifer system and in some cases from lateral intrusion from the Atlantic Ocean. Groundwater in the Semi-artesian Sand and Shell aquifer is brackish. Groundwater in the Shallow Rock aquifer is brackish with some sites receiving seawater intrusion. The limited data that exist for the relatively thin Hawthorn Limestone Aquifer indicate that it too is moderately brackish.

3.4.1.2.3 Floridan Aquifer System

The Floridan aquifer system at KSC contains highly mineralized water with high concentrations of chlorides due to innate seawater in the aquifer, and to a lesser degree induced lateral saltwater intrusion (due to inland pumping), as well as a lack of flushing due to distant freshwater recharge areas.
3.4.2 Environmental Consequences Including Cumulative Impacts

3.4.2.1 Proposed Action

3.4.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Impacts to water resources can result from several types of activities under the Land Use Plan, Future Development Plan, and Functional Area Plans. Erosion caused by site runoff and contamination by chemical spills can impact surface water quality. Additionally, non-point sources can potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table. There would be no substantial impact to water quality from disposal of demolition debris generated during construction activities.

Surface drainage during storms over the long-term would still occur, but new construction or repurposing of existing facilities can lead to potential changes in the surface drainage pattern system. Some project sites have been previously disturbed and natural drainage patterns no longer exist. Other sites have been minimally disturbed previously, and adverse impacts to natural drainages are anticipated. Under the Proposed Action, impervious or semi-impervious surfaces would likely contribute to more surface drainage than at present.

The use of heavy equipment for construction would occur during project activities. Some projects could result in substantial ground disturbance and movement of earth with relatively large areas of exposed soils, increasing the likelihood of soil erosion and sediment delivery to nearby surface waters and wetlands, resulting in localized turbidity increases and mobilization of fine sediments. Repeated disturbance of vegetation and soils (i.e., due to vehicle passes) during project activities would also cause surface erosion. Siltation and runoff can degrade water quality. Increased turbidity could cause an increase in water temperature as turbid water heats more readily when exposed to sunlight. Elevated levels of turbidity could also lead to decreases in primary production and dissolved oxygen levels. There could also be increased short-term fine sediment and loss of benthic food resources. The effects to local water quality and hydrology during construction would be adverse and short-term; the degree of effect would depend on the extent of the disturbance and proximity to water.

Fuel products (petroleum, oils, and lubricants) would be needed to operate the equipment used for construction; therefore, there is some risk of an accidental fuel or chemical spill, which could adversely affect water quality if the spill were to enter ground or surface water. To prevent accidental fuel or chemical spills, no refueling would occur near surface water. The fueling operation would be closely monitored, and an emergency spill kit containing absorption pads, absorbent material, a shovel or rake, and other cleanup items should be readily available on-site in the event of an accidental spill.

Riverine wetland or floodplain loss or alteration could occur if wetlands or floodplains are disturbed by construction or if impervious surfaces are constructed on top of them. Vegetation clearing within and adjacent to wetland, floodplain, and riparian areas may also occur to accommodate construction. BMPs limiting the amount of disturbance to just the project footprint...
would be implemented to reduce adverse impacts to wetlands, floodplains, and riparian areas, but some adverse effects may be inevitable.

Repurposing existing facilities and/or constructing new infrastructure would have an impact on the management of sanitary and industrial wastewaters and storm waters. Current facilities’ treatment and discharge are permitted by the applicable state and/or local regulatory agencies. New infrastructure would have to comply with these regulations after identifying the smallest impact from the following: integrate to the already existing wastewater treatment facilities (based on up-to-date capacity), discharge to local municipality, or a combination of both. The repurposing of existing facilities would not require substantial modifications to current permits and discharge volumes; therefore, no adverse impacts are expected to water resources from wastewaters.

BMPs to control erosion, sediment release, and stormwater surface runoff would be utilized during all project activities to minimize adverse impacts on water resources. All disturbed areas should be planted with native vegetation once a project is complete, thus stabilizing soils, reducing long-term effects such as erosion, sedimentation, and runoff, and improving water quality in nearby receiving waters. Identifying and staking the limits of clearing and earth work, installing silt fences, establishing a controlled area for construction material and equipment, and preparing a sediment and erosion control plan would minimize the potential for adverse impacts to water quality, hydrology, floodplains and wetlands. Careful application of appropriate BMPs would minimize erosion and sediment runoff to surface waters and wetlands at the project site and in the surrounding vicinity. The small amount of sediment that cannot be effectively prevented using BMPs should be negligible to minor in magnitude and of a short duration while a project is in progress.

Sedimentation is a leading cause of water impairment in the U.S., and it can cause disturbances in aquatic ecosystems such as the degradation of fish spawning grounds. The NPDES under the Clean Water Act prohibits the discharge of any pollutant, including sediments, to waters of the United States; thus a NPDES Storm Water Construction Permit would be required by FDEP as well as permits under Sections 401 and 404 of the CWA. Impacts from erosion, and specific measures to control both wind and water erosion of soils during and after construction, would be taken care of by developing a Stormwater Erosion and Pollution Prevention Plan (SWPPP). An Environmental Resource Permit would also be required by SJRWMD for any activity that meets the requirements listed in Rule 40C, F.A.C.

Impacts of proposed project activities on water resources would be short-term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, site topography, and proximity to surface water. Impacts on water resources would be less than significant with implementation of BMPs and adherence to permit conditions.

3.4.2.1.2 Launch, Landing, Operations and Support

Vertical and horizontal launches may result in local adverse impacts on freshwater and marine systems. Such impacts would result from the deposition associated with rocket engine emissions on water bodies or associated watersheds, the deposition of spent launch vehicle (LV) equipment (e.g., booster rockets), or landing of a reentry vehicle (RV) or its associated equipment. Launches and reentries would be performed from and to existing or future water-permitted
facilities that have been or would be designed and operated to protect sensitive surface and groundwater resources (e.g., well head protection areas).

Each Space Shuttle launch, classified as a SHCLV, can generate over 860,000 gallons of deluge and washdown wastewater (NASA, 2010a, 2015) which could have adverse impacts on surface and groundwater if not fully contained. Upon ignition of the main engines and SRBs, deluge waters are discharged to the flame trench for sound attenuation. As the launch proceeds, more water is discharged to the fixed service structure and moveable launch platform to dissipate launch heat energy. Within 10 minutes of a launch, pad facilities are washed down with up to 326,000 gallons of water. The high concentrations of hydrogen chloride (HCl) gas produced by ignition of the SRBs significantly lower the pH of the collected wash water. Average pH levels in the tanks immediately following launch range between 1.6 and 2.2 (NASA, 2010a, 2015). Operational procedures require that the contained launch waters be neutralized with 50 percent sodium hydroxide (NaOH) to a pH of 8.5 +/- 0.5 within 72 hours following launch. Previously, after neutralization, these waters were landspread over the adjacent pad area. Current practices follow the industrial wastewater permit.

Total quantities of washdown waste water and pollutants produced are dependent on Launch Vehicle Class and total number of annual launches. The largest class, SHCLV, produces the largest quantities of pollutants. By way of general comparison with smaller vehicle classes, roughly twelve times more launches of the SCLV or three times more launches of the MCLV of the same propellant type would be needed to produce the same quantity of pollutants as that of the SHCLV.

Deluge and washdown water would be supplied by the existing water distribution system and would have a negligible impact on system capacity or surface and groundwater resources. Wastewater would be processed through the existing wastewater handling and treatment systems. Local and regional water resources would not be affected since there would be no substantial increase in use of surface or groundwater supplies.

Most of the deluge and washdown water would be collected in concrete basins; however, small amounts could drain directly to grade. There is the potential to cause inadvertent discharge of deluge water into jurisdictional waters of the United States in the event of an overflow of the deluge water system collection basin; however, it is highly unlikely that the maximum amount of deluge wastewater contained in the basin would be discharged. If the wastewater in the collection basins meets the criteria set forth in the industrial wastewater permit, the wastewater would be discharged directly to grade at the launch site. If the wastewater fails to meet the criteria, it would be treated on-site and disposed to grade or collected and disposed of by a certified contractor. Minimal adverse impacts to water resources from contaminated water are expected to result from launch operations.

3.4.2.1.2 Surface Water

The emission of hydrochloric acid (HCl) and aluminum oxide particulates by solid rocket propellant during launches would be the primary impact associated with normal launches on water quality. Short-term acidification of surface water could result from contact with the exhaust cloud and through HCl fallout from the cloud. Wet deposition of HCl may occur during rainfall. Impacts on surface waters would be restricted to the area immediately adjacent to the
launch pad. No substantial impacts on surface waters of nearby oceans, lagoons, or large inland water bodies should occur due to the buffering capacities of these bodies. A short-term decrease in pH could occur in small streams and canals near the launch pad. Since there would only be a temporary decrease in pH, aluminum oxide deposition should not contribute to increased aluminum solubility in area surface waters. A normal launch would have no substantial impacts on the local water quality.

Background pH in the estuarine system at KSC generally ranges between 7.8 and 8.6. At launch, the surface layer of adjacent water bodies could receive up to 1700 kg of HCl from deposition (NASA, 2010a, 2015). This acid mixes downward into the water column through advection and diffusion, eventually impacting approximately the upper 1.5 m of water. The rate of mixing is driven primarily by wind speed and direction. Levels of impact are highly variable spatially and temporally depending on meteorological conditions at the time of launch. Maximum pH reductions (about 6 to 7 units) may be found at the surface and in areas adjacent to stormwater drainage ditches in line with the flame trench at each pad. In these areas, pH depression may be acute and lethal to organisms utilizing gills for respiration. Minimal effects are observed around the edges of the near-field ground cloud footprint and at depth where buffering and dilution minimize chemical impacts.

Surface and groundwaters in the region around the launch pads are highly buffered as a result of local soils and geological conditions, with total alkalinity values typically ranging between 120 and 200 mg/l as CaCO3. This aquatic buffering system reacts readily with the exhausted HCl to produce CaCl2, CO2, and H2O (NASA, 2010a, 2015). Advective and diffusive mixing during the 48 to 72 hours post-launch have been found to return pH readings and alkalinity measurements to pre-launch levels.

RP-1, Jet-A and LCH4 (liquid methane) can all be classified as liquid hydrocarbon propellants. These fuels commonly use Liquid Oxygen (LOX) as the oxidizer. Jet-A propellant typically contains sulfur. As carbon is a main ingredient in the fuel, hydrocarbon propellants produce a large amount of carbon dioxide and water vapor as products of combustion, which would not adversely affect surface water. Other minor constituents include CO and sulfur dioxide SO2, which could be deposited in surface water and cause localized impacts.

Cryogenic engines (liquid hydrogen (LH2)/ liquid oxygen (LOX)) are in a category by themselves. Water vapor is the only product of combustion, thus there would be no impacts on surface water.

Propellants categorized as using liquid hydrazine fuels typically use dinitrogen tetroxide as the oxidizer. These fuels are hypergolic with the oxidizer and are very hazardous; however, when burned as fuel, the products of combustion are mostly non-hazardous. Combustion of these propellants produces mostly water vapor and nitrogen, as well as smaller quantities of carbon dioxide, carbon monoxide and nitrous oxides. The nitrogen deposited in surface water could cause localized impacts.

Under normal flight conditions, vehicle stages that do not reach orbit have trajectories that result in ocean impact. Stages that reach initial orbit would eventually reenter the atmosphere as a
result of orbital decay. Corrosion of stage hardware would contribute various metal ions to the water column. Due to the slow rate of corrosion in the deep-ocean environment and the large quantity of water available for dilution, toxic concentrations of metals are not likely to occur.

Since the liquid stages and fuel would be burned to depletion in-flight, there would be only relatively small amounts of propellant left in the stages that impact the ocean (NASA, 2011). The release of solid propellants into the water column would be slow, with potentially toxic concentrations occurring only in the immediate vicinity of the propellant. Insoluble fractions of RP-1 propellant would float to the surface and spread rapidly to form a localized surface film that would evaporate. Hydrazine fuels are soluble and would also disperse rapidly. Minimal adverse impacts are expected from the reentry of spent stages.

On-pad accidental or emergency releases of small quantities of propellants are unlikely to occur. However, in the event of a release, spilled propellants would be collected and disposed of by a certified disposal contractor. Potential contamination of groundwater or surface water resulting from accidental or emergency spills of propellants during propellant loading would be minimized through adherence to safety procedures. Potential leakage or spills from propellant storage tanks would be contained in holding basins that surround the tanks. Any accidental or emergency release of propellants after loading would be channeled to an impermeable concrete catch basin. Contaminants collected in the catch basin would be disposed of in accordance with appropriate state and federal regulations.

Launch accidents could result in impacts on local water bodies due to contamination from rocket propellant. In the unlikely occurrence of a launch accident, spilled propellant could enter water bodies close to the launch pad. Potential contamination would primarily occur from hydrazine, menomethyl hydrazine, nitrogen tetroxide, and solid rocket motor (SRM) propellant. Powdered aluminum from the SRM propellant would rapidly oxidize to aluminum oxide, which is nontoxic at the pH that prevails in surface waters surrounding all proposed launch sites (NASA, 2011).

3.4.2.1.2.2 Groundwater

Groundwater data do not show any clear evidence of accumulation of metals in the surficial aquifer, nor do they show a cause and effect relationship between launches and detectable concentrations of metals in the groundwater (NASA, 2010a, 2015).

That said, pentachlorophenol (PCP) was identified at LC39A above FDEP Surface Water Cleanup Target Levels (SWCTL) in groundwater samples collected from monitoring wells, and trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) were identified above their respective FDEP Groundwater Cleanup Target Levels (GCTL) in groundwater samples collected from monitoring wells (NASA, 2010a, 2015). Quarterly groundwater monitoring of the remaining dissolved phase TCE, cDCE, and VC is being implemented to obtain additional information to assist in recommending a path forward.

In subsequent investigations at LC39B, TCE, cDCE, VC, aluminum and iron were identified above their respective FDEP SWCTL in site groundwater. Aluminum and iron were detected in groundwater samples collected from monitoring wells where groundwater has been designated as non-potable. TCE, cDCE, and VC have also been detected in groundwater samples collected
from monitoring wells and in groundwater samples located downgradient of the site. The cleanup strategy selected in the Corrective Measures Study was enhanced bioremediation and monitored natural attenuation for the impacted groundwater. Enhanced bioremediation has reduced TCE, cDCE, and VC concentrations. Similar cleanup strategies would be used for activities under the Proposed Action.

Overall, impacts of proposed project activities on water resources would be short- term and long-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of water to the launch or landing sites. Impacts on water resources would be less than significant.

3.4.2.1.3 Future Transportation Plan

Impacts of the Future Transportation Plan that could affect water resources include road improvements, repair, and resurfacing; bridge replacement; parking lot repurposing or demolition; and expansion of the horizontal launch and landing capability with a new runway, facilities, infrastructure, and other airfield systems. Other actions in this plan that would impact water resources would need separate NEPA analysis and would not be covered under this Programmatic EIS. These actions include development of railroads, expansion of access via waterways, and seaports.

Activities that require construction, renovation, or replacement of facilities would have similar impacts on water resources as described for construction in Section 3.4.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans.

The CMP has identified the potential need, if the marketplace demands such a capability, of expanding current access via waterways. The expansion of waterways would require some degree of dredging and/or other construction that would result in soil and sediments disturbance, plus potential turbidity. All of these activities would be temporary and of limited scope and would have minimal or no impact on any navigable waters in the United States. All three proposed waterway accesses would require multiple permits and authorizations. Each would need to incorporate floodplain management and wetland protection plans according to NASA’s regulations and in consultation with other federal and state agencies.

For instance, according to section 404 of the Clean Water Act, which regulates the discharge of dredged or fill material into waters of the United States including wetlands, an evaluation to minimize impacts to water bodies and wetlands and provide appropriate and practicable mitigation, such as restoring or creating wetlands for any remaining, unavoidable impacts, would be need to be performed. A Section 10 permit would also be required from the Army Corps of Engineers. This might require the preparation of an EIS, or at a minimum an EA tiered to this PEIS, for each specific waterway proposed. The total amount of impacted wetlands and surface waters would depend on the decision to expand the water transportation capability based on the demand for it by one or more of the waterways proposed in the CMP. It is expected that surface water quality would experience minimal or no long-term impact with the expansion of these water access areas.

Impacts of proposed project activities on water resources would be short- term and long-term, direct, adverse, and minor to moderate depending on the extent of the project, proximity to water
bodies, and whether impervious surfaces would be installed. Impacts on water resources would be less than significant.

3.4.2.1.4 Cumulative Impacts

Water resources at KSC have been impacted by past and present activities including facility development and impervious surfaces, wetland conversion, vegetation clearing, launch operations, and visitor use of water bodies. Adverse impacts from these activities include altered water levels, flow rates, and downstream water discharge; increased erosion and sediment loading into receiving waters; degraded water quality (i.e., turbidity, temperature, dissolved oxygen, and nutrient levels); draining, filling, or sedimentation of wetlands resulting in wetland losses and/or changes to functions and values (i.e., floodwater attenuation and contaminant filtration); deposition of chemical contaminants from launch clouds; recreational use pressure from activities such as boating and fishing contributing to water quality degradation from boat engine fuel leaks; introduction of bacteria from human use; and introduction of invasive species.

As described above, the ecologically, recreationally, and commercially important Indian River Lagoon adjacent to KSC has been impaired by the cumulative impacts of point and non-point sources of pollutant loadings that have grown enormously in magnitude over the last half-century.

Adverse impacts on water resources associated with Proposed Actions at KSC would be small compared to cumulative past, present, and foreseeable future effects. Cumulative impacts from the Proposed Action would vary with the nature and frequency of projects, and impacts would be expected to be minor and adverse.

Direct cumulative impacts from the reasonably foreseeable actions described in Section 3.2 are also likely to be minor and adverse. However, to the extent that all of these projects contribute to long-term economic and population growth and development of the Space Coast region, in combination they may contribute indirectly to continuing cumulative impairment of the Indian River Lagoon complex as a result of an increase in the area of impervious surfaces (pavement and roofs) and non-point source loadings of sediments, nutrients, and contaminants.

These potential adverse cumulative impacts on water quality in the IRL and other water bodies from a likely increase in non-point source pollution associated with population growth and development in surrounding watersheds could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing the septic fields now used widely in southeastern Volusia County and the extension of municipal potable water service that could decrease impacts on shallow drinking water wells. An absence of economic growth and commensurate funding resources would likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters.

3.4.2.2 Alternative 1

With one important exception, impacts from Alternative 1 on water resources would be similar to those described for the Proposed Action, but on a somewhat smaller scale and covering a
slightly smaller area. As described in Chapter 2, under this alternative, the two proposed new seaports under the Proposed Action would be not be constructed, and thus the impacts on water resources – and wetlands in particular – associated with these actions would not occur. This is a substantial difference between Alternative 1 and the Proposed Action.

Most of the discussion under Cumulative Impacts for the Proposed Action would also hold true for Alternative 1. However, by not constructing and operating the two new seaports, Alternative 1 would avoid contributing to further cumulative impacts on aquatic habitats and water quality in the Indian River Lagoon.

3.4.2.3 No Action Alternative

Under the No Action Alternative, water resources would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Effects on water resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus, the No Action Alternative would not have any additional impacts on water resources. However, the long-term cumulative impacts on water quality in the IRL described under the Proposed Action could still occur if other reasonably foreseeable projects were to take place and if population projections and associated development are realized in the decades ahead, fostering increases in non-point source pollution that have already damaged the lagoon.

3.5 Hazardous Materials and Waste

The following sections address the transport, handling, treatment, storage and disposal of hazardous materials and waste.

3.5.1 Affected Environment

Hazardous materials that are classified as waste fall under the Resource Conservation and Recovery Act (RCRA) Hazardous Waste Regulations. These materials require environmental permits to ensure that the public is not unduly exposed to risk from these materials during their storage, transportation, treatment and/or disposal. These regulations are not applicable to storage of hazardous materials that are not waste. However, because of the specific hazards associated with hypergolics, there are several regulations on these materials even when they are not classified as waste. The primary concern regarding the presence of hazardous materials is an accidental release or spill of these materials into the environment due to improper storage/handling or unplanned incident (i.e., vehicle collision).

Hypergolic rocket propellants

Hypergolics are rocket propellant combinations used in rocket engines; when the two components are brought into contact with each other, one the propellants will ignite spontaneously. The two propellant components typically include an oxidizer and a fuel. Although hypergolics tend to be difficult to handle due to their high corrosiveness and/or toxicity, they can often be stored as liquids at room temperature. Moreover, hypergolic engines can be ignited repeatedly and reliably.
The hazardous materials at Kennedy Space Center can be categorized into five types of materials:

1. Solvents used in cleaning
2. Surface coatings
3. Motor vehicle fuels: gasoline, diesel, and ethanol
4. Solid rocket propellants
5. Liquid propellants

3.5.1.1 Solvents

Solvents are commonly used at KSC for cleaning and painting operations. Procedures are well established for handling, storage and disposal. The most common solvent used at KSC is isopropyl alcohol (IPA). Similar to other solvents, IPA presents a minor health risk if ingested. Additionally, threshold limit values for inhalation hazards are set at 370 ppm. Solvents also present a fire hazard.

3.5.1.1.1 Handling

The fire hazard of solvents is the greatest risk. A fire hazard exists when airborne concentrations exceed 2-12%. Use of these materials should always be conducted in a well ventilated area. Well-established hot work permit procedures shall be used to regulate the potential presence of ignition sources, such as welding equipment or cutting torches.

Personnel should use personal protective equipment (PPE) such as goggles to protect against splashes and vapors. Vapor respirators are required if sufficient ventilation does not exist.

3.5.1.1.2 Storage

Solvents should be stored in segregated and approved areas. Containers should be stored in cool, well ventilated areas. Containers should be sealed until ready for use.

3.5.1.1.3 Transport

IPA is a DOT Hazard Class 3, Flammable Liquid. Similar solvents will have the same hazard class.

3.5.1.1.4 Disposal

Waste solvents should be collected in approved containers for recycling or hazardous waste disposal. KSC currently operates three storage tanks used for waste IPA.

3.5.1.2 Surface Coatings

Surface coating operations are common at KSC. These operations produce waste paint, solvents and chromating chemicals such as Alodine. The chemicals used for chromate coatings are highly acidic and contain high quantities of chromium. As chromium is a known carcinogen, these chemicals are a health hazard (MSDS, 2001).
3.5.1.2.1 Handling

Contact with these materials should be avoided. Recommended PPE includes chemical goggles and/or full face shield, chemical gloves, such as butyl rubber, impervious apron and boots. These dusts should not be inhaled; respiratory equipment should be used if insufficient ventilation exists. Painting operations shall be equipped with appropriate fume collection equipment.

3.5.1.2.2 Storage

Containers should be tightly closed and stored in a cool, well ventilated place away from incompatible materials. Oxidizing agent may cause spontaneous ignition of combustible materials. Contact should be avoided.

3.5.1.2.3 Transport

Alodine is DOT Hazard Class 9, Miscellaneous Dangerous Goods. Hazard classes 5.1, oxidizers, 6.1 toxic substances, and 8, corrosives also apply to this substance.

3.5.1.2.4 Disposal

Spent Alodine is a hazardous waste because it contains chromium. Disposal must be done in accordance with local, state and federal regulations. KSC currently operates two large fiberglass storage containers for collection of waste Alodine.

3.5.1.3 Motor Vehicle Fuels

KSC currently stores large amounts of fuel such as gasoline, diesel and ethanol for motor vehicles. Liquid hydrocarbon fuels are not considered a major health hazard, but are considered hazardous because of the fire hazard present with these materials.

3.5.1.3.1 Handling

These materials should be handled as flammable liquids. Fuels should be kept away from heat, sparks and open flame. Electrical equipment should be approved for classified areas. Precautions can be taken to reduce the risk of electrostatic initiation, such as proper grounding. Vapors present an additional risk if concentrations are between 1-7% for gasoline/diesel and 3-19% for ethanol (MSDS, 2015, 2012a, 2012b).

These materials can be a minor irritant on the skin and in the eyes. Appropriate PPE can be used when splash hazards exist. Additionally, respirators with organic vapor cartridges can be used for excess vapor concentrations, such as a spill in an unventilated area.

3.5.1.3.2 Storage

Storage containers should be kept away from flame, sparks, excessive heat and open flame. Containers should be kept closed but vented and clearly labeled.

Because of the size and proximity of KSC fuel storage tanks to waterways, KSC is subjected to the Spill Prevention Control and Countermeasure (SPCC) regulations of 40 CFR 112. KSC currently maintains plans for spill prevention, response and reporting.
3.5.1.3.3 Transport

Fuels are classified as DOT Hazard Class 3, Flammable Liquids.

3.5.1.3.4 Disposal

Typically, hazardous wastes are not generated with fuels. This material is consumed. In the event of spill or contamination, waste fuel can be disposed in the same manner as organic solvents.

3.5.1.4 Solid Rocket Propellants

Solid rocket propellants are unique to facilities such as Kennedy Space Center that store or launch rocket motors.

Based on the formulation, solid rocket propellant can be classified as either a 1.1 or 1.3 division material. A 1.1 material has a mass explosion/detonation hazard, where 1.3 materials have a deflagration/fire hazard. The main ingredient in most solid rocket propellants is ammonium perchlorate (AP). The other main components of solid propellant are typically aluminum powder and binder such as HTPB.

AP has hazardous characteristics (MSDS, 2009) and it is a significant problem whenever it enters ground or surface water. There are many studies and considerable documentation regarding AP plumes in soil and groundwater. In the solid rocket propellant, the binder holds AP in place and the propellant does not exhibit the same hazards as AP. However, because AP is soluble in water, if the propellant is allowed to contact water AP can dissolve out of the propellant and enter the water. Therefore, it is always required that rocket motors are stored and handled in such a manner that the propellant does not come in contact with water.

3.5.1.4.1 Handling

The main hazard from handling solid propellant is the fire hazard. There are specific safety rules applied to handling rocket motors to ensure they are properly grounded to avoid static electricity. All ignition sources, such as sparks, open flame, excessive heat, and static, should be restricted in the vicinity of solid propellant.

3.5.1.4.2 Storage

Storage and use facilities for solid propellants are subject to quantity distance siting requirements. Launch sites and storage locations are required to have sufficient separation distances based on the propellant quantity and hazard division. Sufficient separation distance to public traffic routes and all other facilities must be maintained.

3.5.1.4.3 Transport

Solid rocket propellant is classified as either DOT Hazard Class 1.1 or 1.3.

3.5.1.4.4 Disposal

Under normal operations, KSC does not generate waste solid propellant. Solid propellant is fully consumed with the vehicle launch.
3.5.1.5 Liquid Propellants

The KSC Spacecraft Fueling Service provides storage and handling services for liquid rocket propellants. The Spacecraft Fueling Service follows detailed operating procedures to ensure safety for handling spacecraft fueling materials. New operations will have a similar fueling service that utilizes the same detailed operating procedures that ensure safety for handling these materials.

There are various types of liquid propellants. The most common is hydrazine, which is one of the hypergolic fuels mentioned above. This material can be very hazardous. Hydrazine is a known carcinogen (MSDS, 2015) and can be very hazardous in the case of skin contact and ingestion. However, when it is mixed and burned as fuel, the combustion products are non-hazardous. Therefore there is little or no concern from the emissions of rocket motors that use liquid propellants; however, there are always precautions required when storing and handling these materials.

Other common liquid propellants include liquid oxygen (LOX), liquid hydrogen (LH2), kerosene (RP-1), MMH, Aerozine-50 (A-50), and LCH4. Combustion products of these propellants are also non-hazardous.

Because of the hazardous nature of these materials, there are numerous federal regulations contained in the Code of Federal Regulations (CFR) governing all aspects of these fuels and propellants. There is also a culture of knowledge and procedures for safe handling of these materials at KSC. Therefore, although these materials are hazardous, the procedures in place assure that the chance of the public being exposed to these materials is extremely remote.

Regulations applicable to liquid propellant facilities, sites, storage for commercial launch site operators and commercial launch providers include:

- **14 CFR AERONAUTICS and SPACE (with appendices)**
 - **414 Technical Criteria for [Launch] LICENSING**—This regulation identifies other criteria, including those defined by the license applicant, for performance, design, quality assurance, acceptance tests, continued operation and public disclosure of support systems.
417 LICENSING and SAFETY REQUIREMENTS for LAUNCH--This regulation identifies toxic release hazard analysis, far-field blast effects, flight/ground safety support systems, clear zones, hazard areas, and specific requirements for various propellant types.

420 LICENSE TO OPERATE A LAUNCH SITE, SEPARATION DISTANCES--This regulation establishes requirements for launch site boundaries, launch operations, site separation distances for fuel and equipment, lightning protection, and site plans.

27 CFR ALCOHOL, TOBACCO and FIREARMS

555 EXPLOSIVES--These regulations ensure that explosive compounds are properly shipped, stored, inventoried, and distributed. Reporting of lost or stolen explosives, inspection, licenses, changes in operations and magazines, identification and sampling, and storage facility requirements are defined.

29 CFR LABOR

1910 OCCUPATIONAL SAFETY and HEALTH, subpart H--This part identifies hazardous materials (flammable liquids, oxidizers, explosives, etc.) and establishes requirements for working, exit route, emergency planning, man-lifts, platforms, ventilation, noise, nonionizing radiation, personal protective equipment, confined spaces, lockout/tagout, first aid, fire protection, compressed gas storage, material storage, machines and electrical operations and equipment.

1917 FUEL HANDLING AND STORAGE--These regulations ensure that fuel handling facilities for marine terminals, railroad, and hazardous cargo operations protect personnel from hazards by establishing requirements for equipment, terminals, and personal protection.

40 CFR ENVIRONMENT

112 Pollution Prevention--These regulations ensure that fuel storage, distribution and loading facilities, equipment and handlers satisfy planning, inspection, failure analysis, secondary containment and overfill prevention requirements.

3.5.1.5.1 Handling

These materials present both a health and fire hazard. To minimize the risk of fire hazard, these materials are kept away from initiation sources, such as sparks, open flame and excessive heat. As with solid propellants, there are specific safety rules applied to handling rocket motors to assure they are properly grounded to avoid static electricity. Electrical equipment used for handling liquid propellants should be rated as Class 1, for flammable vapors or gases.

In addition to mitigating the fire risks, the health risks can be reduced by use of proper PPE. Goggles, face shields, gloves and impervious clothing should be used to avoid skin and eye contact. Self-contained breathing apparatuses should be used for open exposure.

3.5.1.5.2 Storage

As with solid propellants, storage and use facilities for liquid propellants are subject to quantity distance siting requirements. Launch sites and storage locations are required to have sufficient
separation distances based on the propellant quantity and hazard division. Sufficient separation
distance to public traffic routes and all other facilities must be maintained.

3.5.1.5.3 Transport

Liquid rocket propellant is classified as DOT Hazard Class 1.3. Additionally, hazard classes 2.1,
2.2, 3, 5.1, 6.1 and 8 apply to these fuels and oxidizers.

3.5.1.5.4 Disposal

Under normal operations, KSC does not generate waste liquid propellant. Liquid propellant is
fully consumed with the vehicle launch.

3.5.2 Environmental Consequences Including Cumulative
Impacts

3.5.2.1 Proposed Action

In the Proposed Action, KSC would transition to a multi-user spaceport. The impact on
hazardous materials and waste is confined to an increase in quantity, rather than an influx of new
materials. Those materials considered as part of the Proposed Action are materials that are
currently used at KSC.

The Proposed Action will result in an increase of hazardous materials stored and handled at KSC
compared to the No Action Alternative. The increase is solely in the quantity of hazardous
materials, not an increase in material types. KSC currently handles solvents, surface coatings,
propellants and fuels. Procedures for handling, transporting, storing or disposing of hazardous
materials would be unaffected by the Proposed Action.

In the Proposed Action, the frequency with which hazardous materials are used, handled,
transported, etc., would be increased. Because of the increase in exposure and the activities
related to these materials, the risks associated with them are also slightly increased. The
importance of adhering to proper safety procedures must be viewed as a top priority for future
operations to minimize the risks of accidental release and personnel exposure. Due to the
regulatory and safety requirements inherent in the industry and the nature of expected operations
it is considered likely that sufficient engineering and administrative controls would mitigate the
risks associated with the presence of these materials to the lowest possible level. The severity of
an unplanned event is unlikely to increase. The probability of an accidental release would
increase due to the increased activities and quantity of materials, but best practices would ensure
this increase in risk is small, with the probability of a major spill kept at a minimum.

Overall, adverse impacts of the Proposed Action on hazardous materials and waste would be of
slight precedence, negligible to minor magnitude, and long-term duration. Cumulative impacts
are not expected, even with the construction and operation of the proposed Shiloh Launch
Complex. Shiloh would be required to follow all of the same safety regulations that KSC
follows for hazardous materials handling, storage, transport and disposal, and would also need to
implement comparable practices and procedures.
3.5.2.2 Alternative 1

Alternative 1 would be essentially identical to the Proposed Action. There would be no difference in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC under this alternative.

3.5.2.3 No Action Alternative

Under the No Action alternative, the status quo would be maintained at KSC. There would be no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC.

3.6 Air Quality

3.6.1 Affected Environment

Air quality as a resource incorporates air pollution within a region, as well as sources of, and regulations governing, air emissions. Below is a discussion of the National Ambient Air Quality Standards (NAAQS), local ambient air quality, the State Implementation Plan (SIP) for the Clean Air Act (CAA), and conformity.

3.6.1.1 National Ambient Air Quality Standards and Attainment Status

EPA Region 4 and the Florida Department of Environmental Protection (FDEP) regulate air quality in Florida. The CAA (42 U.S.C. 7401-7671q), as amended, assigns the EPA responsibility to establish the primary and secondary National Ambient Air Quality Standards (NAAQS) (40 CFR Part 50) that specify acceptable concentration levels of six criteria pollutants: particulate matter (measured as both particulate matter less than 10 microns in diameter [PM$_{10}$] and particulate matter less than 2.5 microns in diameter [PM$_{2.5}$]), sulfur dioxide (SO$_2$), carbon monoxide (CO), oxides of nitrogen (NO$_x$), ozone (O$_3$), and lead. Short-term NAAQS (1-, 8-, and 24-hour periods) have been established for pollutants contributing to acute health effects, while long-term NAAQS (annual averages) have been established for pollutants contributing to chronic health effects. While each state has the authority to adopt standards stricter than those established under the Federal program, the State of Florida accepts the Federal standards.

Federal regulations designate Air Quality Control Regions (AQCRs) in violation of the NAAQS as nonattainment areas. Federal regulations designate AQCRs with pollutant levels below the NAAQS as attainment areas. Brevard County (and therefore all areas associated with the Proposed Action) is within the Central Florida Intrastate AQCR (40 CFR 81.95). The EPA has designated Brevard County as in attainment for all criteria pollutants (EPA, 2014a). The EPA monitors levels of criteria pollutants at representative sites in each region throughout Florida. For reference purposes, Table 3.6-1 shows the monitored concentrations of criteria pollutants at the monitoring location closest to KSC.
Table 3.6-1. Air quality standards and monitored data

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary NAAQS</th>
<th>State of Florida Standard</th>
<th>Nearest Monitored Concentrations for KSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour(^a) (ppm)</td>
<td>35</td>
<td>35</td>
<td><no data></td>
</tr>
<tr>
<td>8-hour(^a) (ppm)</td>
<td>9</td>
<td>9</td>
<td><no data></td>
</tr>
<tr>
<td>NO(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour (µg/m(^3))</td>
<td>100</td>
<td>100</td>
<td><no data></td>
</tr>
<tr>
<td>O(_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-hour(^a) (ppm)</td>
<td>0.075</td>
<td>0.075</td>
<td>0.063</td>
</tr>
<tr>
<td>SO(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour(^a) (ppb)</td>
<td>75</td>
<td></td>
<td><no data></td>
</tr>
<tr>
<td>3-hour(^b) (ppm)</td>
<td>0.5</td>
<td>0.5</td>
<td><no data></td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour(^c) (µg/m(^3))</td>
<td>35</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td>Annual arithmetic mean(^d) (µg/m(^3))</td>
<td>15</td>
<td>15</td>
<td>5.8</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour(^a) (µg/m(^3))</td>
<td>150</td>
<td>150</td>
<td>54</td>
</tr>
</tbody>
</table>

Note: ppm = parts per million, µg/m\(^3\) = micrograms per cubic meter, NO\(_2\) = Nitrogen dioxide

\(^a\) Not to be exceeded more than once per year

\(^b\) The 3-year average of the four highest daily maximum 8-hour average O\(_3\) concentrations over each year must not exceed 0.075 ppm.

\(^c\) The 3-year average of the 98th percentile of 24-hour concentrations at each population-oriented monitor must not exceed 35 µg/m\(^3\).

\(^d\) The 3-year average of the weighted annual mean PM\(_{2.5}\) concentrations from must not exceed 12.0 µg/m\(^3\).

3.6.1.2 Permitting Overview

FDEP oversees programs for permitting the construction and operation of new or modified stationary sources of air emissions in Florida. In Florida, air permitting is required for many industries and facilities that emit regulated pollutants. FDEP sets permit rules and standards based on the size of the stationary source and the types of pollutants emitted.

The air permitting process begins with the application for a construction permit. Back-up generators, boilers, and other stationary sources of air emissions require construction permits. There are two types of construction permits available through the FDEP for the construction and temporary operation of new emissions sources in attainment areas: Prevention of Significant Deterioration (PSD) permits; and Minor New Source Construction Permits (Minor New Source Review [NSR]).

3.6.1.2.1 Prevention of Significant Deterioration

The PSD program protects the air quality in attainment areas. PSD regulations impose limits on the amount of pollutants that major sources may emit. The PSD process applies to all pollutants for which the region is in attainment (all but O\(_3\) and PM\(_{2.5}\)). The PSD permitting process typically takes 18–24 months to complete. Sources subject to PSD are typically required to complete the following:
• Best Available Control Technology (BACT) review for each criteria pollutant and greenhouse gases (GHG)
• Maximum Achievable Control Technology (MACT) review for Hazardous Air Pollutants (HAPs)
• Predictive air dispersion modeling
• Establish procedures for measuring and recording emissions and/or process rates
• A public involvement process

The PSD regulations also set standards to protect Class I areas. CAA defines Class I areas as certain national parks, wilderness areas, national memorial parks, and international parks that were in existence as of August 1977. There are three Class I areas in Florida; the closest to KSC is Chassahowitzka Wilderness Area, approximately 115 miles west of KSC in Crystal River, Florida (EPA, 2014c).

3.6.1.2.2 Minor New Source Review

A Minor NSR permit would be required to construct minor new sources, minor modifications of existing sources, and major sources not subject to Non-attainment New Source Review (NNSR) or PSD permit requirements. The Minor NSR permitting process typically takes 4–5 months to complete. Sources subject to Minor NSR could be required to complete the following:

• BACT review for each criteria pollutant
• MACT review for regulated HAPs
• Predictive air dispersion modeling upon request by FDEP
• Establish procedures for measuring and recording emissions and process rates

3.6.1.2.3 Operating Permits

A Title V permit is required for facilities whose potential to emit (PTE) is greater than 100 tpy of a criteria pollutant. KSC is considered a major facility for the purposes of air permitting, and holds a recently revised major operating permit (# 0090051-028-AV) (FDEP, 2015a). The permit requirements include annual periodic inventory of all significant stationary sources of air emissions for each of the criteria pollutants of concern; monitoring and recordkeeping requirements also are included in the permit. Primary stationary sources of air emissions include boilers and generators. Table 3.6-2 lists KSC’s facility-wide air emissions from all significant stationary sources.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>7.2</td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>25.0</td>
</tr>
<tr>
<td>Volatile organic compounds (VOCs)</td>
<td>4.4</td>
</tr>
<tr>
<td>Fine particulate matter (PM2.5)</td>
<td>1.7</td>
</tr>
<tr>
<td>Fine particulate matter (PM10)</td>
<td>1.7</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Source: FDEP, 2015b.

In addition to the permitting requirements to construct and operate new or modified emissions sources, New Source Performance Standards (NSPS) and National Emission Standards for
Hazardous Air Pollutants (NESHAPs) set emissions control standards for categories of new stationary emissions sources of both criteria pollutants and HAPs. The NSPS process requires EPA to list categories of stationary sources that cause or contribute to air pollution that might reasonably be anticipated to endanger public health or welfare. The NSPS program sets uniform emissions limitations for many industrial sources. The CAA Amendments of 1990, under revisions to Section 112, require EPA to promulgate NESHAPs to reduce the emissions of HAPs, such as formaldehyde, benzene, xylene, and toluene from categories of major and area sources (40 CFR Part 63). New stationary sources whose PTE exceeds either 10 tpy of a single HAP or 25 tpy of all regulated HAPs would be subject to MACT requirements.

3.6.1.2.4 Clean Air Act Conformity

The 1990 amendments to the CAA require federal agencies to ensure that their actions conform to the SIP in a nonattainment area. EPA has developed two distinctive sets of conformity regulations: one for transportation projects and one for non-transportation projects. Non-transportation projects are governed by general conformity regulations (40 CFR 52.520(c)), and the State of Florida has adopted the Federal regulations by reference (§62-204 Florida Administrative Code). The KSC Proposed Action is a non-transportation project within an attainment area. Therefore, a general conformity analysis is not required.

3.6.2 Environmental Consequences Including Cumulative Impacts

An impact to air quality would be considered significant if it affects the achievement or maintenance of NAAQS in the region or if it leads to a violation of the Title V operating permit. The following sections discuss the potential for adverse impacts to air quality for the Proposed Action, Alternative 1, and the No Action Alternative.

3.6.2.1 Proposed Action

The Proposed Action would have short- and long-term minor adverse effects on air quality. As KSC consolidates ongoing NASA functions and transitions into a multi-user spaceport, the Proposed Action could affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic. All components of the Proposed Action are completely within an attainment area and would not inherently lead to a violation of any Federal, state, or local air regulation. Therefore, a general conformity analysis would not be required and the level of effects would be less than significant under NEPA.

3.6.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

The implementation of the land use, future development, and functional area plans would have short- and long-term minor adverse effects on air quality. Short-term effects would be from airborne dust and other pollutants generated during demolition of aging or outdated facilities and construction of new facilities. Long-term effects would be from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic. This section outlines effects from planning activities, demolition and construction activities, and new stationary sources of air emissions. Effects from
proposed changes in launch, landing, operations, and support activities are addressed in Section 3.6.2.1.2. Effect from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.6.2.1.4.

3.6.2.1.1 Planning Activities

The planning activities associated with the updated land use plan, future development plan, and functional area plans in-and-of themselves would not generate any direct or indirect air emissions. Therefore, planning activities and updating the land use designations would have no effect on air quality.

3.6.2.1.2 Demolition and Construction Activities

Although the area is in attainment and the general conformity rules do not apply, the de minimis threshold values were used to determine the level of effects under NEPA. As a reasonable upper bound of effects, the total emissions of all criteria pollutants were estimated for a large (1,000,000-gross-square-foot [gsf]) demolition project and a large (1,000,000 gsf) construction project compressed into a 12-month period (Table 3.6-3). The direct and indirect emissions resulting from projects of this magnitude or smaller would be below the de minimis threshold of 100 tons per year of each pollutant; therefore, the level of effects would be minor.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Estimated Emissions [tpy]</th>
<th>De Minimis Threshold [tpy]</th>
<th>Level of Effects?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Construction Project</td>
<td>28.4</td>
<td>48.7</td>
<td>100</td>
</tr>
<tr>
<td>(1 million gsf/yr)</td>
<td>14.8</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.9</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Large Demolition Project</td>
<td>37.7</td>
<td>71.7</td>
<td>100</td>
</tr>
<tr>
<td>(1 million gsf/yr)</td>
<td>15.4</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>9.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: de minimis = the smallest amount of concern, CO = carbon monoxide, NOx = oxides of nitrogen, PM10 = particulate matter less than 2.5 microns in diameter, PM2.5 = particulate matter less than 10 microns in diameter, SOx = sulfur dioxide, VOC = volatile organic compound, tpy = tons per year, gsf/yr = gross square feet per year.

For purposes of analysis, it was assumed that all activities would be compressed into one 12-month period. Therefore, regardless of the ultimate implementation schedule, as long as the rate of construction was less than 1,000,000 gsf per year, annual emissions would be less than those estimated. The siting of the facilities, the ultimate design, and moderate changes in quantity and types of equipment used would not substantially change these emission estimates, and would not change the level of effects under NEPA. Future or tiered NEPA would require air quality assessment for actions including more than 1,000,000 gsf/yr of demolition or construction.

All demolition and construction would be accomplished in full compliance with current and pending Florida regulatory requirements, through the use of compliant practices and/or products. Within the region, these regulatory requirements include:

- Air Pollution Control - General Provisions (62-204 FAC);
- Open Burning (62-256 FAC);
- Gasoline Vapor Control (62-252 FAC); and
• Asbestos Program (62-257 FAC).

During construction, reasonable precautions would be taken to prevent fugitive dust from becoming airborne, including, but not limited to:

• Use of water for control of dust during construction, the grading of roads, or the clearing of land;
• Application of asphalt or water on dirt roads, material stockpiles, and other surfaces that can give rise to airborne dusts;
• Covering open-bodied trucks that are transporting materials likely to give rise to airborne dusts; and
• Removal of earth or other material from paved streets onto which earth or other material has been deposited.

Notably, any new construction would include climate change and sea-level rise hardening requirements where applicable.

3.6.2.1.1.3 Stationary Sources

Any new stationary sources of air emissions could be subject to Federal and state air permitting regulations, including PSD, minor new source review, and Title V permitting. Permitting scenarios can vary based on the types and sizes of new stationary sources, timing of the projects, and the types of controls ultimately selected. However, during the final design stage and the permitting process either, (1) the actual equipment, controls, or operating limitations would be selected to reduce the PTE below the major source threshold; or (2) the PSD permitting process would insure the NAAQS were not exceeded and the emissions from the projects would be included in the regional emissions inventory, ensuring that it would not interfere with the ability of the state to maintain the NAAQS. This cap-and-trade-type system is inherent to Federal and state air regulations, and leads to a forced preservation of clean air in attainment regions. Therefore, regardless of the ultimate permitting scenario, these effects would be less than significant. Future or tiered NEPA would require air quality assessment for actions that included stationary sources that exceed the PSD major source threshold.

In some cases, new facilities may require backup generators, and boilers for heating. The exact list of new equipment or stationary sources of air emissions is not available at this time. Any new stationary sources of air emissions (e.g., back-up generators or other fuel burning equipment) would be inventoried and reviewed for addition to KSC’s operational air permit and to insure compliance with all applicable state and Federal air regulations. In addition, new sources would be subject to NSPS and NESHAP requirements. All other regulatory requirements and BMPs associated with both construction and new stationary sources would be similar to those outlined in the permitting overview in Section 3.6.1 Affected Environment. Future development activities that included additional stationary sources of air emissions would be added to the installation's Title V permit and would meet all the requirements therein.

It is likely that non-NASA enterprises would be owned, operated, and maintained by private entities on Federal property. In general, these leased activities would not be considered under the direct control of KSC. Any leased activities would normally be considered “tenants” and KSC would need to perform an air quality regulatory analysis to determine if any Clean Air Act
permitting would be required for the operation of any sources of air emissions. However, leased activities may be considered under common control when they also have a contract-for-service relationship to provide goods or services to KSC. Given the variety and complexity of leased and contract-for-service activities, case-by-case determinations would be necessary to determine if the existing sources of emissions would remain on, or new sources would be added to, KSC’s operating permit.

3.6.2.1.2 Launch, Landing, Operations and Support

Launch, landing, operations and support would have short- and long-term minor adverse effects on air quality. Short-term effects would be from construction and modification of launch and support facilities. Long-term effects would be from introduction of new stationary sources such as launches and automotive traffic. This section outlines effects from:

- Site modifications and pre-launch preparations;
- Vertical launch activities; and
- Horizontal launch activities.

Effects from planning activities and associated demolition and construction activities and new stationary sources of air emissions are addressed in Section 3.6.2.1.1. Effects from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.6.2.1.4.

3.6.2.1.2.1 Site Modifications and Pre-Launch Preparations

For most launch programs, site modifications would normally be minor and limited to launch pads and facilities directly related to individual launches and test programs. Modifications to existing facilities may include clearing, grading, and limited construction. Fugitive dust and criteria pollutant emissions would be expected. The total estimated emissions of criteria pollutants for a large demolition project and large construction project are outlined in Table 3.6-3.

Any construction or demolition activities associated with site modifications and prelaunch preparation would likely be substantially smaller than the activities used for the estimates in Table 3.6-3; therefore, effects would be less than significant. As with the implementation of the land use planning outlined in Section 3.6.2.1.1 and for similar reasons, future or tiered NEPA would require air quality assessment if site modifications included more than 1,000,000 gsf/yr of demolition or construction.

The use of portable generators may be necessary to support some launches. Support equipment would meet all applicable Florida regulatory requirements. In addition, proper tuning and preventive maintenance of vehicles and other support equipment would minimize engine exhaust. These activities would have a limited amount of air emissions, and would not have significant impacts on local or regional air quality.

3.6.2.1.2.2 Vertical Launch and Landing

Under the Proposed Action, vertical launches and landings would be ongoing at KSC. In the hours before the launch, remote sensors and helicopters (when available) may be used to verify that the hazard areas would be clear of non-mission-essential aircraft, vessels, and personnel. Emissions of criteria pollutants for the helicopter exhaust from all vertical launches and landings...
would be minute. In addition to criteria pollutants, the products of combustion from solid rocket boosters would also include other common products of combustion including aluminum oxide, hydrogen chloride, hydrogen, nitrogen, carbon dioxide, and water. These components are predominately inert and would be emitted in limited amounts.

Under the Proposed Action, with the transition to a multi-user spaceport, increased launch frequency would be expected. Increased launch frequency, vehicle class (propellant quantity) and propellant type would be the determining factors on the impact on the air quality at KSC.

Table 3.6-4 summarizes the products of combustion based on propellant type.

<table>
<thead>
<tr>
<th>Propellant</th>
<th>Vehicle Class</th>
<th>Major Products of Combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Small, Medium, Super Heavy, Horizontal</td>
<td>H₂O, CO, CO₂, HCl, NOₓ, N₂, PM10 (Al₂O₃)</td>
</tr>
<tr>
<td>RP-1/Jet-A/</td>
<td>Small, Medium, Super Heavy, Horizontal</td>
<td>H₂O, CO, CO₂</td>
</tr>
<tr>
<td>LCH₄/LOX (Hydrocarbon Fuels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic (Liquid Oxygen/Hydrogen)</td>
<td>Medium, Super Heavy, Horizontal</td>
<td>H₂O</td>
</tr>
<tr>
<td>MMH/A-50/</td>
<td>Small, Medium, Horizontal</td>
<td>H₂O, CO, CO₂, NOₓ, N₂</td>
</tr>
<tr>
<td>N₂H₄/N₂O₄ (Liquid Hydrazine Fuels)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See Appendix A for list of acronyms and abbreviations.

Solid rocket propellant typically consists of aluminum powder fuel, ammonium perchlorate (AP) oxidizer and a binder. The most common binder used is HTPB. Like other binders, HTPB is composed mostly of carbon and hydrogen. The main combustion products of these fuels are solid aluminum oxide (Al₂O₃) particulate, hydrogen chloride (HCl) gas, water vapor (H₂O), nitrogen (N₂) and carbon dioxide (CO₂). Other minor products include the criteria pollutants carbon monoxide (CO) and nitrous oxides (NOₓ). Combustion of AP-based propellants also has the potential to produce dioxins/furans in trace quantities (EDE, 2012a).

RP-1, Jet-A and LCH₄ (liquid methane) can all be classified as liquid hydrocarbon propellants. These fuels commonly use Liquid Oxygen (LOX) as the oxidizer. Jet-Á propellant typically contains sulfur. As carbon is a main ingredient in the fuel, hydrocarbon propellants produce a large amount of carbon dioxide and water vapor as products of combustion. Other minor constituents include CO and sulfur dioxide SO₂.

Cryogenic engines (liquid hydrogen (LH₂)/ liquid oxygen (LOX)) are in a category by themselves. Water vapor is the only product of combustion.

The remaining propellants are categorized as those that use liquid hydrazine fuels. These fuels typically use dinitrogen tetroxide as the oxidizer. These fuels are hypergolic with the listed oxidizers and are very hazardous; however, when burned as fuel the products of combustion are
mostly non-hazardous. Combustion of these propellants produces mostly water vapor and nitrogen, as well as smaller quantities of carbon dioxide, carbon monoxide and nitrous oxides. Tridyne is also used with liquid fuels. Tridyne is nitrogen, helium and hydrogen and has no toxicity therefore it is not discussed further.

Criteria Pollutants

The federal government (EPA) has found that emissions generated at or above 3,000 feet above ground level have no impact on surrounding air quality (40 CFR 93.153). Therefore, only the portion of emissions generated below 3,000 feet from vehicle launches are considered for contributions to the air quality and for de minimis calculations under the CAA. While de minimis calculations typically apply to stationary sources, they are applied in this EIS to assess the impact on air quality. The EPA uses de minimis to ascertain whether an emission source produces significant pollutants. Typically, sources that produce pollutants below de minimis levels are considered to have no impact on air quality. KSC is not located in an ozone transport region nor in a nonattainment area.

Table 3.6-5 lists the criteria pollutants established as NAAQS under the CAA and its amendments. Criteria pollutant standards are set for VOC, NOx, CO, SO2, PM and Pb. Vehicle launches produce significant quantities of CO, NOx and PM; SO2 and VOCs are also possible pollutants based on the fuel but typically would only be present in very low or trace quantities.

Total quantities of criteria pollutants produced are dependent on launch vehicle classes and total number of annual launches. The largest class, SHCLV, produces the largest quantities of criteria pollutants. The de minimis levels for certain criteria pollutants could be exceeded by a large number of launches of this vehicle class. By way of general comparison with smaller vehicle classes, roughly twelve times more launches of the SCLV or three times more launches of the MCLV of the same propellant type would be needed to produce the same quantity of emissions as that of the SHCLV.

For example, the historic Space Shuttle would be classified as a SHCLV. A Space Shuttle launch produced PM-10 emissions in the lower atmosphere that exceeded de minimis levels after approximately a dozen launches. CO emissions could also exceed those standards after 70 plus launches and NOx after 100-200 launches. As stated above for relative comparison, approximately twelve times the number of launches of SCLVs at KSC would have no increased or similar impact on the air quality as the Space Shuttle, assuming that the same propellant types are used.

Future launches at a re-tasked KSC could possibly result in an increase in the production of criteria pollutants over levels that have been emitted in under past KSC operations. However, vehicle launches alone would only exceed de minimis levels if a large number of SHCLV launches, coupled with numerous other classes of vehicle launches, were to be conducted during the calendar year. Table 3.6-6 summarizes de minimis calculation estimates for the No Action, Proposed Action, and Alternative 1, including the two main categories for propellant type.

Thermal buoyant rocket plumes typically meet the listed standards, even for the largest of motors. However, vertical launches generate a ground cloud that does not exhibit typical thermal buoyant behavior. The lack of thermal buoyance is exacerbated by the large amounts of sound
suppression water that is sprayed around the launch site. Water entrained into the launch cloud cools the hot gasses, reducing the elevation to which the cloud will climb, keeping the cloud near

Table 3.6-5. 40 CFR 93 § 153 de minimis levels for criteria pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Area Type</th>
<th>Tons/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (VOC or NOx)</td>
<td>Serious nonattainment</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Severe nonattainment</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Extreme nonattainment</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Other areas outside an ozone transport region</td>
<td>100</td>
</tr>
<tr>
<td>Ozone (NOx)</td>
<td>Marginal and moderate nonattainment inside an ozone transport region</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>100</td>
</tr>
<tr>
<td>Ozone (VOC)</td>
<td>Marginal and moderate nonattainment inside an ozone transport region</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Maintenance within an ozone transport region</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Maintenance outside an ozone transport region</td>
<td>100</td>
</tr>
<tr>
<td>Carbon monoxide, SO₂ and NO₂</td>
<td>All nonattainment & maintenance</td>
<td>100</td>
</tr>
<tr>
<td>PM-10</td>
<td>Serious nonattainment</td>
<td>70</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Moderate nonattainment and maintenance</td>
<td>100</td>
</tr>
<tr>
<td>Direct emissions, SO₂, NOx (unless determined not to be a significant precursor), VOC or ammonia (if determined to be significant precursors)</td>
<td>All nonattainment & maintenance</td>
<td>100</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>All nonattainment & maintenance</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 3.6-6. Summary of de minimis calculation estimates

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>No Action Alternative</th>
<th>Proposed Action and Alternative 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solid Propellant</td>
</tr>
<tr>
<td>CO</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>NOx</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>VOC</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SO₂</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>PM-10</td>
<td><*</td>
<td><*</td>
</tr>
</tbody>
</table>

< Less than de minimis levels, > Greater than de minimis

*Estimated to be below de minimis; future workload scenarios could exceed

ground level. Due to the reduced buoyancy, the high concentrations of combustion gasses do not have as much time to diffuse in the ambient air before they return to the ground. Ground level concentrations could exceed the Ambient Air Quality Standards and Threshold Limit Values for
Criteria Pollutants and Hazardous Air Pollutants (HAP) in the ground cloud near the launch pad. However, as the ground cloud moves away from the launch area, the cloud diffuses with atmospheric air and grows in size. Studies done as part of the Space Shuttle Environmental Impact Statement found constituent concentrations were typically predicted to be below Air Quality Standards and Threshold Limit Values in all areas outside of the launch area (NASA, 1978).

As the Space Shuttle was larger than all anticipated future launch vehicles, with the exception of the SLS, the ground cloud produced from future launches at KSC would be smaller than those generated by the Space Shuttle. Those clouds would travel, diffuse and disperse similar to those typically generated at KSC.

The SLS will generate a launch cloud larger than those from the Space Shuttle. The SLS will use solid propellant boosters similar to those of the Space Shuttle. The main SLS engine which uses a liquid hydrogen/oxygen fuel represents the largest increase in emissions. Overall however, ground clouds generated by the SLS are expected to have similar concentrations of criteria pollutants as the Space Shuttle.

Propellants are typically designed to be under-oxidized to maximize the thrust to weight ratio. In the atmosphere, as the rocket plume exits the exhaust nozzle, ambient air is mixed into the high temperature flame region. Oxygen from the air is used to further oxidize nozzle exhaust gas species such as OH, CO, Al, and NO. The amount of partially oxidized constituents produced from a vehicle launch is a function of the mixing of the plume. In general, a larger rocket motor will produce more partially oxidized constituents, such as CO, than a smaller rocket motor per pound of propellant burned. The larger plume of the heavier vehicles not only requires more air to be mixed, but requires that the ambient air be mixed a longer distance into the flame region, compared to a smaller vehicle. Testing in the open air has found that smaller rocket motors have 20-30% more air available for combustion than SHCLVs, such as the Space Shuttle (EDE, 1996).

\(H_2O\) (Water)
All propellants expected to be employed at KSC produce water as a product of combustion. Solid propellants produce significantly less water than other fuel types. Although it is a greenhouse gas, water vapor is typically considered to have no adverse effects on ambient air quality.

Carbon Monoxide
Carbon monoxide (CO) emissions are a criteria pollutant. CO is a colorless, odorless and poisonous gas that presents a health hazard when concentrations exceed the Threshold Limit Values (TLV).

Carbon is a main component in hydrocarbon fuels and the binder used in solid propellants. It is also present as a component in some hydrazine-based liquid propellants. The majority of the carbon in these fuels fully oxidizes to CO\(_2\). However, propellants are frequently under-oxidized, meaning that additional oxygen is required for complete combustion of the carbon, resulting in some carbon monoxide being produced. CO production peaks at the moment of motor ignition before a stable motor plume is established. Also, the addition of sound suppression water into
the rocket plume would result in a small increase in CO production due to quenching of some of the oxidation reaction which takes place with entrained ambient air. Because CO production is based on the amount of oxygen that is entrained into the plume, larger rocket motors typically produce more CO per unit mass versus smaller motors.

Ground clouds generated from vertical launch vehicles generate CO concentrations higher than the State and Federal Ambient Air Standards in the immediate vicinity of the launch pad. After the ground cloud reaches a stable altitude, disperses and moves away from the launch area, CO concentrations are diluted and reduce to levels below applicable standards (NASA, 1978).

Carbon Dioxide

The majority of carbon in propellants is converted to carbon dioxide (CO₂) during the combustion process. Carbon dioxide is an inert gas that is not a health hazard in low concentrations. For example, the TLV for CO₂ is set at 5,000 ppm for 8 hour exposure.

In the past, there have been no regulations restricting CO₂ emissions. Because CO₂ is a greenhouse gas, recently there have been a number of rules adopted (with several more proposed) that put limitations on the amount of CO₂ that can be generated. While the majority of these new and proposed rules apply to power plant emissions and motor vehicles, CO₂ limitations could someday affect the number of launches allowed at KSC.

Hydrogen Chloride (HCl)

Ammonium perchlorate based solid fuel generates hydrogen chloride (HCl) during combustion. HCl is a hazardous air pollutant. HCl readily dissolves in water vapor and droplets present in the exhaust gases and forms hydrochloric acid. Inhaled HCl gas forms hydrochloric acid on contact with water in the body. The corrosive acid can burn the skin and cause irritation in the nose, throat and lungs, with mild exposures. Severe exposures can lead to permanent damage to the eyes, respiratory and circulatory system and can even cause death. The TLV for HCl is set at 5 ppm for any duration of human exposure.

The initial ground cloud can contain thousands of pounds of HCl, with concentrations far exceeding safe levels. HCl is readily absorbed into water droplets and onto the particulate matter. A large amount of water is sprayed during and after the launch to suppress sound and to cool and wash the launch structure. During the shuttle launches, this water captured 5-15% of the HCl generated in the ground cloud (Knott et al., 1983).

As the ground cloud moves away from the launch area, hydrochloric acid precipitates out of the cloud on water droplets and large particulate matter. The cloud diffuses and disperses greatly reducing the concentrations to acceptable levels a certain distance away from the launch area.

Nitrogen Oxides (NOx)

Nitrogen oxides (NOx) are produced when nitrogen and oxygen are present at high temperatures. They are produced in the greatest quantities when nitrogen is present in the fuel and/or oxidizer. However, because atmospheric air mixes with the high temperature rocket plume, NOx is produced from all vehicle launches. The quantities of NOx produced from cryogenic engines (LOX/LH2) are considered negligible. The main nitrogen oxides are nitrous oxide (NO) and NO₂. In open air, NO will oxidize into NO₂.
Nitrogen dioxide (NO₂) is a brownish gas with a strong odor. The gas is hazardous to human health if inhaled. NO₂ in the atmosphere combines with rain water to form nitric acid (acid rain). Additionally, NO₂ is a precursor for ozone (O₃), presenting a possible impact on the upper atmosphere.

In rocket motor combustion, NOx is produced in the smallest quantity of the major combustion products. In general, the amount of NOx produced by launches is negligible to that produced by other sources. It is unlikely that NOx would exceed de minimis values for practical anticipated launch scenario at KSC.

Particulate Matter (PM-10)

Solid rocket motors produce large amounts of particulate matter (PM), in the form of aluminum oxide (Al₂O₃). This solid particulate is inert and only considered harmful to human health if the particle size is below 10 microns. PM-10 pertains to particles between 2.5 and 10 microns.

Testing of combustion of Al-AP propellant has shown that Al₂O₃ particles will coalesce increasing in size, and leaving only 10-20% of the PM below 10 microns (EDE, 2012b). The larger particles settle out of the ground cloud orders of magnitude faster than the other constituents, leaving only the PM-10 dusts suspended in the air.

Sulfur Dioxide

Sulfur containing Jet-A fuel, used in horizontal launch vehicles, produces small amounts of sulfur dioxide (SO₂). SO₂ is a toxic by inhalation, causing problems in the respiratory system in high concentrations. SO₂ is soluble in water and can produce sulfuric acid when combined with moisture in the air. SO₂ is a primary source of acid rain.

Only a single fuel type evaluated contains significant quantities of sulfur. The amount of sulfur dioxide produced is expected to be 1-2 orders of magnitude below de minimis levels for any practical launch scenario at KSC.

Volatile Organic Compounds (VOCs)

Some fuel types are classified as volatile organic compounds (VOCs) before combustion. However, launch vehicle motors are designed to be very efficient combustion engines. Virtually no VOCs are emitted from vehicle launches.

As with carbon monoxide, additional oxygen must be mixed with the rocket plume to fully oxidize the hydrocarbon fuel. Poor mixing or premature quenching of the rocket plume could release VOCs. VOCs are typically produced in much lower quantities than CO from launches as the temperature requirement for combustion of VOCs is significantly lower than that of CO.

Dioxins/Furans

Dioxins/furans can be produced when chlorine and carbon are present in combustion. These substances have been found to damage the immune system and are known carcinogens. Since dioxins/furans will bioaccumulate in the human body, emission standards and tolerable intake levels are set extremely low.

AP solid propellant combustion can produce dioxins/furans. However, published open air testing of rocket motor exhaust has not indicated measured dioxins/furans above non-detect levels.
Non-detection in open air can be due to the nature of methods for measurement, which do not apply well to an open air test; or can be due to the fact that the trace quantities are so low, they are easily diluted below detection levels.

The trace quantities of dioxins/furans that can be produced are not expected to exceed detection levels in the open air, and thus have negligible impact on air quality.

Catastrophic Launch Vehicle Failure

In the event of catastrophic launch vehicle failure, there is the potential for the release of un-combusted fuels. Because of the Challenger accident, NASA performed a study based on large chunks of propellant falling to the ground and burning without a significant plume rise. In these instances, they believed that there was potential cause for concern. However, they reached these conclusions by stating that they did not have appropriate models available and used Cal Puff and REEDM which have questionable validity to this application. They suggested that risks could be mitigated by having people be indoors during launches. This is not deemed very practical as the public enjoys viewing launches. Moreover, there is no record of any spectator being harmed in the Challenger incident (NASA, 2004).

A catastrophic launch vehicle failure during launching, landing, testing or other activity can result in a greater impact on air quality than a successful operation. Because launch vehicles are designed to be efficient combustion engines, catastrophic events can result in the release of un-combusted and partially oxidized fuels as the fuels are able to bypass the nozzle. The two criteria pollutants that would be released in greater quantities in a catastrophic failure are CO and VOCs as there is not sufficient mixing and temperature for complete oxidation.

Another consequence of catastrophic failures can be an increase in emissions generated at or below 3,000 feet above ground level. During successful vehicle launches, only a fraction of the fuel is consumed below this elevation. If a catastrophic failure occurs below this elevation, a majority of the combustion products would be released in the lower atmosphere. In a successful vehicle launch, the majority of the combustion products are released in the upper atmosphere.

Each product of combustion behaves slightly different once it has dispersed in the open environment.

CO

Carbon monoxide in the atmosphere will naturally oxidize to CO₂. CO is not accumulated in the air between vehicle launches.

CO₂

A portion of atmospheric carbon dioxide is absorbed by plant life, moisture in the air, and bodies of water. The remaining carbon dioxide remains as a gas and disperses in the atmosphere. No measureable increase of CO₂ remains in the KSC area following a vehicle launch. CO₂ emissions therefore do not impact the air quality in the KSC area.

The CO₂ emitted from vehicle launches would result in a slight, incremental increase to the total amount of global CO₂ emissions. However, even if KSC would be unable to support these
launches, these launches would still occur, only at a different facility. Therefore, there would be no incremental impact on global CO₂ emissions as part of this action.

NOₓ
A portion of nitrogen oxides in the atmosphere are absorbed by moisture and form nitric acid. Nitric acid is then deposited to the soil or ocean as slightly acidic rain. The alkaline soil of the KSC region quickly neutralizes the acid. Rain water with this acid that falls in the ocean is immediately diluted below detection levels.

NOₓ in the atmosphere also reacts with hydrocarbons in the presence of sunlight to form ozone. In the lower atmosphere, ozone is a key component in the creation of smog. As KSC is in an attainment zone, NOₓ and ozone do not accumulate to smog producing levels. Lower atmosphere ozone does not remain in the air; as part of the same reaction that produces smog, ozone is broken into hydroxyl and peroxyacetyl nitrates that are eventually deposited on the ground.

PM-10
All PM produced from a vehicle launch settles out of the air. Aluminum oxide particulate matter can typically be found in the near and far field launch impact areas. Previous and subsequent vehicle launches do not lead to any increase in PM-10 in the air. Aluminum oxide is inert, and once settled to the ground poses no health or environmental hazard.

HCl
Hydrogen chloride is readily soluble in water. HCl is absorbed into moisture in the air and any ground level water it comes in contact with. HCl is naturally scrubbed out of the air in water droplet. HCl does not remain in the atmosphere following launches.

SO₂
SO₂ is not produced from vehicle launches in significant quantities. The majority of SO₂ that is generated is captured in rain water and scrubbed from the air.

The majority of the products of combustion from vehicle launches do not remain in air. Those few constituents that remain airborne diffuse and disperse into the atmosphere. Wind currents further dilute and carry emissions away from the KSC area. Within hours of a launch, vehicle emissions are undetectable. There is no significant cumulative impact on the air quality from increased launch frequency at KSC.

Emissions generated from vehicle launches produce localized short-term impacts on air quality. The Proposed Action will increase the number of launches per year at KSC. However, it is not anticipated that this increase would result in multiple launches each day. The launches under the Proposed Action will likely be sequenced with time intervals from several days to weeks between launches. A localized short term impact will occur for each launch, however, the fate of the exhaust products in the environment does not indicate that cumulative impacts will occur to local air quality.

Individual launches would be short-term discrete events. Therefore, atmospheric concentrations would differ depending on local meteorological conditions at the time of launch, such as
temperature profiles, atmospheric stability, wind speeds, and the presence or absence of inversions. Although rocket motor emissions would be released in the lower atmosphere, they would be rapidly diluted and dispersed by prevailing winds. During boost flight, additional rocket emissions would be rapidly dispersed over a large geographic area and by prevailing winds. No exceedance of air quality standards or health-based standards for any air pollutants would be expected. As a result, no significant impacts on local or regional air quality are expected. Although effects would likely be minor, there are a wide range of possible vertical launch and landing fuel types and operating scenarios. Because of these uncertainties, future or tiered NEPA would require air quality assessment for increases in vertical launch and landing activities at KSC.

In the hours and days following vertical launches, a general safety check and cleanup of the launch site would occur. There would be some small amount of air emissions from worker commuting, the removal of equipment from the launch site, and general refurbishment of the launch facilities. As with any construction or demolition project, post-launch refurbishment activities would meet all applicable Florida regulatory requirements. No new air emission permits would be required for these activities. Effects from post-launch activities would be less than significant.

3.6.2.1.2.3 Horizontal Launch and Landing

Under the Proposed Action, horizontal launches and landings may occur regularly at KSC. Launch vehicles would likely consist of traditional commercial aircraft comparable to a Boeing 747 jet that would be designed to carry an additional launch vehicle which would be released in the upper atmosphere. Carrier vehicles would use traditional fossil fuels and have emissions comparable to existing commercial aircraft.

Table 3.6-7 provides FAA estimates for the total annual emissions for all horizontal launches and landings nationwide. Emissions have been broken down to areas below 3,000 feet above ground level (AGL) (troposphere) and above 3,000 feet AGL (tropopause and stratosphere). Three thousand feet AGL would be the nominal height of the atmosphere mixing layer below which emissions naturally sink and contribute to ground-level concentrations of air pollutants, and above which they do not. Emissions from launch vehicles above 3,000 feet AGL would naturally rise into the upper atmosphere and would not contribute to ground-level concentrations. Ground level emissions of criteria pollutants from all horizontal launches and landings at KSC would be very small and below the de minimis thresholds. These effects would be less than significant.

Individual launches of additional launch vehicles in the upper atmosphere would be short-term discrete events with no ground level emissions. In addition to criteria pollutants, the products of combustion from solid rocket boosters would include aluminum oxide, hydrogen chloride, hydrogen, nitrogen, carbon dioxide, and water. These components are predominantly inert and would be released in limited amounts. As with vertical launches, atmospheric concentrations would differ depending on meteorological conditions at the time of launch. Rocket motor exhaust would not be released in the lower atmosphere, and rocket emissions would be rapidly dispersed over a large geographic area and by prevailing winds. No exceedance of air quality standards or health-based standards for any air pollutants would be expected. As a result, no significant impacts on local or regional air quality are expected. Although effects would likely
be minor, there are a wide range of possible horizontal launch and landing fuel types and operating scenarios. *Future or tiered NEPA would require air quality assessment for increases in horizontal launch and landing activities at KSC.*

Table 3.6-7. Estimated annual emissions for all horizontal launches and landings nationwide

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>SO\textsubscript{2}</th>
<th>VOC</th>
<th>De Minimis Threshold [tpy]</th>
<th>Level of Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 3,000 Feet (Troposphere)</td>
<td>3.4</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td><0.1</td>
<td>0.5</td>
<td>100</td>
<td>Less than significant</td>
</tr>
<tr>
<td>Above 3,000 Feet (Stratosphere)</td>
<td>121.6</td>
<td>0.1</td>
<td>13.1</td>
<td>13.1</td>
<td><0.1</td>
<td><0.1</td>
<td>N/A*</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

*Not Applicable

Note: CO = carbon monoxide, de minimis = the smallest amount of concern, NO\textsubscript{x} = oxides of nitrogen, PM\textsubscript{2.5} = particulate matter less than 2.5 microns in diameter, PM\textsubscript{10} = particulate matter less than 10 microns in diameter, SO\textsubscript{2} = sulfur dioxide, tpy = tons per year, VOC = volatile organic compound.

3.6.2.1.3 Climate Change

Implementation of the climate change and sea-level rise requirements would have short- and long-term minor adverse effects on air quality. Short-term effects would be from airborne dust and other pollutants generated during demolition of aging or outdated facilities, construction of new facilities, and modification of existing facilities. Long-term effects would be from introduction of new stationary sources such as generators and combustion driven water pumps. Effects from the demolition of outdated facilities and construction of new facilities are addressed in Section 3.6.2.1.1. Any new construction stated under future planning efforts would include climate change and sea-level rise requirements.

Modifications of existing facilities to meet climate change and sea-level rise requirements may range from minor hardening efforts to complete on-site demolition and reconstruction. The total estimated emissions of all criteria pollutants for a large demolition project and a large construction project are outlined in Table 3.6-3. Any construction or demolition activities to meet climate change and sea-level rise requirements would likely be substantially smaller than this; therefore, effects would be less than significant. As with the implementation of the land use planning outlined in Section 3.6.2.1.1 and for similar reasons, future or tiered NEPA would require air quality assessment if site modifications included more than 1,000,000 gsf/yr of demolition or construction.

In some cases, facilities may require backup generators and onsite water pumps. Any new stationary sources of air emissions would be inventoried and reviewed for addition to KSC’s operational air permit and to ensure compliance with all applicable state and Federal air regulations including NSPS and NESHAP requirements. All other regulatory requirements and BMPs associated with both construction and new stationary sources would be similar to those outlined in the permitting overview in Section 3.6.1 Affected Environment.
3.6.2.1.4 Future Transportation Plan

Implementing the transportation plan would have short-term minor adverse effects from construction activities. Increases in emissions would be relatively small and would not contribute to a violation of any Federal, state, or local air regulation. Construction emissions would be temporary, and include emissions from heavy equipment, fugitive dust and emissions from construction vehicles traveling to and from the sites. Construction of transportation projects would be performed in full compliance with Florida air regulations. There would be no permanent sources of air emissions associated with the transportation projects.

3.6.2.1.4.1 Roads, Bridges, and Parking

Road, bridge and parking improvement and replacement projects would be specifically designed to relieve congestion and reduce the number of vehicle miles traveled by commuters and others using the roadways near KSC. Small changes in traffic patterns would have negligible long-term effects to air quality. There would be some construction emissions with these activities; however, these emissions would be very small and effects to air quality would be less than significant. Road and bridge divestiture would eliminate air emissions from the vehicle traffic and maintenance that would have occurred on the divested infrastructure. Rerouted traffic may cause congestion in the centralized areas of KSC; however, these small changes in traffic patterns would have negligible long-term effects to air quality either regionally or locally.

The primary air pollutants from mobile sources are CO, NOx, and VOCs. Lead emissions from mobile sources have declined in recent years through the use of unleaded gasoline, and potential SO2 and particulate emissions from mobile sources are small compared to stationary sources, such as power plants and industrial facilities. Potential emission increases from additional vehicle miles traveled resulting from an action could affect regional O3 and/or PM2.5 levels. However, because these are problems of regional concern and subject to air transport phenomena under different weather conditions, regional effects are generally evaluated using regional airshed model(s). Regional analysis is generally not conducted on a project-specific basis and is not necessary for this EIS or future tiered NEPA. CO and PM2.5 are site-specific pollutants with higher concentrations found adjacent to roadways and signalized intersections. Brevard County, and therefore KSC, is not a nonattainment or maintenance area for CO or PM2.5 and changes in traffic from implementing the transportation plan would have only minute changes in CO concentrations at nearby intersections; therefore, "hot-spot" analysis is not necessary for this PEIS or future tiered NEPA.

3.6.2.1.4.2 Rail and Water

Construction and operation of new rail spurs and seaports would have some level of air emissions and impacts. Although effects would likely be minor, there is a wide range of possible seaport operating scenarios. Future or tiered NEPA would require air quality assessment for the establishment of any new seaports at KSC.

3.6.2.1.4.3 Air

Modifications to SLF facilities, infrastructure, the runway, and other airfield systems would have some level of air emissions. Construction emissions would be relatively small and their effects to air quality would be less than significant. Development of a new runway may constitute a...
relatively large effort with both temporary and ongoing sources of air emissions. *Future or tiered NEPA would require air quality assessment for the establishment of any new runways at KSC.*

3.6.2.1.5 Programmatic Determinations

A programmatic approach was utilized for this EIS to assess the effect of the Proposed Action on air quality. In general, the overall effects of the action and its component activities would be less than significant or beneficial. Site-specific and project-level details are not available at this time; however, based on existing information no additional evaluation under future or tiered NEPA would be required for air quality unless the project entails:

- More than 1,000,000 gsf/yr of demolition or construction;
- Stationary sources of air emission that exceeded the PSD major source threshold;
- Increases in vertical launch and landing activities at KSC;
- Increases in horizontal launch and landing activities at KSC;
- Establishment of any new seaports at KSC, or
- Establishment of any new runways at KSC.

Without these components, future or tiered NEPA could include this programmatic analysis by reference and eliminate air quality as a resource area carried forward for detailed evaluation.

3.6.2.1.6 Cumulative Impacts

The Proposed Action would have short- and long-term minor adverse cumulative effects. By directly inventorying all emissions in a nonattainment region and monitoring concentrations of criteria pollutants in attainment regions, the State of Florida takes into account the effects of all past and present emissions in the state. This is done by putting a regulatory structure in place designed to prevent air quality deterioration for areas that are in attainment with the NAAQS and to reduce common or criteria pollutants emitted in nonattainment areas to levels that would achieve compliance with the NAAQS (EPA, 2014d). This structure of rules and regulations are contained in the SIP. SIPs are the State regulations and other requirements for meeting clean air standards and associated CAA requirements. SIPs include:

- State regulations that EPA has approved;
- State-issued, EPA-approved orders requiring pollution control at individual companies; and
- Planning documents such as area-specific compilations of emissions estimates and computer modeling demonstrating that the regulatory limits ensure that the air would meet air quality standards (EPA, 2014e).

The SIP process includes (either specifically or indirectly) all sources of air emissions and all activities in the region. No large-scale projects or proposals have been identified that when combined with the Proposed Action would interfere with the state's ability to maintain the NAAQS in this region or would lead to a violation of any Federal, state or local air regulation.

3.6.2.2 Alternative 1

Alternative 1’s direct, indirect, and cumulative impacts on air quality would be almost the same as those of the Proposed Action, but somewhat less. Because the two new seaports would not be
built, air emissions associated with its construction and operation would not occur. Overall impacts would be minor and long term.

3.6.2.3 No Action Alternative
Selecting the No Action Alternative would result in no additional effect on air quality. This alternative involves continuing existing activities and environmental programs at KSC. Because the number and type of activities would remain relatively constant under the No Action Alternative, similar levels of emissions of air pollutants would be expected. Ambient air quality would remain unchanged when compared to existing conditions.

3.7 Climate Change

3.7.1 Affected Environment
The climate of KSC is subtropical with short, mild winters and hot, humid summers, with no recognizable spring or fall seasons. Summer weather, usually beginning in April, prevails for about 9 months of the year. Typically, dawns are slightly cloudy or hazy, with little wind and temperatures near 70 degrees Fahrenheit (F). During the day the temperature rises into the 80s and 90s F. A typical day is mostly sunny, with scattered white clouds. Often dark clouds in the afternoon foreshadow a storm. Thundershowers frequently lower local temperatures and an ocean breeze usually begins. Occasional cool days occur in November, but winter weather starts in January and extends through February and March. These last two months are usually windy, and temperatures range from about 40°F at night to 75°F during the daytime (NASA, 2010a, 2015).

The dominant weather pattern (May to October) is characterized by southeast winds, which travel clockwise around the Bermuda High. The southeast wind brings moisture and warm air, which help produce almost daily thundershowers creating a wet season. Approximately 70 percent of the average annual rainfall occurs during this period. Weather patterns in the dry season (November to April) are influenced by cold continental air masses. Rains occur when these masses move over the Florida peninsula and meet warmer air. In contrast to localized, heavythundershowers in the wet season, rains are light and tend to be uniform in distribution in the dry season (NASA, 2010a, 2015).

The main factors influencing climate at KSC are latitude and proximity to the Atlantic Ocean and the Indian and Banana Rivers, which moderate temperature fluctuations. Results of the Cape Atmospheric Boundary Layer Experiment found that wind direction, especially the seabreeze front, is controlled by thermal differences between the Atlantic Ocean, Banana River, Indian River, and Cape Canaveral Land Mass. Heat is gained and lost more rapidly from land than water. During a 24-hour period, water may be warmer and again cooler than adjacent land. Cool air replaces rising warm air creating offshore (from land to ocean) breezes in the night and onshore (from ocean to land) breezes in the day. These sea breezes have been recorded at altitudes of 3,281 feet and higher, and reach further inland during the wet season. Seasonal wind directions are primarily influenced by continental temperature changes. In general, the fall winds occur predominantly from the east to northeast. Winter winds occur from the north to northwestshifting to the southeast in the spring and then to the south in the summer months.
3.7.1.1 Temperature

Figure 3.7-1 plots annual mean temperature from 1900-2010 at Titusville, Florida, displaying a warming of +.13°F per decade on an upward sloping trend.

![Figure 3.7-1. Long-term temperature data from Titusville, Florida](image)

Source: NASA. Adapting Now to a Changing Climate, NP-2010-11-687-HQ

3.7.1.2 Rainfall

Rainfall data are gathered from several collecting stations in the KSC area. These stations provide both long-term records (Merritt Island and Titusville) and site-specific data of special interest to KSC. Mean annual rainfall for Merritt Island and Titusville is 51.6 in. and 53.8 in., respectively. Annual rainfall varies widely; values for Merritt Island range from 30.5 in. to 85.7 in, and for Titusville range from 33.4 in to 81.7 in. Distribution of rainfall is bimodal, with a wet season occurring from May to October, and the remainder of the year being relatively dry. There is noticeable variation in mean monthly rainfall amounts during the wet season months (June through October) with little variation during the dry season.

On average, measurable precipitation occurs 148 days per year, with about 60 percent of these being in the wet season. Year to year variability in precipitation is high with drought conditions (high temperatures and low groundwater table) being somewhat common. These occurrences are usually associated with La Niña conditions. As shown in Figure 3.7-2 for Titusville, the total annual precipitation for 2000 was only 32.60 inches, which is the lowest recorded in twenty-five years at the site. Rainfall has displayed a negligible trend in intensity or volume over the last 100 years (+.10 inches per decade, equivalent to 0.2%).
3.7.1.3 Sea Level

The Center for Operational Oceanographic Products and Services has been measuring sea level for over 150 years, with tide stations of the National Water Level Observation Network (Network) operating on all U.S. coasts. Changes in Mean Sea Level (MSL) have been computed at 128 long-term water level stations using a minimum span of 30 years of observations at each location. These measurements have been averaged by month to remove the effect of higher frequency phenomena in order to compute an accurate linear sea level trend.

The nearest monitoring station to KSC that still provides MSL data is in Mayport, FL (a closer station at Daytona Beach Shores was closed in 1983). The Mayport, FL station is approximately 140 miles from KSC. The mean sea level trend (shown in Figure 3.7-3) is 2.44 millimeters/year with a 95% confidence interval of +/- 0.27 mm/yr. based on monthly mean sea level data from 1928 to 2013 which is equivalent to a change of 0.80 feet in 100 years. By way of comparison, before it was closed in 1983, the mean sea level trend in Daytona Beach Shores was 2.32 mm/yr from 1925 to 1983 (NOAA, 2014b). Figure 3.7-4 shows a representative shoreline at KSC that will be affected by rising sea level.

3.7.1.4 Climate Projections

In 2010, the NASA Headquarters Office of Strategic Infrastructure and the NASA Earth Sciences Office established the Climate Science Adaptation Investigator (CASI) team to develop climate change forecasts for the different NASA centers to address potential impacts and adaptation strategies to ensure sustainability of valuable NASA infrastructure (NASA, 2010b). Members of the CASI team developed regional and local climate projections for KSC using 16 different global climate models (GCMs) and statistical methods to link the model values to empirical long-term data from the City of Titusville covering the period between 1900 and 2010.
Figure 3.7-3. Sea level trend at Mayport, FL

Source: NOAA Mean Sea Level Trend 8720218, Mayport, FL (NOAA, 2014a)

Figure 3.7-4. Sea level is rising at KSC, threatening habitats and infrastructure

Results of the regional CASI GCM-based forecast for future climate conditions in the project area are summarized in Tables 3.7-1 to 3.7-3. Average air temperature for the 30-year climate baseline period is 22°C (72°F). Climate forecasts for the region suggest average temperatures will increase by as much as 6 degrees F during the latter part of the century. Rainfall projections indicate little change in the total annual amount of 135 cm (53 in). Projections for the occurrence of days above and below temperatures that impact the outdoor workforce are shown in Table 3.7-2. Current estimates suggest there will be a dramatic increase in the numbers of
days above 32°C (90°F) when compared to the annual baseline average. This will greatly influence the potential for heat stress and will require additional management action. The number of cold days is expected to decrease slightly. Projections of the occurrence of extreme events are summarized in Table 3.7-3. As the amount of energy in the atmosphere increases, the probability of extreme events like downpours and extreme winds increases. The intensity of rainfall events will likely increase and the possibility of extreme winds (hurricanes) is more likely to trend upward.

Table 3.7-1. Estimated climate conditions for air temperature and rainfall for KSC

<table>
<thead>
<tr>
<th></th>
<th>Baseline 1971-2000</th>
<th>2020s</th>
<th>2050s</th>
<th>2080s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central range</td>
<td>22°C (72°F)</td>
<td>73-74°F</td>
<td>74.5-75.5°F</td>
<td>75-78°F</td>
</tr>
<tr>
<td></td>
<td>(+1 to 2°F)</td>
<td>(+2.5 to 3.5°F)</td>
<td>(+3 to 6°F)</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>135 cm (53 in)</td>
<td>-5 to +5 %</td>
<td>-5 to +5 %</td>
<td>-5 to +5 %</td>
</tr>
</tbody>
</table>

1Based on 16 GCMs and 3 emissions scenarios, the baseline for temperature and precipitation in a 30-year period 1971 to 2000, with the best available observed daily weather data in Titusville. Data from National Climatic Data Center (NCDC) temperature data and precipitation data are from Titusville. 2 Central range equals middle 67% of values from model-based probabilities; temperature ranges are rounded to the nearest half-degree, and precipitation to the nearest 5%.

Source: NASA. *Adapting Now to a Changing Climate*, NP-2010-11-687-HQ

Table 3.7-2. Estimated changes in the numbers of days of extreme hot or cold temperatures for KSC

<table>
<thead>
<tr>
<th>Daily Temperature</th>
<th>Baseline</th>
<th>2020s</th>
<th>2050s</th>
<th>2080s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days at or above 35 °C (95 °F)</td>
<td>12</td>
<td>21 to 28</td>
<td>31 to 57</td>
<td>42 to 101</td>
</tr>
<tr>
<td>Days at or above 32 °C (90 °F)</td>
<td>82</td>
<td>99 to 114</td>
<td>118 to 142</td>
<td>125 to 173</td>
</tr>
<tr>
<td>Days at or below 4.4 °C (40 °F)</td>
<td>20</td>
<td>13 to 15</td>
<td>10 to 14</td>
<td>7 to 11</td>
</tr>
<tr>
<td>Days at or below 0 °C (32 °F)</td>
<td>4</td>
<td>2 to 3</td>
<td>2</td>
<td>1 to 2</td>
</tr>
</tbody>
</table>

Source: NASA. *Adapting Now to a Changing Climate*, NP-2010-11-687-HQ
Table 3.7-3. Projected likelihood of extreme events through the latter part of the 21st Century

<table>
<thead>
<tr>
<th>Event</th>
<th>Trend</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Stress</td>
<td>up</td>
<td>Very Likely (>90%)</td>
</tr>
<tr>
<td>Downpours</td>
<td>up</td>
<td>Likely (>66%)</td>
</tr>
<tr>
<td>Intense Storms</td>
<td>up</td>
<td>More likely than not (>50%)</td>
</tr>
<tr>
<td>Extreme Winds</td>
<td>up</td>
<td>More likely than not (>50%)</td>
</tr>
</tbody>
</table>

1based on global climate simulations, published literature, and expert judgment

Source: NASA. Adapting Now to a Changing Climate, NP-2010-11-687-HQ

In addition, scientists from NASA’s Climate Adaptation Science Investigator (CASI) Workgroup at KSC, working with the St. Johns River Water Management District and the EPA-funded Indian River Lagoon National Estuaries Program, have developed sea level rise scenarios and conducted sea level affecting marshes modeling (SLAMM) for KSC and the surrounding Indian River Lagoon estuary. Results suggest that sea level rise on the order of 0.4m (1.3 ft.) will inundate approximately 25% of the current KSC land area, converting extensive wetlands into open water. Warming weather and less frequent and intense cold spells will also allow for the expansion of mangrove forest into the region, displacing current high marsh habitats that are home to numerous species of special concern.

3.7.1.5 Greenhouse Gas (GHG) Emissions

Some direct greenhouse gases (e.g., carbon dioxide, chlorofluorocarbons, and water) are emitted from mission activities at KSC, and other gases (e.g., NOX and VOCs) emitted from these processes contribute indirectly by forming ozone and other reactive species that photochemically react with the greenhouse gases and control the radiation penetrating to the troposphere.

To measure and manage emissions, the U.S. Department of Energy classifies GHGs into three categories:

- Scope 1: Emissions from sources that are owned or controlled by a Federal agency. Fleet vehicles owned by NASA contribute a large quantity of Scope 1 GHG emissions.
- Scope 2: Emissions resulting from the generation of electricity, heat, or steam purchased by a Federal agency. Buildings are the number one consumer of energy for NASA; therefore, facility energy intensity directly correlates to Scope 2 GHG emissions.
- Scope 3: Emissions from sources not owned or directly controlled by a Federal agency, but related to agency activities. These include emissions associated with contracted waste disposal and transmission and distribution losses from purchased energy (NASA, 2012b).

As noted in Table 3.7-4, the biggest driver of GHG emissions at NASA is facilities energy use—specifically, purchased electricity, which accounted for over 73 percent of agency-wide emissions in FY 2013. From FY 2008-FY 2013, NASA reduced its overall GHG emissions from this source by over 27 percent (DOE, 2014).
Table 3.7-4. Percent change in NASA greenhouse gas emissions covered by reduction targets (metric tons of CO$_2$-equivalent), from FY 2008 to FY 2013*

<table>
<thead>
<tr>
<th>Scope and Category of Emissions</th>
<th>FY 2008</th>
<th>FY 2013</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Site Fuel Consumption at Federal Facilities</td>
<td>164,612.10</td>
<td>119,362.7</td>
<td>-27.5%</td>
</tr>
<tr>
<td>Mobile Emissions--Vehicles, Aircraft, Ships, and Equipment</td>
<td>47,209.0</td>
<td>56,174.2</td>
<td>19.0%</td>
</tr>
<tr>
<td>Mobile Emissions--Passenger Fleet Vehicles</td>
<td>12,000.3</td>
<td>8,812.0</td>
<td>-26.6%</td>
</tr>
<tr>
<td>Fugitive Emissions--Fugitive Fluorinated Gases and Other Fugitive Emissions (HFCs, PFCs, SF$_6$)</td>
<td>71,997.0</td>
<td>138,755.3</td>
<td>92.7%</td>
</tr>
<tr>
<td>Fugitive Emissions--On-site Wastewater Treatment</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fugitive Emissions--On-site Landfills and Municipal Solid Waste Facilities</td>
<td>729.9</td>
<td>835.8</td>
<td>14.5%</td>
</tr>
<tr>
<td>Manufacturing and Industrial Process Emissions</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Subtotal Scope 1</td>
<td>296,548.5</td>
<td>323,940.0</td>
<td>9.2%</td>
</tr>
<tr>
<td>Scope 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased Electricity</td>
<td>866,900.0</td>
<td>691,693.8</td>
<td>-20.2%</td>
</tr>
<tr>
<td>Purchased Biomass Energy</td>
<td>107.8</td>
<td>1,004.6</td>
<td>831.9%</td>
</tr>
<tr>
<td>Purchased Steam and Hot Water</td>
<td>202,172.6</td>
<td>182,963.5</td>
<td>-9.5%</td>
</tr>
<tr>
<td>Purchased Chilled Water</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Purchased Combined Heat and Power Electricity, Steam & Hot Water</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Reductions from Renewable Energy Use</td>
<td>0.0</td>
<td>-56,326.9</td>
<td>0.0%</td>
</tr>
<tr>
<td>Subtotal Scope 1 & 2</td>
<td>1,069,180.4</td>
<td>819,335.0</td>
<td>-23.4%</td>
</tr>
<tr>
<td>Scope 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission and Distribution (T&D) Losses</td>
<td>57,103.6</td>
<td>42,591.2</td>
<td>-25.4%</td>
</tr>
<tr>
<td>Federal Employee Business Air Travel</td>
<td>28,740.5</td>
<td>20,436.9</td>
<td>-28.9%</td>
</tr>
<tr>
<td>Federal Employee Business Ground Travel</td>
<td>9,995.8</td>
<td>3,163.1</td>
<td>-68.4%</td>
</tr>
<tr>
<td>Federal Employee Commuting</td>
<td>65,759.9</td>
<td>67,933.5</td>
<td>3.3%</td>
</tr>
<tr>
<td>Contracted Wastewater Treatment</td>
<td>90.6</td>
<td>87.6</td>
<td>-3.4%</td>
</tr>
<tr>
<td>Contracted Municipal Solid Waste Disposal</td>
<td>9,587.0</td>
<td>6,436.7</td>
<td>-32.9%</td>
</tr>
<tr>
<td>Subtotal Scope 3</td>
<td>171,277.4</td>
<td>140,648.9</td>
<td>-17.9%</td>
</tr>
<tr>
<td>Total GHG Emissions</td>
<td>1,240,457.8</td>
<td>959,983.9</td>
<td>-22.6%</td>
</tr>
</tbody>
</table>

*Due to considerations of space and relevance, biogenic CO$_2$ emissions are excluded from this table. These are defined by EPA as “emissions related to the natural carbon cycle [and] those resulting from the combustion, harvest, digestion, fermentation, decomposition, or processing of biologically based materials.” Examples include CO$_2$ from combustion of biological fractions of municipal solid waste or wastewater treatment.

Source: DOE Federal Energy Management Program (DOE, 2014)

Emissions of CO$_2$ at KSC specifically are also primarily associated with energy use of buildings, commuting vehicle traffic, ground support operations, and launch events; however, a comprehensive carbon budget for each activity is not available. A baseline annual estimate for
the last 30 years of the Space Shuttle Program was calculated in 2010 with the following assumptions:

- An average workforce of 15,000 employees with 13,000 vehicles (NASA, 2010b), averaging 20 miles per gallon, driving an average of 60 miles a day, 240 days a year
- Center power consumption of 1,400,000 million British thermal units (MMBtu) from a combination of electrical purchases, natural gas, fuel oil, diesel, and gasoline
- Four (4) Space Shuttle launches per year utilizing two (2) four segment SRBs per launch.

Commuting contributes approximately 83,200 metric tons (mt) of CO2; KSC facilities energy use contributes 60,600 mt, and the four Shuttle launches contribute 156 mt for an estimate of 144,000 mt of CO2 per year for each year of the 30-year Space Shuttle Program (Dreschel and Hall, 1990). With retirement of the Space Shuttle and the reduction in the work force and ground support operations, annual CO2 emissions are currently estimated at approximately 99,000 mt. This assumes a reduction to 7,000 vehicles, KSC energy use of 1,200,000 MMBtu, and no Space Shuttle launches (NASA, 2013a).

3.7.2 Environmental Consequences including Cumulative Impacts

Human land use changes (e.g., deforestation), burning of fossil fuels for energy, and other activities are contributing to increases in greenhouse gases in the atmosphere. The potential impacts of increasing concentrations of atmospheric CO2 and other climate altering substances such as methane, nitrous oxide, and black carbon particulates on the Earth’s climate have been well documented by thousands of peer-reviewed scientific studies compiled, reviewed and summarized by the Intergovernmental Panel on Climate Change (IPCC), and are the dominant reason for increasing societal interest in the carbon cycle (IPCC, 2014).

These impacts include overall warmer temperatures, rising sea levels, a melting polar ice cap, changes in rainfall patterns, a greater frequency of extreme weather events (e.g., droughts, deluges, severe storms, floods, prolonged heat waves) and other associated and often interrelated effects. The Fifth Assessment Synthesis Report of the IPCC states: “Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen” (IPCC, 2014). At KSC, dunes (Figure 3.7-5) that historically protected KSC from high seas along the roughly six-mile stretch between launch pads 39A and 39B were leveled by Tropical Storm Fay in 2008, Hurricane Irene in 2011, and Hurricane Sandy in 2012. Recent studies there have determined that the cause was a gap in a near-shore sandbar that funnels the sea toward that section of beach and that climate change leading to sea level rise was a key contributor (UF, 2014).

The CEQ’s Final Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy Act Reviews, released on August 1, 2016, Revised Draft NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions advises that actions subject to NEPA compliance should be evaluated along two dimensions relative to climate change impacts: (1) the potential effects of a Proposed Action and alternative actions on global climate change as
indicated by its GHG emissions; and (2) the implications of climate change for the environmental effects of a Proposed Action or alternatives (CEQ, 2016). In addition, Executive Order 13514 (2009) requires that each agency “evaluate agency climate-change risks and vulnerabilities to manage the effects of climate change on the agency’s operations and mission in both the short and long term” (Section 8(i)). Therefore, this analysis considers both the potential impacts of the action on climate change, and the impacts that climate change may have on the Proposed Action.

3.7.2.1 Methodology

With respect to climate change, adverse impacts to climate change can be characterized as follows:

- **Major**—Substantial impact on global climate change trends, in terms of increases in average temperature, extreme heat or precipitation events, drought or inland and coastal flooding, and/or mean sea level rise, that would contribute to the SLAMM sea level rise projections being exceeded (that is, rise of >0.4m inundating approximately 25% of the current KSC land area, converting extensive wetlands into open water).

- **Moderate**—An impact that produces a change in some global climate change trends but is not likely to increase sea level rise beyond SLAMM projections

- **Negligible**—A barely detectable impact on climate change trends
A beneficial impact on global climate change is one which reduces, or at least does not contribute to, the potential for adverse impacts.

At the programmatic level, it is not possible to develop emissions projections for the Proposed Action, because its components have not yet been specified. Instead, this programmatic analysis considers which activities have the potential to cause additional GHG emissions and the extent to which they could produce adverse or beneficial impacts to global climate change.

Adverse impacts of climate change to KSC’s Proposed Action can be characterized as follows:

- **Major**—An impact that causes substantial disruption of planned activities, to the extent that the achievement of mission objectives is severely threatened, and for which adaptation is extremely unlikely to succeed or would be prohibitively expensive.

- **Moderate**—An impact that has the potential to cause substantial disruption to planned activities and mission objectives, but for which further adaptation has a high probability of success and is within the resource capabilities of the agency.

- **Minor**—An impact that could cause noticeable disruption to planned activities on a limited basis, but does not threaten mission objectives.

- **Negligible**—Minimal disruption of mission activities.

A beneficial impact of climate would be one that makes accomplishment of mission objectives more likely or less costly.

3.7.2.2 Potential Impacts of Global Climate Change on KSC Actions

Climate change impacts are of concern to NASA because many of the agency’s assets are located in coastal areas, including KSC along the Florida coast, where sea level rise and increased frequency and intensity of high water levels associated with storms are expected, and where long-term changes in precipitation and temperature are expected to impact potable water supplies. Rising sea level has been identified as the single largest hazard to continued KSC/CCAFS operations and regional land management activities (NASA, 2014).

NASA’s stated agency-wide climate change objective is to “create climate-resilient NASA Centers able to execute NASA’s mission” (NASA, 2014). In complying with Executive Order 13514 (“Federal Leadership in Environmental, Energy, and Economic Performance”), NASA formalized its ongoing work on climate change risk management by developing a Climate Risk Management Plan and Report, updated most recently in 2014. The agency initially examined whether its long-term and short-term strategic objectives, roles and responsibilities could be compromised by climate risks, and concluded that there is potential for a changing climate to impact some of NASA’s strategic objectives in six categories (NASA, 2014). KSC facilities and systems at risk from climate change impacts include:

- Launch facilities to provide access to space for humans, cargo, and research;
- Space assets and their operational support capabilities, such as space hardware, and the International Space Station;
• Ground systems, including IT, communication and data systems and Space Communication and Navigation systems;
• Test facilities, including research, development and demonstration facilities;
• Training facilities; and
• Supply chain for necessary materials and services.

These categories represent combinations of assets – physical infrastructure, land and natural resources, and the staff that operate, use and manage them – that can be impacted by various events, such as extreme heat events, drought or inland and coastal flooding. These types of climate events could compromise or interrupt particular KSC assets for short or long time periods.

Table 3.7-5 summarizes the potential impacts of climate change on KSC assets and capabilities that could therefore affect activities within its Center Master Plan and Future Plan Development. NASA anticipates short-term risks to result from extreme weather such as heat waves, precipitation, wind, flooding, and drought, each of which will become more difficult to manage because of changes in event intensity, duration, and frequency. Over a longer time horizon, NASA anticipates a continuation of short-term challenges experienced as a result of extreme weather, possibly exacerbated because of longer term gradual trends such as sea level rise and increased average temperatures (NASA, 2014).

Table 3.7-5. Key climate hazards and potential impacts to NASA assets and capabilities

<table>
<thead>
<tr>
<th>Key Climate Hazards</th>
<th>Potential Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>More frequent and extreme high temperatures and humidity</td>
<td>Increased risk of heat-related ailments among outdoor workers; higher cooling costs; decreased utility reliability; damage to buildings</td>
</tr>
<tr>
<td>More frequent and intense droughts, seasonal shifts in water cycle</td>
<td>Reduced water availability; higher water costs; salt water intrusion; groundwater changes</td>
</tr>
<tr>
<td>More intense precipitation events</td>
<td>More frequent flooding of low-lying indoor and outdoor areas</td>
</tr>
<tr>
<td>Sea level rise</td>
<td>Loss of usable land; inundation of coastal ecosystems</td>
</tr>
<tr>
<td>More frequent and intense coastal flood events</td>
<td>Coastal erosion; safety implications for surrounding communities</td>
</tr>
</tbody>
</table>

Source: NASA, 2014; Climate Risk Management Plan

From a long-term perspective, NASA sees the following risks as affecting its ability to carry out its mission:

• Loss of land to support launch capabilities on the coast.
• Downtime for facilities subject to extreme events, especially those subject to recurring nor’easters or hurricanes. Inland facilities could also be subject to downtime from impacts of extreme storms (flooding and/or electrical outages). As NASA has consolidated various functions at single Centers, downtime at a single facility may have a
ripple effect across the Agency, such as when servers go offline. Additionally, as extreme events increase in the future, repeated recovery actions strain financial resources and the morale of emergency responders and employees whose work is disrupted.

- Competing cost priorities. Over the next 20-30 years, NASA may incur significant costs in implementing adaptation strategies (NASA, 2014).

As part of its climate adaptation strategy, KSC created a Dune Vulnerability Team to address beach and sand dune erosion as the sand dunes are the physical protection barrier for NASA’s Launch Pads 39A and 39B from the sea. The Dune Vulnerability Team (CASI scientists, the U.S. Geological Survey, the University of Florida, and the U.S. Fish and Wildlife Service) developed a plan for restoring the coastal dune in an area of high beach erosion. KSC used Hurricane Sandy Emergency Funding to repair part of the most critically eroded shoreline. Further, beach dunes are habitats for a number of threatened and endangered species. Impacts from Hurricane Sandy exacerbated the conditions along Launch Complex 39. The project included the removal of a portion of the beach rail line and the construction of an inland dune. The dune is approximately 1.2 miles in length, 15 feet in height, and approximately 50 feet wide at the base. In some of the most critically eroded areas this dune is actually the primary dune feature along the beach. Construction of the dune is complete; vegetation planting was also completed in May 2014.

3.7.2.3 Impacts Associated With the Proposed Action

3.7.2.3.1 Impacts of the Proposed Action on Climate Change

The Revised Draft NEPA Guidance on Climate Change (Guidance) from the Council on Environmental Quality states, “Examples of projects or site-specific actions that can benefit from a programmatic NEPA review include: constructing transmission towers; conducting prescribed burns; approving grazing leases; granting a right-of-way; authorizing leases for oil and gas drilling; authorizing construction of wind turbines; and approving hard rock mineral extraction” (CEQ, 2014b). In considering when to disclose projected quantitative GHG emissions, CEQ’s Guidance provides a reference point of 25,000 metric tons of carbon dioxide equivalent (CO2-e) emissions on an annual basis below which a GHG emissions quantitative analysis is not warranted unless quantification below that reference point is easily accomplished. While individual actions may be considered for their potential to impact climate change when they are specifically proposed, they do not appear likely to meet the minimum quantitative emissions threshold to produce substantial impacts to climate change. One source for information on meeting the likely emissions threshold is a policy brief by the Nicholas Institute for Environmental Policy Solutions (Nicholas-Duke, 2009).

3.7.2.3.1.1 Land Use Plan, Future Development Plan, and Functional Areas

It is NASA’s policy to fully comply with the requirements of the National Energy Conservation Policy Act, Executive Order 13423 (described above), and other statutory and Presidential directives regarding energy efficiency. The consolidation of NASA operations into a smaller geographic footprint, for example, a major component of the Future Land Use Plan, would allow NASA to recapitalize, over time, functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint. Implementation of this concept can be expected to lead
to further reductions in facilities’ energy use, thereby reducing greenhouse gas emissions and producing beneficial impacts to climate change.

One land use which is increased in the Master Plan is renewable energy development. Continued and increased efforts to power NASA’s facilities, programs, and activities using renewable sources of energy will have a beneficial impact on climate change by reducing greenhouse gas emissions (assuming that the entire energy production cycle is in fact net negative in producing CO2 emissions).

Other future land uses that are increased in the Proposed Action include Assembly, Testing, and Processing, and Horizontal Launch and Landing. During the construction phase of activities associated with these land uses (facilities construction, upgrade, and/or expansion), greenhouse gas emissions such as CO2 would be released by fossil fuel-powered machinery and vehicles. These emissions would be considered minimal and unavoidable, and in many cases, represent only a shift in location of machinery and vehicle use and not an addition to total regional emissions rates (KSC, 2013b).

Another activity affecting the local carbon budget would be loss of vegetation from construction, to the extent that lands acting as carbon sinks are cleared for new development. Vegetation, alive or dead, is an important carbon stock. When land is cleared, carbon dioxide is released into the atmosphere through such processes as decomposition and burning. In addition to the carbon stored in live vegetation, plant communities can contribute carbon to the soil. Consequently, each parcel of land that is cleared of vegetation could result in less land available for carbon sequestration.

Therefore, the clearing of land for the Proposed Action could have two impacts as it relates to climate change: carbon would be released by the removal and disposal of vegetation, and a carbon storage area would be lost. However, it is likely that these consequences could be minimized and offset by long-term reductions in fossil fuel use and other mitigation strategies related to regional land management scenarios, described below (KSC, 2013b).

While individual actions within these land use categories may be considered for their potential to impact climate change when they are specifically proposed, they do not appear likely to meet the minimum quantitative emissions threshold (producing >25,000 metric tons of carbon dioxide equivalent [CO2e] annually) to produce adverse impacts to climate change.

3.7.2.3.1.2 Launch, Landing, Operations and Support

Operational launch impacts include the release of greenhouse gases from energy used to support ground operations and flight operations. Emissions associated with ground operations include employee vehicle emissions, emissions from heavy machinery, emissions from electric power generation, and intentional and unintentional venting or discharges of volatile components of aircraft and rocket fuels.

In its 2013 Draft Environmental Assessment for Multi-Use of Launch Complexes 39A and 39B at KSC, NASA noted:
“Of growing concern is the potential climate change impact of the emerging commercial space industry that the Proposed Action supports (Ross et al. 2010). The six launch vehicles evaluated in this EA are a source of black carbon "soot" emitted directly in the stratosphere above 20 km (12 mi). These black carbon or soot particles can have a greater impact on climate change than rocket emissions of CO2. Black carbon is known to be the second most important compound driving climate change (Bond, et al., 2013). In modeling studies, utilizing the Whole Atmosphere Community Climate Model, researchers have shown these soot particles may accumulate into a thin cloud at an altitude of about 40 km (24 mi), which remains relatively localized in latitude and altitude (Ross et al. 2010). The model suggests that if this layer reached high enough concentrations, the Earth’s surface and atmospheric temperatures could be altered. The globally integrated effect of these changes is, as for carbon dioxide, to increase the amount of solar energy absorbed by the Earth’s atmosphere. Research on the potential climate change impacts of black carbon from rockets is in a very early stage and projections of impacts are being refined. Mitigation and/or minimization of this potential impact are being addressed in the aerospace industry by advancing propulsion system designs and innovative fuel mixtures that burn more cleanly and reduce soot formation. Impacts are considered minor” (KSC, 2013b).

Proposed increases in aircraft flight operations as part of the evolution of KSC to a multi-user space port would therefore contribute to local emissions of greenhouse gases. However, the extent of actual emissions can only be evaluated when a specific launch program is developed and the number and type of launches can be more precisely analyzed.

3.7.2.3.1.3 Future Transportation Plan

The elements of the Future Transportation Plan – road easements, improvements, expansions, bridge repairs and replacements, road and rail divestitures – would be the subject of future environmental study. While individual actions should be considered for their potential to impact climate change when they are specifically proposed, they do not appear likely to meet the minimum quantitative emissions threshold (producing >25,000 metric tons of CO2e annually) to produce adverse impacts to global climate change.

3.7.2.3.2 Effects of Global Climate Change on the Proposed Action

3.7.2.3.2.1 Climate Change Mitigation

Because much of KSC land areas are low-lying, poorly drained, and vulnerable to inundation by periodic storm events, elements of the Proposed Action have been developed specifically to avoid, mitigate, or minimize the impacts of climate change on KSC operations and activities:

- KSC will implement elevation-based zoning and development controls to ensure that any future development is constructed at an elevation of six feet above mean sea level.
- Land areas that do not naturally offer this condition should be avoided or incur the cost of fill and drainage improvements, potentially making them economically less attractive.
- Areas of existing facilities or structures that are less than 3 feet above mean sea level must be hardened or raised to accommodate future climate and weather or relocated to ground six feet or above mean sea level.
• Critical facilities are to be moved outside the 500-year flood plain or, if not practicable, hardened to withstand a hurricane event.

The Proposed Action activities to harden, improve, or move facilities in adaptation to potential climate change impacts will require financial investment and funding, which might reasonably be considered impacts of climate change on the Proposed Action. NASA would work with the commercial entity, NASA Environmental, and USFWS to determine appropriate site-specific mitigation measures.

While these actions take into account the best available science of sea level rise along the Florida space coast, increases in frequency and intensity of extreme weather events caused or contributed to by the forces driving climate change could still cause the impacts described in Table 3.7-5 above. The precise course and impacts of climate change cannot be predicted with certainty.

3.7.2.4 Impacts Associated with Alternative 1

Direct, indirect and cumulative impacts of Alternative 1 related to climate change are anticipated to be the same as for the Proposed Action.

3.7.2.5 Impacts Associated with the No Action Alternative

3.7.2.5.1 Impacts of the No Action Alternative on Climate Change

If the No Action Alternative is selected, the status quo at KSC would be maintained and the proposed future (2012-2032) developments described in the 2013 Center Master Plan Update (the Proposed Action) would not be implemented. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions proposed from the Proposed Action or any of the alternatives may proceed but only after environmental assessment under separate environmental documentation.

Under the No Action Alternative, KSC would not implement elevation-based zoning and development controls to ensure that any future development is constructed at an elevation of six feet above mean sea level, although this would not be consistent with NASA land management practices and Office of Strategic Infrastructure climate adaptation guidance and strategy. Areas of existing facilities or structures that are less than 3 ft above mean sea level would not be hardened or raised to accommodate future climate and weather, nor would they be relocated to ground at or above six feet MSL. Critical facilities would not be moved outside the 500-year flood plain or hardened to withstand a hurricane activity.

However, under the No Action Alternative, NASA would continue to meet its commitments to implement Executive Orders 13514 (described above) and 13653, which builds on the requirements of EO 13514 and requires that agencies update their plans to integrate consideration of climate change into agency operations and overall mission objectives. Toward that end, NASA has developed a “Guidance on Climate Change and GHG Emissions” document that will assist in determining the extent of potential impacts due to these emissions. In addition to that document, NASA Headquarters has provided the NASA Template Statement for NEPA Actions Influencing GHG Emissions and Climate Change and the Microsoft Excel based NASA’s NEPA Emission Estimation Tool (N2E2), for NASA centers to accomplish these assessments. This N2E2 tool will aid in better quantifying potential climate change impacts due
to agency actions. Each governmental and non-governmental entity would utilize this tool to assist in quantifying GHG emissions pertaining to their actions.

KSC would also continue to implement its Strategic Sustainability Performance Plan (SSPP), established in 2010 to meet the requirements of EO 13514. The SSPP established a Scope 1 & 2 GHG emissions reduction target of 18.3 percent relative to an FY 2008 baseline estimate. Specific GHG-reduction goals include:

- Reduce Facility Energy Intensity – Buildings are the number one consumer of energy for NASA; therefore, facility energy intensity directly correlates to Scope 2 GHG emissions. Specific energy and building goals include the reduction of energy consumption per gross square foot of building area by 3 percent annually from the FY 2003 baseline for FY 2006 through FY 2015;
- Increase Renewable Electricity Use – Increase percentage of total electricity derived from renewable sources (from 3 percent FY 2007 – FY 2009 to 7.5 percent FY 2013 onward);
- Right-size the number of fleet vehicles through optimization;
- Increase the use of low emission and high fuel economy vehicles;
- Replace conventional senior executive fleet with low-GHG emission vehicles;
- Discuss consolidation of shuttle bus operations (if offered), and sustainable transportation options through development of alternative fuel infrastructure
- Direct spending on transportation training;
- Procure environmentally preferable motor vehicles;
- Reduce Scope 3 GHG emissions by 12.6 percent by FY 2020 (NASA, 2012b);
- Reduce Scope 3 GHG emissions associated with contracted waste disposal by 23.1 percent by FY 2015, excluding Construction and Demolition waste; and
- Reduce Scope 3 GHG emissions associated with Transmission and Distribution losses from purchased energy by 15.1 percent by FY 2020 (NASA, 2012b).

3.7.2.5.2 Impacts from Global Climate Change on the No Action Alternative

Despite the GHG reduction efforts that would still occur under the No Action Alternative, if the No Action Alternative were selected and the specific climate change-related Proposed Action activities were therefore not implemented, NASA operations would be at somewhat greater risk from the impacts of sea level rise, more frequent and intense coastal flood events, and more intense precipitation events than they be would if the Proposed Action was implemented. The sea level rise scenarios generated by sea level modeling for KSC and the surrounding Indian River Lagoon estuary suggest that sea level rise on the order of 0.4m (1.3 feet) will inundate approximately 25 percent of the current KSC land area, converting extensive wetlands into open water.

Warming weather and less frequent and intense cold spells will also allow for the expansion of mangrove forest into the region displacing current high marsh habitats that are home to numerous species of special concern. These impacts are long-term, and if elevation-based
zoning were not instituted and development therefore restricted (although this would be in contravention of NASA’s land management practices and Office of Strategic Infrastructure climate adaptation guidance and strategy), the loss of land, inundation of wetlands, increases in coastal flooding events, and the resulting decreases in reliability of utility systems could produce major impacts to the predictability and stability of launches necessary to attract and retain commercial launch partners.

3.7.2.6 Cumulative Impacts

Climate change is a global trend and, by scientific understanding, it is a cumulative process: the persistence of greenhouse gases (especially CO₂) in the atmosphere has led to the accumulated concentration of gases that have intensified the greenhouse effect globally, which has warmed the planet over the last 150+ years. The trends specifically affecting KSC have cumulatively led to the sea rise levels described above. The SLAMM modeling projections are an expression of a cumulative impact (of the No Action Alternative, specifically).

The principal driver of greenhouse gas emissions is energy use in KSC facilities. Cumulative global impact from energy use under the Proposed Action, when added to past, ongoing, and anticipated future U.S. actions would be expected to be similar or perhaps less than the historical energy use, given the commitments to emissions reductions contained in KSC’s SSPP. The SSPP has established a program to reduce facility energy intensity and associated greenhouse gas emissions as well as expanding the use of renewable energy for facilities and operational activities. It has made measurable interim progress in achieving these goals.

From FY 2008 to FY 2013, NASA reduced its agency-wide emissions of greenhouse gases by almost 23 percent, including reductions from purchased electricity by over 20 percent. Therefore, despite the potential for increased emissions from rocket exhaust due to greater launch activity, as well as from construction activities, land clearing, and activities related to transportation infrastructure, these potential increases would be expected to be minimized on a net basis by regional efforts to modernize energy production and energy conservation.

NASA emissions represent collectively less than 0.02% of projected annual U.S. GHG emissions (DOE, 2014; EIA, 2011), and KSC represents less than 20 percent of total NASA emissions. Given these indicators of relative scale, and the potential to minimize net emissions, it is expected that the Proposed Action would add a negligible amount to the U.S. emissions contributing to global climate change.

The climate change mitigation/adaptation activities included in the Proposed Action were designed to avoid the impacts of cumulative climate change to the KSC mission. Over a longer time horizon, NASA anticipates a continuation of short term challenges experienced as a result of extreme weather, possibly exacerbated because of longer term gradual trends such as sea level rise and increased average temperatures (NASA, 2014). Based on the SLAMM modeling and the sea level trends observed in the recent studies at KSC, the proposed mitigation/avoidance actions seem likely to avoid severe disruption to mission objectives from climate change impacts.
3.8 Acoustic Environment (Noise)

This section provides an overview of noise, a regulatory review, a description of nearby noise sensitive areas, and a description of existing noise at KSC. The region of influence for noise encompasses the land within the KSC boundary, and communities close enough to be reasonably affected by noise from the Proposed Action and alternatives.

3.8.1 Affected Environment

Sound is a physical phenomenon consisting of vibrations that travel through a medium, such as air, and are sensed by the human ear. Noise is defined as any sound that is undesirable because it interferes with communication, is intense enough to damage hearing, or is otherwise intrusive. Human response to noise varies depending on the type and characteristics of the distance between the noise source and the receptor, receptor sensitivity, and time of day. Noise is often generated by activities essential to a community’s quality of life, such as construction or vehicular traffic.

Sound varies by both intensity and frequency. Sound pressure level, described in decibels (dB), is used to quantify sound intensity. The dB is a logarithmic unit that expresses the ratio of a sound pressure level to a standard reference level. Hertz are used to quantify sound frequency. The human ear responds differently to different frequencies. “A-weighing”, measured in A-weighted decibels (dBA), approximates a frequency response expressing the perception of sound by humans. Sounds encountered in daily life and their dBA levels are provided in Table 3.8-1.

Table 3.8-1. Common sounds and their levels

<table>
<thead>
<tr>
<th>Outdoor</th>
<th>Sound Level (dBA)</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycle</td>
<td>100</td>
<td>Subway train</td>
</tr>
<tr>
<td>Tractor</td>
<td>90</td>
<td>Garbage disposal</td>
</tr>
<tr>
<td>Noisy restaurant</td>
<td>85</td>
<td>Blender</td>
</tr>
<tr>
<td>Downtown (large city)</td>
<td>80</td>
<td>Ringing telephone</td>
</tr>
<tr>
<td>Freeway traffic</td>
<td>70</td>
<td>TV audio</td>
</tr>
<tr>
<td>Normal conversation</td>
<td>60</td>
<td>Sewing machine</td>
</tr>
<tr>
<td>Rainfall</td>
<td>50</td>
<td>Refrigerator</td>
</tr>
<tr>
<td>Quiet residential area</td>
<td>40</td>
<td>Library</td>
</tr>
</tbody>
</table>

Source: Harris, 1998

The dBA noise metric describes steady noise levels, although very few noises are, in fact, constant. Therefore, A-weighted Day-night Sound Level (DNL) has been developed. Day-night Sound Level is defined as the average sound energy in a 24-hour period with a 10-dB penalty added to the nighttime levels (10 p.m. to 7 a.m.). DNL is a useful descriptor for noise because: (1) it averages ongoing yet intermittent noise, and (2) it measures total sound energy over a 24-hour period. In addition, Equivalent Sound Level (L_{eq}) is often used to describe the overall noise environment. L_{eq} is the average sound level in dB.
3.8.1.1 Regulatory Review

The Noise Control Act of 1972 (PL 92-574) directs federal agencies to comply with applicable Federal, state, and local noise control regulations. In 1974, the EPA provided information suggesting continuous and long-term noise levels in excess of DNL 65 dBA are normally unacceptable for noise-sensitive land uses such as residences, schools, churches, and hospitals. The Brevard County Code §46-131 includes a nuisance noise ordinance which does not set specific not-to-exceed noise levels. The county noise ordinance exempts construction noise between the hours of 7:00 a.m. and 8:00 p.m.

3.8.1.2 Noise Sensitive Areas and Background Noise

The closest residential areas to KSC are in the cities of Merritt Island to the southeast and Cape Canaveral to the south. Each is approximately seven miles from the Space Launch Complex (SLC) 40 launch pad. Sound levels in these areas are normally low, with higher levels occurring in industrial areas such as Port Canaveral, and along transportation corridors. Background noise levels (Leq and DNL) were estimated for the surrounding areas using the techniques specified in the American National Standard Quantities and Procedures for Description and Measurement of Environmental Sound Part 3: Short-term measurements with an observer present. The land use category and the estimated background noise levels for the proposed site would typically be considered very quiet suburban or rural residential with levels of 43 dBA during daytime hours and 37 dBA at night (ANSI, 2013). Infrequent aircraft flyovers and rocket launches from CCAFS and KSC intermittently increase noise levels for short durations; however, the overall noise from all activities combined does not create any areas of incompatible land use near KSC.

3.8.1.3 Existing Noise

Existing sources of noise at KSC include aircraft operations, industrial operations, construction, traffic noise, horizontal landings, vertical launches, and natural noises such as the rustling of leaves and bird vocalizations. Below is a description of the prominent sources of noise at KSC:

- **Air Operations**—A small number of aircraft are utilized at KSC for payload delivery, ferry support, NASA executives, security and astronaut training. Typically, noise levels are no greater than those experienced near a small commercial airport (NASA, 2010a, 2015). Air operations do not create any areas of incompatible land use surrounding KSC.

- **Industrial Noise**—The loudest noise generated by industrial activities at KSC is produced by hydraulic pumps operating within the confines of their enclosures. Other intermittent noise occurs during operation of lifting equipment, diesel-powered generators and locomotives, heavy-duty service vehicles, and by certain sheet metal forming and cutting processes. Typical industrial activities have been measured between 57 and 116 dBA near industrial sources throughout KSC (NASA, 2010a, 2015). The highest levels of noise from industrial activities have no impact on areas beyond the KSC boundaries.

- **Roadway Traffic**—Noise due to roadway vehicles (including visitors to the Space Center, the Merritt Island National Wildlife Refuge, and the Canaveral National Seashore) is no greater than that experienced in a major shopping center parking lot.
3.8.1.4 Vertical Launch Operations

Other less frequent, but more intense, sources of noise at KSC are from missile and space launches. These currently include Space X Falcon 9 and Atlas V at CCAFS, as well as historical shuttle launches at LC-39. Table 3.8-2 outlines noise measured during historical launches at KSC. Depending on the launch vehicle and launch location on KSC, resulting noise levels may reach sound levels upward of 100 dB for a short duration after each launch. Because launches from KSC occur infrequently, and the launch noise generated from each event is of very short duration, the average noise levels in nearby areas are not affected appreciably by launch noise.

In addition to initial rocket ignition, launches from KSC generate sonic booms as launch vehicles ascend down range over open ocean waters. Clearance zones established by the launch trajectories keep sonic booms from having adverse impacts to nearby populated areas.

Table 3.8-2. Measured vertical launch noise at KSC

<table>
<thead>
<tr>
<th>Vertical Launch Noise Source</th>
<th>Sound Level [dBA]</th>
<th>Distance [meters]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan IIIC</td>
<td>94</td>
<td>9,388</td>
</tr>
<tr>
<td>Saturn I</td>
<td>89</td>
<td>9,034</td>
</tr>
<tr>
<td>Saturn V</td>
<td>91</td>
<td>9,384</td>
</tr>
<tr>
<td>Atlas</td>
<td>96</td>
<td>4,816</td>
</tr>
<tr>
<td>Space Shuttle [1]</td>
<td>90</td>
<td>9,384</td>
</tr>
</tbody>
</table>

3.8.2 Environmental Consequences Including Cumulative Impacts

This section provides a discussion of the environmental impacts to the noise environment that would result from the Proposed Action, Alternative 1, and the No Action Alternative. Impacts were primarily assessed by reviewing existing noise conditions at KSC and determining the potential effects the Proposed Action would have on nearby noise sensitive areas. The extent of the noise impacts would depend on the size and nature of the project and proximity to noise sensitive land uses, such as residential areas. A significant impact to noise would: (1) result in the violation of applicable Federal, state, or local noise ordinance; (2) create incompatible land uses for areas with sensitive noise receptors outside the KSC boundary; or (3) be loud enough to threaten or harm human health. See Section 3.9, Biological Resources for a discussion of noise impacts on wildlife.

3.8.2.1 Proposed Action

Short- and long-term minor adverse effects would be expected. The Proposed Action would result in the continuation of many of the types of noise presently occurring at KSC but potentially in greater amounts. Short-term increases in noise would result from the use of heavy equipment during construction and demolition activities. Long-term effects would be from the addition of stationary sources of noise such as standby generators, and changes in both vertical and horizontal launch activities. Increases in traffic volumes and changes in traffic patterns would have insignificant effects. The Proposed Action would not (1) result in the violation of
any applicable Federal, state, or local noise ordinance; (2) create incompatible land uses for areas with sensitive noise receptors outside the KSC boundary; or (3) be loud enough to threaten or harm human health.

3.8.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Implementation of the land use plan, future development plan, and functional area plans would have short- and long-term minor adverse effects on the noise environment. Short-term effects would be from noise generated during demolition of aging or outdated facilities and construction of new facilities. Long-term effects would be from introduction of new noise sources such as generators and increases in transportation-based noise from launches and automotive traffic.

This section outlines effects from planning activities, and demolition and construction activities. Effects from proposed changes in launch, landing, operations, and support activities are addressed in Section 3.8.2.1.2. Effects from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.8.2.1.4.

3.8.2.1.1.1 Planning Activities

The planning activities associated with the updated land use plan, future development plan, and functional area plans in and of themselves would not generate any noise. Therefore, planning activities and updating the land use designations would have no effect on the noise environment.

3.8.2.1.1.2 Demolition and Construction Activities

Future changes in land use would include an appreciable amount of construction activities at KSC. Individual pieces of heavy equipment typically generate noise levels of 80 to 90 dBA at a distance of 50 feet. With multiple items of equipment operating concurrently, noise levels can be relatively high at locations within several hundred feet of active construction sites. The zone of relatively high construction noise levels typically extends to distances of 400 to 800 feet from the site of major equipment operations. Locations more than 800 feet from construction sites seldom experience appreciable levels of heavy equipment noise. Table 3.8-3 presents typical noise levels (dBA at 50 feet) that EPA has estimated for the main phases of outdoor construction.

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Sound Level at 50 feet [dBA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground clearing</td>
<td>84</td>
</tr>
<tr>
<td>Excavation, grading</td>
<td>89</td>
</tr>
<tr>
<td>Foundations</td>
<td>78</td>
</tr>
<tr>
<td>Structural</td>
<td>85</td>
</tr>
<tr>
<td>Finishing</td>
<td>89</td>
</tr>
</tbody>
</table>

Source: EPA, 1971

The vast majority of any construction and demolition projects would be well within the KSC boundary, and would have no effect on nearby noise sensitive areas. Heavy equipment noise would end at the conclusion of the construction phase. Given the temporary nature of proposed construction activities, and the limited amount of noise that construction equipment would generate, this impact would be minor. Heavy equipment noise may be audible, but would be perceived as faint and/or distant at locations outside of KSC. Sounds generated from construction
and demolition activities between 7:00 a.m. and 8:00 p.m. would be exempt from the county noise ordinance.

Although construction-related noise impacts would be minor, the following BMPs would be performed to further reduce any realized noise impacts:

- Construction would primarily occur during normal weekday business hours, and
- Construction equipment mufflers would be properly maintained and in good working order.
- Construction personnel, and particularly equipment operators, would don adequate personal hearing protection to limit exposure and ensure compliance with federal health and safety regulations.

Most demolition projects would not involve blasting. If blasting were required, it would occur during the day in the early phases of demolition. Blasting noise would be clearly audible and intrusive at areas adjacent to the project. There would be airborne and ground-borne vibrations during demolition projects that require blasting. Although the exact amount and type of blasting are unknown at this time, steps would be taken to ensure the effects from these activities would remain less than significant. A blasting plan would be prepared to ensure safety and to minimize adverse effects due to noise and vibration at the proposed sites. Baseline vibration levels would be established, vibrations would be monitored, and thresholds for structural damage would be strictly adhered to during blasting activities. Notably, any nearby historic structures would be of particular interest during these activities. Although these effects would be less than significant, future or tiered NEPA would require noise assessment for actions that include construction or demolition activities within 800 feet of the KSC boundary for more than 1 year or have blasting activities for which a blast management plan addressing noise and vibration has not been prepared.

3.8.2.1.2 Launch, Landing, Operations and Support

Launch, landing, operations and support would have short- and long-term minor adverse effects on the noise environment. Short-term effects would be from construction and modification of launch and support facilities. Long-term effects would be from introduction of new noise sources such as launches and automotive traffic. This section outlines effects from:

- Site modifications and pre-launch preparations;
- Vertical launch activities; and
- Horizontal launch activities.

Noise effect from planning activities and associated demolition and construction activities are addressed in Section 3.8.2.1.1. Effects from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.8.2.1.4.

3.8.2.1.2.1 Site Modifications and Pre-Launch Preparations

For most launch programs, site modifications would normally be minor and limited to launch pads and facilities directly related to individual launches and test programs. Modifications to existing facilities may include clearing, grading, and limited construction. Noise from heavy equipment during site modifications and pre-test preparations are expected to be minimal, temporary, and occur well within the KSC property boundary. The noise effects would be similar
in nature and overall level as demolition and construction noise outlined in Section 3.8.2.1.1. Because most of the activities would take place on KSC, the public in the surrounding areas would not normally detect an increase in noise levels; therefore, site modification and pre-launch preparations would not cause significant noise impacts. However, as with other construction activities, future or tiered NEPA would require noise assessment for actions that include construction within 800 feet of the KSC boundary for more than one year.

The use of portable generators may be necessary to support some launches. These would be intermittent and temporary sources of noise and occur well within the KSC property boundary. Effects due to noise from portable generators would be less than significant.

Prelaunch operations and assembly would not generate disruptive noise levels for any sensitive receptors or for any off-station areas. Most processing operations would occur within enclosed facilities. The Proposed Action would likely introduce a minor volume of local roadway traffic and a small increase in aircraft operations for delivery of launch vehicle components. These activities would be minute when compared to current activities, and would not appreciably change the current noise environment. The limited number of additional aircraft operations for component delivery would not affect compatible use zone requirements for KSC. As a result, prelaunch processing and assembly of launch vehicle components would not cause significant noise impacts.

3.8.2.1.2.2 Vertical Launch and Landing

Under the Proposed Action, vertical launches and landings would be ongoing at KSC. In the hours before launches, remote sensors and helicopters may be used to verify the hazard areas would be clear of non-mission-essential aircraft, vessels, and personnel. If helicopters were used to verify beach areas and near shore waters are clear of non-participants, they would generally limit their flights to the areas around KSC, thus limiting the noise effects on local communities. These individual helicopter overflights would be conducted in clear zones around the launch sites and would have insignificant noise effects.

Noise levels generated by individual launches and landings would vary, depending on the type of launch vehicle, its trajectory, and weather conditions during launch. Launch noise would be from the initial rocket ignition and sonic booms as the launch vehicle ascended down range. Noise levels from the rocket ignition would be comparable to the levels shown in Table 3.8-2. While these noise exposure levels can be characterized as very loud in some areas, they would occur infrequently, and are very short in duration (about 20 seconds of intense sound per launch). As with existing vertical launch activities, sonic booms generated by launch vehicles would normally occur down range, well off the Florida coast. Flight trajectories would normally be in an easterly direction, and as such, the resulting sonic boom would be inaudible over coastal areas. As with existing landing activities, sonic booms generated by vehicles would normally occur up range, over Florida. Flight trajectories would normally be in an easterly direction, and as such, the resulting sonic boom would be audible inland and over coastal areas. Typically, the sonic boom would last no more than a few hundred milliseconds. These effects would be less than significant.

Although the exact nature of future vertical launch and landing activities is unknown, the Proposed Action would result in the continuation of vertical launch noise comparable to that
presently occurring at KSC. It is not expected that future vertical launch activities would violate any Federal, state, or local noise ordinance, create incompatible land uses for nearby areas, or be loud enough to harm human health. As a result, no significant impacts on the human environment are expected from vertical launch activities. Although effects would likely be minor, there are a wide range of possible vertical launch and landing vehicle types and operating scenarios. Because of these uncertainties, future or tiered NEPA would require noise assessment for increases in vertical launch and landing activities at KSC.

In the hours and days following vertical launches, a general safety check and cleanup of the launch sites would occur. There would be some small amount of noise from worker commuting, the removal of equipment from the launch site, and general refurbishment of the launch facilities. As with site modifications and pre-launch preparations, post-launch refurbishment activities would not cause significant noise impacts.

3.8.2.1.2.3 Horizontal Launch and Landing

Under the Proposed Action, horizontal launches and landings could become commonplace at KSC. Launch vehicles would likely consist of traditional commercial aircraft comparable to a Boeing 747 and designed to carry an additional launch vehicle that would be released in the upper atmosphere.

Carrier vehicles would have noise levels comparable to existing commercial aircraft. Individual launches of additional launch vehicles in the upper atmosphere would be short-term discrete events. However, the cumulative effects associated with numerous aircraft operations may create areas near the runway normally not recommended for residential land uses. If future aircraft operations did not exceed 90,000 annual operations of propeller or small jet aircraft, or 700 annual operations of mid- and large-size jets, it is expected that areas where the DNL exceeded 65 dB would be confined to areas immediately adjacent to the runway. Based on the latest modeling technology, these levels of piston-powered or jet-powered general aviation operations would produce a DNL 60 dB contour less than 1.1 square miles in area and extending no more than 12,500 feet from the start of takeoff roll. The resulting maximum DNL 65 dB contour would be 0.5 square mile and would not extend more than 10,000 feet from the start of takeoff roll. All aircraft operations associated with horizontal launch and landing would be specifically exempt from the local noise ordinance (FAA, 2007; FAA, 1985). These effects would be less than significant.

Although the exact nature of future horizontal launch activities is unknown, the Proposed Action would result in the continuation of horizontal launch noise comparable to that presently occurring at KSC. Future horizontal launch activities would not violate any Federal, state, or local noise ordinance, create incompatible land uses for nearby areas, or be loud enough to harm human health. As a result, no significant impacts on the human environment are expected from horizontal launch activities. Although effects would likely be minor, there are a wide range of possible horizontal launch and landing vehicle types and operating scenarios. Because of these uncertainties, future or tiered NEPA would require noise assessment for actions that increased the total number of annual operations above 90,000 propeller or small jet aircraft, or 700 annual operations of medium and large jets.
3.8.2.1.3 Climate Change

Implementation of the climate change and sea-level rise requirements would have short- and long-term minor adverse effects on the noise environment. Short-term effects would be from noise generated during demolition of aging or outdated facilities and construction of new facilities. Long-term effects would be from introduction of new noise sources such as backup generators and on-site water pumps. Effects from demolition and construction are addressed in Section 3.8.2.1.1. Any new construction stated under future planning efforts would include climate change and sea-level rise requirements.

Modifications of existing facilities to meet climate change and sea-level rise requirements may range from minor hardening efforts to complete on-site demolition and reconstruction. Any demolition or construction required to meet climate change and sea-level rise requirements would be similar in nature and overall level as that outlined in Section 3.8.2.1. For similar reasons, future or tiered NEPA would require noise assessment for actions that include construction or demolition activities within 800 feet of the KSC boundary for more than 1 year or have blasting activities for which a blast management plan addressing noise and vibration has not been prepared.

In some cases, facilities may require backup generators and onsite water pumps. These would be intermittent sources of noise for emergency use only. Effects due to noise from emergency and back up equipment would be less that significant. It is expected that new permanent sources of noise would be intermittent or temporary or both; however, it is possible that some equipment will be permanent, and required to operate regularly or on an ongoing basis. A detailed list of equipment or locations is not available at this time; therefore, future or tiered NEPA would require noise assessment for actions that include the addition of any permanent source of noise that would operate regularly or ongoing basis.

3.8.2.1.4 Future Transportation Plan

Implementing the transportation plan would have short-term minor and long-term negligible adverse effects. Short-term effects would be from construction activities; long-term effects would be from changes in roadway configurations, traffic patterns, and changes in other modes of transportation throughout KSC. Changes in overall noise for the vast majority of activities would be relatively small and would not violate any federal, state, or local noise ordinance, create incompatible land uses for nearby areas, or be loud enough to harm human health. Effects from demolition and construction are addressed in Section 3.8.2.1.1.

3.8.2.1.4.1 Roads, Bridges and Parking

Road, bridge and parking improvement and replacement projects would be specifically designed to relieve roadway congestion on and near KSC. Small changes in traffic patterns would have negligible long-term effects on noise. There would be some construction noise with these activities; however, as outlined in Section 3.8.2.1.1 and for similar reasons, construction noise would be very small and effects to the noise environment would be less than significant. Road and bridge divestiture would eliminate the vehicle traffic on and the maintenance of the divested infrastructure and any associated noise. There would be no permanent sources of noise associated with the roadway, bridge and parking projects.
Rerouted traffic and increases in traffic may cause a minute increase in noise in the centralized areas of KSC; however, these small changes in traffic patterns would have negligible long-term effects to the noise environment. Because noise is measured on a logarithmic scale, two line sources of equal level (e.g. traffic along a roadway) added together result in an increase of three (3) dBA at all distances. Therefore, a doubling in traffic volume would increase the noise level by three (3) dBA. For example, traffic generating 60 dBA plus the same amount of traffic on the same roadway would yield a total noise level of 63 dBA. Notably, a 3-dBA change in noise levels would be barely perceptible to individuals with average hearing (FHWA, 2011). The Proposed Action could add personnel and potentially increase traffic both on and off KSC. The additional vehicles would constitute an incremental change in traffic volumes along roadways near KSC; however, increases would only be a small fraction of the historical traffic. Even if the total amount of personnel and traffic were to double it would amount to an increase in noise of less than 3-dBA on any existing roadway, and no perceptible change on the existing noise environment. These effects would be negligible.

Although effects would likely be negligible, there is a wide range of possible roadway configurations and personnel changes throughout KSC. Because of these uncertainties, future or tiered NEPA would require noise assessment for actions that added new roadways or had lane additions to access controlled highways.

3.8.2.1.4.2 Rail and Water

Construction and operation of new rail spurs and seaports would have some level of noise and impacts. Although effects would likely be minor, there is a wide range of possible seaport operating scenarios. Future or tiered NEPA would require noise assessment for the establishment of any new seaports at KSC.

3.8.2.1.4.3 Air

Modifications to SLF facilities, infrastructure, the runway, and other airfield systems would have some level of noise. Construction noise would be relatively small and the effects on noise would be less than significant. Development of a new runway may constitute a relatively large effort with both temporary and ongoing sources of noise. Future or tiered NEPA would require noise assessment for the establishment of any new runways at KSC.

3.8.2.1.5 Programmatic Determinations

A programmatic approach to assess the effects of the Proposed Action on noise was performed for this EIS. In general, the overall effects of the action and its components would be less than significant. Site-specific and project-level details are not available at this time; however, based on existing information, additional evaluation under future or tiered NEPA would be required for noise if the project:

- Included construction or demolition activities within 800 feet of the KSC boundary for more than 1 year;
- Included blasting activities for which a blast management plan addressing noise and vibration had not been prepared;
- Included permanent sources of industrial noise that would operate regularly or on an ongoing basis;
• Increased the number of or changed the types of vertical launches at KSC;
• Increased the total number of annual aircraft operations at KSC above 90,000 propeller or small jet aircraft, or 700 mid- to large-sized jets;
• Included new roadways or lane additions to access controlled highways;
• Included the establishment of any new seaports at KSC; or
• Included the establishment of any new runways at KSC.

Without these components, future or tiered NEPA could include this programmatic analysis by reference and eliminate noise as a resource area carried forward for detailed evaluation.

3.8.2.1.6 Cumulative Impacts

Minor short- and long-term cumulative effects would be expected. Noise effects would be primarily due to demolition and construction activities, the introduction of new noise sources such as generators, and increases in transportation-based noise from launches and automotive traffic. These activities would constitute incremental increases in the overall noise environment. Noise generated by activities would be concentrated on KSC and are expected to be less than significant. Implementation of the Proposed Action would not contribute appreciably to adverse cumulative effects to noise. There are no projects identified, including those in Section 3.2, that when combined with the Proposed Action would have greater than significant effects.

3.8.2.2 Alternative 1

The direct, indirect, and cumulative impacts of Alternative 1 related to the acoustic environment or noise would be similar to those of the Proposed Action, but somewhat reduced, because the two seaports would not be constructed, and the proposed Horizontal Launch and Landing functional area north of Beach Road may not ever be built.

3.8.2.3 No Action Alternative

Selecting the No Action Alternative would result in no changes in the impact to the ambient noise environment. KSC operations and the current levels of activities would continue without changes, and the noise environment would remain unchanged when compared to existing conditions.

3.9 Biological Resources

Biological resources include vegetation, wildlife, and the habitats in which they live. Protected species and invasive species are also considered in this section. The habitats found on KSC and the adjacent federal properties provide for the greatest wildlife diversity among Federal facilities in the continental U.S. This diversity can be attributed to several factors. KSC is located within a biogeographical transition zone, having faunal and floral assemblages derived from both temperate Carolinian and tropical/subtropical Caribbean biotic provinces. The area is encompassed within the Indian River Lagoon (IRL) watershed, considered to be the most diverse estuarine system in North America. KSC is bordered on the west by the IRL, on the southeast by the Banana River, and on the north by the Mosquito Lagoon. Further to the west of KSC lies the St. Johns River Basin ecosystem, one of the largest freshwater marsh systems in the state. In
addition, KSC’s proximity to the coast encourages an abundance of migratory birds. All of these factors contribute to the exceptional species diversity found here.

3.9.1 **Affected Environment**

3.9.1.1 **Terrestrial Environment**

3.9.1.1.1 **Upland Plant Communities**

3.9.1.1.1.1 **Native Plants**

Florida’s geological history has largely been determined by sea level changes that directly influenced soil formation and topography, and resulted in the plant communities present today. A “ridge and swale” topography is present on KSC where there are adjacent bands of uplands and wetlands running in a generally north/south direction across the island. Natural upland communities occur on sites that are not flooded for extended periods. Forests occur on higher areas among marshes and lower areas among scrub and pine flatwoods. Upland communities are highly dependent on periodic fire for the maintenance of habitat structure and vegetation composition. The types of habitats found in these areas include scrub, flatwoods and hardwoods, and mixed forests.

Table 3.9-1 and Figure 3.9-1 present a summary of land cover and vegetation at KSC. These data follow the nomenclature of the Florida Land Use Cover Classification System (FLUCCS) (NASA, 2010a, 2015).

<table>
<thead>
<tr>
<th>Land Cover Class</th>
<th>Area (ac)</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland Vegetation</td>
<td>41,083</td>
<td>16,625</td>
</tr>
<tr>
<td>Wetland Vegetation</td>
<td>36,183</td>
<td>14,642</td>
</tr>
<tr>
<td>Urban and Developed</td>
<td>3,800</td>
<td>1,538</td>
</tr>
<tr>
<td>Water</td>
<td>54,228</td>
<td>21,945</td>
</tr>
</tbody>
</table>

Source: NASA, 2010a, 2015

The most recent land cover map for KSC is from 2003 and identifies 31 cover types (Figure 3.9-2 and Table 3.9-2). Types 1 through 19 are found in upland areas (wetland types are discussed in Section 3.9.1.2.1). The dominant upland communities are scrub and pine flatwoods (including coastal strand, oak scrub, palmetto scrub, slash pine flatwoods) and upland forest (including cabbage palm, hardwood hammock, coniferous forest, hardwood forest) (NASA, 2010a, 2015). Definitions for each upland type in Figure 3.9-2 and Table 3.9-2 are as follows (excluding disturbed areas with invasive vegetation, which are discussed in Section 3.9.1.1.1.2 Invasive Plants):
Figure 3.9-1. General land cover at KSC
KSC infrastructure
1. Infrastructure – primary: structures and all paved surfaces
2. Infrastructure – secondary: unpaved roads

Natural uplands devoid of vegetation
3. Beach: zone of sparse or no vegetation between the ocean and coastal dune

Upland scrub and pine flatwoods
4. Coastal strand: includes saw palmetto (Serenoa repens), sea grape (Coccoloba uvifera), and other species
5. Oak scrub (Figure 3.9-3): includes scrub oak species (i.e., sand live oak [Quercus virginiana var. geminata], myrtle oak [Q. myrtifolia], Chapman oak [Q. chapmanii]), with scattered saw palmetto, wax myrtle (Myrica cerifera), gallberry (Ilex coriacea), lyonias, other shrub and brush species, intermixed with various types of herbs and grasses; generally less than 5 m tall, with interlocking canopy but may also contain small areas with little or no vegetation
6. Palmetto scrub: includes saw palmetto, wax myrtle, gallberry, lyonias, other shrub and brush species, intermixed with various types of herbs and grasses; generally less than 5 m tall, with interlocking canopy but may also contain small areas with little or no vegetation
7. Pine flatwoods: scattered pines, primarily slash pine (Pinus elliotti), with non-interlocking canopy, generally greater than 5 m tall, with a sub-canopy of palmetto or scrubby species

Upland forest
8. Upland coniferous forest: dense stands of slash pines (some planted), generally greater than 5 m tall with interlocking canopy; may contain an upland scrub sub-canopy
9. Upland coniferous/hardwood forest: contains tall oaks and pine trees generally greater than 5 m tall with interlocking canopy; composition may include red bay (Persea borbonia), laurel cherry (Prunus caroliniana), and cabbage palm (Sabal palmetto)
10. Upland hardwood forest: contains tall oaks generally greater than 5 m with interlocking canopy and an understory that includes saw palmetto; composition may include red bay, slash pine, laurel cherry, and cabbage palm
11. Cabbage palm: a forest community of predominantly cabbage palm and commonly found as hammock communities on shallow rises within wetland communities; generally greater than 5 m with interlocking canopy
12. Hardwood hammock: a forest community commonly found on shallow rises within wetland communities; greater than 5 m with interlocking canopy and predominant composed of Virginia live oak (Q. virginiana) with laurel oak (Q. laurifolia), cabbage palm, and American elm (Ulmus americana)
Figure 3.9-2. Land cover types at KSC
Table 3.9-2. Land cover types at KSC

<table>
<thead>
<tr>
<th>Community</th>
<th>Land Cover Class</th>
<th>Hectares</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland</td>
<td>Infrastructure – primary</td>
<td>819</td>
<td>2024</td>
</tr>
<tr>
<td>Upland</td>
<td>Infrastructure – secondary</td>
<td>564</td>
<td>1,394</td>
</tr>
<tr>
<td>Upland</td>
<td>Beach</td>
<td>255</td>
<td>630</td>
</tr>
<tr>
<td>Natural uplands devoid of vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland</td>
<td>Beach</td>
<td>122</td>
<td>301</td>
</tr>
<tr>
<td>Disturbed areas with exotic/invasive vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland</td>
<td>Ruderal – herbaceous*</td>
<td>1,498</td>
<td>3,702</td>
</tr>
<tr>
<td>Upland</td>
<td>Citrus</td>
<td>748</td>
<td>1,848</td>
</tr>
<tr>
<td>Upland</td>
<td>Ruderal – woody*</td>
<td>598</td>
<td>1,478</td>
</tr>
<tr>
<td>Upland</td>
<td>Australian Pine</td>
<td>45</td>
<td>111</td>
</tr>
<tr>
<td>Upland scrub and pine flatwoods</td>
<td></td>
<td>9,011</td>
<td>22,268</td>
</tr>
<tr>
<td>Upland</td>
<td>Coastal strand</td>
<td>414</td>
<td>1,023</td>
</tr>
<tr>
<td>Upland</td>
<td>Oak scrub</td>
<td>6,105</td>
<td>15,086</td>
</tr>
<tr>
<td>Upland</td>
<td>Palmetto scrub</td>
<td>1,294</td>
<td>3,198</td>
</tr>
<tr>
<td>Upland</td>
<td>Planted oak scrub</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Upland</td>
<td>Pine flatwoods</td>
<td>1,188</td>
<td>2,936</td>
</tr>
<tr>
<td>Upland forest</td>
<td></td>
<td>6,128</td>
<td>15,140</td>
</tr>
<tr>
<td>Upland</td>
<td>Upland coniferous forest</td>
<td>109</td>
<td>269</td>
</tr>
<tr>
<td>Upland</td>
<td>Upland coniferous / hardwood forest</td>
<td>848</td>
<td>2,095</td>
</tr>
<tr>
<td>Upland</td>
<td>Upland hardwood forest</td>
<td>236</td>
<td>583</td>
</tr>
<tr>
<td>Upland</td>
<td>Cabbage palm</td>
<td>1,093</td>
<td>2,701</td>
</tr>
<tr>
<td>Upland</td>
<td>Hardwood hammock</td>
<td>3,648</td>
<td>9,014</td>
</tr>
<tr>
<td>Upland</td>
<td>Planted hardwoods</td>
<td>113</td>
<td>279</td>
</tr>
<tr>
<td>Upland</td>
<td>Planted pine</td>
<td>81</td>
<td>200</td>
</tr>
<tr>
<td>Wetlands - estuary, marsh, shrub, forest</td>
<td></td>
<td>38,442</td>
<td>94,994</td>
</tr>
<tr>
<td>Wetland</td>
<td>Estuary</td>
<td>22,399</td>
<td>55,349</td>
</tr>
<tr>
<td>Wetland</td>
<td>Water - interior - salt</td>
<td>3,103</td>
<td>7,668</td>
</tr>
<tr>
<td>Wetland</td>
<td>Water - interior - fresh</td>
<td>381</td>
<td>941</td>
</tr>
<tr>
<td>Wetland</td>
<td>Barren land - may be inundated</td>
<td>103</td>
<td>255</td>
</tr>
<tr>
<td>Wetland</td>
<td>Ditch</td>
<td>151</td>
<td>373</td>
</tr>
<tr>
<td>Wetland</td>
<td>Marsh - saltwater</td>
<td>5,260</td>
<td>12,998</td>
</tr>
<tr>
<td>Wetland</td>
<td>Marsh - freshwater</td>
<td>2,381</td>
<td>5,884</td>
</tr>
<tr>
<td>Wetland</td>
<td>Mangrove</td>
<td>677</td>
<td>1,673</td>
</tr>
<tr>
<td>Wetland</td>
<td>Wetland scrub-shrub - saltwater</td>
<td>735</td>
<td>1,816</td>
</tr>
<tr>
<td>Wetland</td>
<td>Wetland scrub-shrub - freshwater</td>
<td>2,158</td>
<td>5,333</td>
</tr>
<tr>
<td>Wetland</td>
<td>Wetland coniferous/hardwood forest</td>
<td>632</td>
<td>1,562</td>
</tr>
<tr>
<td>Wetland</td>
<td>Wetland hardwood forest</td>
<td>462</td>
<td>1,142</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>57,411</td>
<td>141,866</td>
</tr>
</tbody>
</table>

* Ruderal refers to those plant species that first colonize disturbed land; this land cover class does not technically include only exotic and invasive plant species.

13. Planted oak scrub: planted oak scrub (see oak scrub above)
14. Planted hardwood: planted hardwoods (see upland hardwood forest above)
15. Planted pine: planted slash pines

A list of the vascular plant flora of KSC can be found in Appendix D of NASA (2010a) and includes 1,105 taxa, of which 874 species are native. Fifty-seven taxa are endemic or nearly endemic to Florida. The bryophyte flora of the KSC area includes 23 mosses and 20 liverworts and hornworts. The lichen flora is currently unknown.

![Figure 3.9-3. Oak scrub habitat at KSC](image)

3.9.1.1.2 Invasive Plants

Invasive plants are highly competitive and can often out-compete native vegetation, especially on recently disturbed sites. They decrease biodiversity, put endangered and threatened species at further risk, cause animal population decline and extinction worldwide, displace native plants that wildlife and fish depend on for food, increase soil erosion and cause major damage to streams and other wetland areas, increase the frequency and risk of wildfires, and reduce agricultural production and property values. Because they are often highly competitive, invasive plants alter the plant composition of ecosystems and may change their structure and function over large landscape areas. Climate change is exacerbating these changes by altering the amount and seasonal distribution of precipitation and seasonal temperature patterns in ways that often favor invasive species. Invasive plant infestations can impact an area for decades and may become permanent if left untreated.

Most of the areas on KSC that are disturbed, including roadsides, utility corridors, and launch complexes, have a substantial invasive species component. Only some of these species have become naturalized. Brazilian pepper (*Schinus terebinthifolius*) is most prominent on the KSC
landscape, but Australian pine (Casuarina cf. equisetifolia) and melaleuca (Melaleuca quinquenervia) are locally abundant (Schmalzer et al., 2002). These three species are among the most common and damaging invasive exotic plants in Florida because they form dense stands displacing all other plant species. Cogongrass (Imperata cylindrica) has spread in recent years and has the potential to invade upland communities and disrupt natural fire regimes. Also of concern is the appearance of Old World climbing fern (Lygodium microphyllum) and valamuerto (Senna pendula var. glabrata). Old world climbing fern is well established in south Florida and can cover native trees. Mistletoe (Phoradendron serotinum) and small populations of thistles (Cirsium spp.) and nettles (Urtica spp.) are also present.

The most recent land cover map for KSC identifies 31 cover types (Figure 3.9-2 and Table 3.9-2). Types 4 through 7 contain exotic/invasive vegetation potentially interspersed with native vegetation. Note that ruderal refers to those plant species that first colonize disturbed land; this this land cover class does not technically include only exotic and invasive plant species.

Disturbed areas with exotic/invasive vegetation

1. **Ruderal - herbaceous:** herbaceous areas with sparse and/or widely scattered woody vegetation and/or bare soil that is often the result of disturbance, includes abandoned groves
2. **Citrus -** includes maintained orange and grapefruit groves
3. **Ruderal - woody:** disturbed areas of dense woody vegetation generally with a closed canopy but may be mixed with ruderal - herbaceous; the dominant vegetation is often Brazilian pepper but may include willow, wax myrtle, and vines (i.e., grape vine, green briar); mangroves may occur along the inundated edge of dikes
4. **Australian pine:** Australian pine is a hardwood whose name is derived from its needle-like leaves and its characteristic cone shaped crown structure; Australian pine was introduced to Florida from Australia and occurs on disturbed sites forming dense thickets; used to form wind breaks and area extent may be linear in configuration; generally more than 5 m tall, with interlocking canopy

A complete list of the introduced plant species at KSC can be found in Appendix D of NASA (2010a). Of the 231 introduced plants at KSC, 33 are Category I invasive exotics and 24 are Category II invasive exotics as indicated by the Florida Exotic Pest Plant Council (FLEPPC). Invasive exotic plants are termed Category I invasives when they are altering native plant communities by displacing native species, changing community structures or ecological functions, or hybridizing with natives (FLEPPC, 2015). Category II plants have increased in abundance or frequency but have not yet altered Florida plant communities to the extent shown by Category I species. These species may become Category I if ecological damage is demonstrated. Table 3.9-3 lists the Category I and II species that can be found on KSC uplands.
Table 3.9-3. Category I and II invasive upland plant species at KSC

<table>
<thead>
<tr>
<th>Category</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Abrus precatorius</td>
<td>Rosary pea</td>
</tr>
<tr>
<td>I</td>
<td>Albizia julibrissin</td>
<td>Mimosa, Silk tree</td>
</tr>
<tr>
<td>I</td>
<td>Albizia lebbeck</td>
<td>Woman’s tongue</td>
</tr>
<tr>
<td>I</td>
<td>Asparagus aethiopicus</td>
<td>Asparagus-fern</td>
</tr>
<tr>
<td>I</td>
<td>Bauhinia variegata</td>
<td>Orchid tree</td>
</tr>
<tr>
<td>I</td>
<td>Casuarina equisetifolia</td>
<td>Australian-pine, Beach she-oak</td>
</tr>
<tr>
<td>I</td>
<td>Casuarina glauca</td>
<td>Suckering Australian-pine, Gray she-oak</td>
</tr>
<tr>
<td>I</td>
<td>Dioscorea bulbifera</td>
<td>Air-potato</td>
</tr>
<tr>
<td>I</td>
<td>Eugenia uniflora</td>
<td>Surinam cherry</td>
</tr>
<tr>
<td>I</td>
<td>Imperata cylindrica</td>
<td>Cogon grass</td>
</tr>
<tr>
<td>I</td>
<td>Lantana camara</td>
<td>Lantana, Shrub verbena</td>
</tr>
<tr>
<td>I</td>
<td>Lonicera japonica</td>
<td>Japanese honeysuckle</td>
</tr>
<tr>
<td>I</td>
<td>Lygodium microphyllum</td>
<td>Old World climbing suck</td>
</tr>
<tr>
<td>I</td>
<td>Melaleuca quinquenervia</td>
<td>Melaleuca, Paper bark</td>
</tr>
<tr>
<td>I</td>
<td>Melinis repens</td>
<td>Natal grass</td>
</tr>
<tr>
<td>I</td>
<td>Nephrolepis cordifolia</td>
<td>Sword fern</td>
</tr>
<tr>
<td>I</td>
<td>Panicum repens</td>
<td>Torpedo grass</td>
</tr>
<tr>
<td>I</td>
<td>Pennisetum purpureum</td>
<td>Napier grass, Elephant grass</td>
</tr>
<tr>
<td>I</td>
<td>Psidium cattleianum</td>
<td>Strawberry guava</td>
</tr>
<tr>
<td>I</td>
<td>Psidium guajava</td>
<td>Guava</td>
</tr>
<tr>
<td>I</td>
<td>Pueraria montana var. lobata</td>
<td>Kudzu</td>
</tr>
<tr>
<td>I</td>
<td>Ruellia simplex</td>
<td>Mexican petunia</td>
</tr>
<tr>
<td>I</td>
<td>Sapium sebiferum</td>
<td>Popcorn tree, Chinese tallow tree</td>
</tr>
<tr>
<td>I</td>
<td>Schinus terebinthifolius</td>
<td>Brazilian-pepper</td>
</tr>
<tr>
<td>I</td>
<td>Senna pendula var. glabrata</td>
<td>Climbing cassia, Christmas cassia</td>
</tr>
<tr>
<td>I</td>
<td>Syngonium podophyllum</td>
<td>Arrowhead vine</td>
</tr>
<tr>
<td>I</td>
<td>Syzygium cumini</td>
<td>Jambolan-plum, Java-plum</td>
</tr>
<tr>
<td>I</td>
<td>Urena lobata</td>
<td>Caesar’s weed</td>
</tr>
<tr>
<td>I</td>
<td>Urochloa mutica</td>
<td>Para grass</td>
</tr>
<tr>
<td>II</td>
<td>Agave sisalana</td>
<td>Sisal hemp</td>
</tr>
<tr>
<td>II</td>
<td>Antigonon leptopus</td>
<td>Coral vine</td>
</tr>
<tr>
<td>II</td>
<td>Aristolochia littoralis</td>
<td>Calico flower</td>
</tr>
<tr>
<td>II</td>
<td>Asystasia gangetica</td>
<td>Ganges primrose</td>
</tr>
<tr>
<td>II</td>
<td>Broussonetia papyrifera</td>
<td>Paper mulberry</td>
</tr>
<tr>
<td>II</td>
<td>Casuarina cunninghamiana</td>
<td>River she-oak, Australian pine</td>
</tr>
<tr>
<td>II</td>
<td>Kalanchoe pinnata</td>
<td>Life plant</td>
</tr>
<tr>
<td>II</td>
<td>Koelreuteria elegans ssp. formosana</td>
<td>Flamegold tree</td>
</tr>
<tr>
<td>II</td>
<td>Leucaena leucocephala</td>
<td>Lead tree</td>
</tr>
<tr>
<td>II</td>
<td>Melia azedarach</td>
<td>Chinaberry</td>
</tr>
<tr>
<td>II</td>
<td>Panicum maximum</td>
<td>Guinea grass</td>
</tr>
<tr>
<td>II</td>
<td>Phoenix reclinata</td>
<td>Senegal date palm</td>
</tr>
<tr>
<td>II</td>
<td>Ricinus communis</td>
<td>Castor bean</td>
</tr>
<tr>
<td>Category</td>
<td>Scientific Name</td>
<td>Common Name</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>II</td>
<td>Sansevieria hyacinthoides</td>
<td>Bowstring hemp</td>
</tr>
<tr>
<td>II</td>
<td>Sphagenticola trilobata</td>
<td>Wedelia</td>
</tr>
<tr>
<td>II</td>
<td>Syagrus romanzoffiana</td>
<td>Queen palm</td>
</tr>
<tr>
<td>II</td>
<td>Syzygium jambos</td>
<td>Malabar plum, Rose-apple</td>
</tr>
<tr>
<td>II</td>
<td>Talpariti tiliaceum</td>
<td>Mahoe, Sea hibiscus</td>
</tr>
<tr>
<td>II</td>
<td>Tribulus cistoides</td>
<td>Puncture vine, Burr-nut</td>
</tr>
<tr>
<td>II</td>
<td>Vitex trifolia</td>
<td>Simple-leaf chaste tree</td>
</tr>
<tr>
<td>II</td>
<td>Washingtonia robusta</td>
<td>Washington fan palm</td>
</tr>
<tr>
<td>II</td>
<td>Wisteria sinensis</td>
<td>Chinese wisteria</td>
</tr>
</tbody>
</table>

Note: Some species are found in both upland and wetland habitats.

Source: NASA, 2010a, 2015; FLEPPC, 2015

3.9.1.1.1.3 Special Status Plants

The Endangered Species Act of 1973 (PL-93-205) provides guidance regarding the management and protection of certain species based on determinations made regarding their relative ability to survive. The U.S. Fish and Wildlife Service is responsible for determining which species are listed as either Threatened or Endangered and for maintaining this listing. In addition, Section 7 of the statute provides for a consultation process between the Service and any federal agency that may, through one of its Proposed Actions, impact one of these species or their critical habitat.

The State of Florida also develops and maintains its own list of species suffering threats to populations and habitats. The Florida Fish and Wildlife Conservation Commission (FFWCC) Endangered Species Coordinator is responsible for the review of species, designating their status and formally listing them in the State's Official List of Endangered and Potentially Endangered Fauna and Flora in Florida. This official list provides a comprehensive directory of the biota requiring special consideration in the State of Florida.

No federally listed plant species have been found to occur on KSC. Thirty nine taxa occurring on KSC are listed as threatened, endangered, or of special concern on Florida state lists (NASA, 2010a, 2015; FDACS, 2013; FNAI, 2014; Atlas of Florida Vascular Plants, 2014; NRCS, 2014). Twenty eight of these are found in upland habitats. Taxa of special concern occur in all major habitats, but many are restricted to hammocks and hardwood swamps that constitute a minor proportion of the terrestrial vegetation. For some of these taxa (e.g., Calamovilfa curtissii), populations on KSC appear to be important for their regional and global survival. Table 3.9-4 lists the special status species that occur on uplands and Table 3.9-5 shows the habitat, population status, and threats for upland special status species.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>USFWS</th>
<th>FDACS</th>
<th>FCREPA</th>
<th>FNAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asclepias curtissii</td>
<td>Curtiss milkweed</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calamovilfa curtissii</td>
<td>Curtiss reedgrass</td>
<td>FC2</td>
<td>T</td>
<td>G3, S3</td>
<td></td>
</tr>
<tr>
<td>Calopogon multiflorus</td>
<td>Many-flowered</td>
<td>E</td>
<td></td>
<td></td>
<td>G2G3, S2S3</td>
</tr>
<tr>
<td></td>
<td>grass pink</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>USFWS<sup>2</sup></td>
<td>FDACS<sup>1,3</sup></td>
<td>FCREPA<sup>1,4</sup></td>
<td>FNAI<sup>5</sup></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Chamaesyce cumulicola</td>
<td>Sand dune spurge</td>
<td></td>
<td>FC2</td>
<td>E</td>
<td>G2, S2</td>
</tr>
<tr>
<td>Chrysophyllum oliviforme</td>
<td>Satinleaf</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Cyperus pedunculatus</td>
<td>Beach-star</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Glandularia maritima</td>
<td>Coastal vervain</td>
<td>FC2</td>
<td>E</td>
<td>G3, S3</td>
<td></td>
</tr>
<tr>
<td>Glandularia tampaensis</td>
<td>Tampa vervain</td>
<td>FC1</td>
<td>E</td>
<td>G2, S2</td>
<td></td>
</tr>
<tr>
<td>Gonolobus suberosus</td>
<td>Angle-pod</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Hexalectris spicata</td>
<td>Crested coralroot</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Lantana depressa var. floridana</td>
<td>East coast lantana</td>
<td>FC2</td>
<td>E</td>
<td>G2T1, S1</td>
<td></td>
</tr>
<tr>
<td>Lechea cernua</td>
<td>Nodding pinweed</td>
<td>FC2</td>
<td>T</td>
<td>G3, S3</td>
<td></td>
</tr>
<tr>
<td>Lechea divaricata</td>
<td>Pine pinweed</td>
<td>FC2</td>
<td>E</td>
<td>G2, S2</td>
<td></td>
</tr>
<tr>
<td>Lilium catesbaei</td>
<td>Catesby lily</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Myrcianthes fragrans</td>
<td>Nakedwood</td>
<td>FC2</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemastylis floridana</td>
<td>Fall-flowering ixia</td>
<td></td>
<td></td>
<td>E</td>
<td>G2, S2</td>
</tr>
<tr>
<td>Ophioglossum palmatum</td>
<td>Hand fern</td>
<td></td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Opuntia stricta</td>
<td>Shell mound prickly-pear</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Pavonia spinifex</td>
<td>Yellow hibiscus</td>
<td></td>
<td></td>
<td>G4G5, S2</td>
<td></td>
</tr>
<tr>
<td>Pecluma plumula</td>
<td>Plume polypody</td>
<td></td>
<td>E</td>
<td>G5, S2</td>
<td></td>
</tr>
<tr>
<td>Peperomia humilis</td>
<td>Peperomia</td>
<td></td>
<td>E</td>
<td>G5, S2</td>
<td></td>
</tr>
<tr>
<td>Peperomia obtusifolia</td>
<td>Florida peperomia</td>
<td></td>
<td>E</td>
<td>G5, S2</td>
<td></td>
</tr>
<tr>
<td>Persea borbonia var. humili</td>
<td>Scrub bay</td>
<td></td>
<td></td>
<td>G3, S3</td>
<td></td>
</tr>
<tr>
<td>Pteroglossaspis ecristata</td>
<td>False coco</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Scaevola plumieri</td>
<td>Scaevola</td>
<td></td>
<td></td>
<td>G2G3, S2</td>
<td></td>
</tr>
<tr>
<td>Sophora tomentosa</td>
<td>Yellow necklace pod</td>
<td></td>
<td></td>
<td>G4G5, S3</td>
<td></td>
</tr>
<tr>
<td>Tephrosia angustissima var. curtissii</td>
<td>Narrow-leaved hoary pea</td>
<td>FC2</td>
<td>E</td>
<td>G1T1, S1</td>
<td></td>
</tr>
<tr>
<td>Zamia pumila</td>
<td>East coast coontie</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Sources: NASA, 2010a, 2015

¹ Designated Status: E = Endangered; T = Threatened; SP = Special Concern; C = Commercially Exploited

² United States Fish and Wildlife Service. FC1 and FC2 indicate species that were formerly under consideration for listing.

³ Florida Department of Agriculture and Consumer Services

⁴ Florida Committee on Rare and Endangered Plants and Animals

⁵ Florida Natural Areas Inventory. FNAI assigns two ranks for each element. The global element rank is based on an element’s worldwide status; the state element rank is based on the status of the element in Florida. Element ranks are
based on factors including estimated number of element occurrences, estimated abundance, range, estimated adequately protected element occurrences, relative threat of destruction, and ecological fragility.

Global Element Rank:

G1 = Critically imperiled globally because of extreme rarity (5 or fewer occurrences or less than 1000 individuals) or because of extreme vulnerability to extinction due to some natural or man-made factor.

G2 = Imperiled globally because of rarity (6 to 20 occurrences or less than 3000 individuals) or because of vulnerability to extinction due to some biological or man-made factor.

G3 = Either very rare and local throughout its range (21-100 occurrences or less than 10,000 individuals), or found locally in a restricted range, or vulnerable to extinction because of other factors.

G4 = Apparently secure globally (may be rare in parts of range)

G5 = Demonstrably secure globally

G#T# = Rank of taxonomic subgroup such as subspecies or variety; numbers have same definition as above

State Element Rank:

Definitions parallel global element ranks: substitute “S” for “G” in global ranks, and “in state” for “globally” in global rank definitions.

Table 3.9-5. Common habitats of special status upland plants of the KSC area, including adjacent federal property

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Habitat</th>
<th>Population Status</th>
<th>Threats to Existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asclepias curtissii</td>
<td>Oak scrub</td>
<td>Several small populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Calamovilfa curtissii</td>
<td>Shallow swales in pine flatwoods</td>
<td>Several populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Calopogon multiflorus</td>
<td>Pine flatwoods</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Chamaesyce cumulicola</td>
<td>Coastal dunes, strand and scrub</td>
<td>Several small populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Chrysophyllum oliviforme</td>
<td>Hammocks</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Cyperus pedunculatus</td>
<td>Coastal dunes</td>
<td>Occasional within habitat</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Glandularia maritima</td>
<td>Coastal dunes and strand - openings</td>
<td>Common within habitat</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Glandularia tampensis</td>
<td>Edge of hammocks</td>
<td>A few small populations</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Gonolobus suberosus</td>
<td>Hammocks</td>
<td>One population</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Hexalectris spicata</td>
<td>Hammocks</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Lantana depressa var. floridana</td>
<td>Coastal strand and scrub, coquina scrub</td>
<td>Several populations</td>
<td>Habitat loss, hybridization with L. camara</td>
</tr>
<tr>
<td>Lechea cernua</td>
<td>Scrub openings</td>
<td>Not relocated on KSC/MINWR</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Lechea divaricata</td>
<td>Scrub openings</td>
<td>Several small populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Lilium catesbaei</td>
<td>Pine flatwoods</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Habitat</td>
<td>Population Status</td>
<td>Threats to Existence</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Myrcianthes fragrans</td>
<td>Hammocks, coastal strand</td>
<td>Common within habitat</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Nemastylis floridana</td>
<td>Hammocks, wet flatwoods</td>
<td>One population</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Ophioglossum palmatum</td>
<td>Hammocks - epiphytic on cabbage palm</td>
<td>3 extant populations, 1 historic population</td>
<td>Habitat loss, freezes</td>
</tr>
<tr>
<td>Opuntia stricta</td>
<td>Coastal dunes and strand</td>
<td>Common within habitat</td>
<td>Habitat loss, introduced insect</td>
</tr>
<tr>
<td>Pavonia spinifex</td>
<td>Hammocks</td>
<td>Several populations</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Pecluma plumula</td>
<td>Hammocks - epiphytic</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Peperomia humilis</td>
<td>Hammocks</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Peperomia obtusifolia</td>
<td>Hammocks - epiphytic</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Persea borbonia var. humilis</td>
<td>scrub</td>
<td>A few small populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Pteroglossaspis ecristata</td>
<td>Scrub and dry flatwoods</td>
<td>One population</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Scaevola plumieri</td>
<td>Coastal dunes and strand</td>
<td>Occasional within habitat</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Sophora tomentosa</td>
<td>Coastal strand and hammocks</td>
<td>One population</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Tephrosia angustissima var. curtissii</td>
<td>Coastal dunes and strand</td>
<td>Two small populations</td>
<td>Habitat loss, fire exclusion</td>
</tr>
<tr>
<td>Zamia pumila</td>
<td>Coastal hammocks</td>
<td>Several populations</td>
<td>Habitat loss, collection</td>
</tr>
</tbody>
</table>

Source: NASA, 2010a, 2015

3.9.1.1.2 Terrestrial Wildlife

The diverse habitats of the Kennedy Space Center/Merritt Island National Wildlife Refuge support a wide variety of animal species. The refuge’s biodiversity is important to the overall ecological integrity of the North Florida Ecosystem in general and the Indian River Lagoon system in particular. KSC/MINWR also serves as an important site for the recovery of federally and state-listed threatened and endangered species. KSC/MINWR’s habitats provide protection and management opportunities for 10 regularly occurring federally listed threatened and endangered species (where a total of 93 species have some level of management concern by the federal government or by the State of Florida). The wildlife described for the upland communities of KSC include those for dry interior types such as scrub pine habitats as well as beach habitats, which are dry environments supporting mice, nesting birds, and the nests of sea turtles.
3.9.1.1.2.1 Native Wildlife

Reptiles and Amphibians

It is believed that KSC/MINWR’s habitats support more than 71 species of reptiles and amphibians. Terrestrial herpetofauna (Table 3.9-6) have been studied on at KSC/MINWR since the 1970s. Long-term monitoring has provided considerable data on the biodiversity of “herps” on the refuge (Seigel and Pike, 2003). These data should be beneficial in detecting long-term changes in these species. Reptiles and amphibians are a critical component of refuge ecosystems. The biomass of reptiles and amphibians may exceed that of all other vertebrates in aquatic and terrestrial systems (Seigel and Seigel, 2000). The ecological distribution of reptiles and amphibians on Merritt Island would be a function of available habitat, primarily wetland, freshwater communities. However, several species are specific to terrestrial habitats. Exotic species are becoming potential threats to the refuge. Presently on the refuge, the brown anole (*Anolis sagrei*) may be displacing native species (Campbell, 2000; Campbell and Echternacht, 2002). The Cuban frog (*osteopilus septentrionalis*), which consumes smaller species, has been positively identified on the southern portion of the refuge. Additional research and monitoring is being conducted on gopher tortoise distribution and fecundity, as well as on upper respiratory tract disease in gopher tortoises (USFWS, 2008).

Table 3.9-6. Terrestrial amphibians and reptiles of KSC

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance Based on Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frogs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bufo quercicus</td>
<td>oak toad</td>
<td>occasionally seen, commonly heard</td>
</tr>
<tr>
<td>Bufo terrestris</td>
<td>southern toad</td>
<td>commonly seen and heard</td>
</tr>
<tr>
<td>Hyla cinerea</td>
<td>green tree frog</td>
<td>commonly seen and heard</td>
</tr>
<tr>
<td>Hyla femoralis</td>
<td>pinewoods tree frog</td>
<td>occasionally heard at night, rarely</td>
</tr>
<tr>
<td>Hyla gratiosa</td>
<td>barking tree frog</td>
<td>occasionally heard at night, rarely</td>
</tr>
<tr>
<td>Hyla squirella</td>
<td>squirrel tree frog</td>
<td>commonly seen and heard</td>
</tr>
<tr>
<td>Pseudacris ocularis</td>
<td>little grass frog</td>
<td>rarely seen, occasionally heard</td>
</tr>
<tr>
<td>Eleutherodactylus planirostris</td>
<td>greenhouse frog (E)</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Gastrophrynne carolinensis</td>
<td>narrow-mouthed toad</td>
<td>occasionally seen, commonly heard</td>
</tr>
<tr>
<td>Scaphiopus holbrookii</td>
<td>eastern spadefoot toad</td>
<td>occasionally seen and heard</td>
</tr>
<tr>
<td>Rana capito</td>
<td>gopher frog</td>
<td>rarely seen or heard</td>
</tr>
<tr>
<td>Turtles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrapene carolina</td>
<td>box turtle</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Gopherus polyphemus</td>
<td>gopher tortoise</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Lizards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophisaurus attenuatus</td>
<td>slender glass lizard</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Ophisaurus compressus</td>
<td>island glass lizard</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Ophisaurus ventralis</td>
<td>eastern glass lizard</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Hemidactylus garnotii</td>
<td>Indo-Pacific gecko (ex)</td>
<td>rarely seen</td>
</tr>
</tbody>
</table>

Chapter Three – Environmental Analysis 3-116
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance Based on Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemidactylus turcicus</td>
<td>Mediterranean gecko (ex)</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Anolis carolinensis</td>
<td>green anole</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Anolis sagrei</td>
<td>brown anole (ex)</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Eumeces egregious</td>
<td>mole skink</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Eumeces inexpectatus</td>
<td>southeastern five-lined skink</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Scincella lateralis</td>
<td>ground skink</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Cnemidophorus sexlineatus</td>
<td>six-lined racerunner</td>
<td>commonly seen</td>
</tr>
</tbody>
</table>

Snakes

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance Based on Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemophora coccinea</td>
<td>scarlet snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Coluber constrictor</td>
<td>black racer</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Drymarchon corais couperi</td>
<td>indigo snake</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Elaphe guttata</td>
<td>corn snake</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Elaphe obsoleta</td>
<td>yellow rat snake</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Heterodon platirhinos</td>
<td>eastern hog-nosed snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Lampropeltis getula</td>
<td>common kingsnake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Lampropeltis triangulum</td>
<td>scarlet kingsnake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Masticophis flagellum</td>
<td>coachwhip</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Opheodrys aestivus</td>
<td>rough green snake</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Pituophis melanoleucus mughus</td>
<td>Florida pine snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Rhadinidae flavilata</td>
<td>pine woods snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Storeria dekayi</td>
<td>brown snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Tantilla relicta</td>
<td>coastal dunes crowned snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Thamnophis sauritus</td>
<td>ribbon snake</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Thamnophis sirtalis</td>
<td>garter snake</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Micrurus fulvus</td>
<td>Coral snake (v)</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Crotalus adamanteus</td>
<td>diamondback rattlesnake (v)</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Sistrurus miliarius</td>
<td>pygmy rattlesnake (v)</td>
<td>rarely seen</td>
</tr>
</tbody>
</table>

*ex = exotic or non-native to the area; v = venomous

Source: NASA (2015)
Birds
More than 330 bird species use KSC/MINWR for nesting, roosting, feeding, or loafing. The refuge hosts a great diversity of passerines, including thrushes, vireos, warblers, finches, corvids and other perching birds, with approximately 170 species regularly occurring on the refuge. Ninety species nest at KSC, 111 species are regular winter visitors, and 66 species are considered to be transients (NASA, 2010a, 2015). The great majority of passerines are transient, using refuge habitats during spring and fall migrations. The threatened Florida scrub-jay (discussed below) is the only federally listed passerine that occurs on the refuge.

Mammals
KSC/MINWR provides habitat for more than 30 species of both terrestrial and aquatic mammals. This count does not include the numerous species of dolphins and whales that occur offshore in the Atlantic and occasionally wash up dead on KSC beaches. The mammalian fauna of the refuge is characteristic of the central Florida coastal barrier ecosystem. Table 3.9-7 lists the terrestrial mammals of KSC.

Several mammals are of note at KSC. A large bat colony exists in the SR 405 bridge crossing over SR 3. Two species, the Brazilian free-tailed bat (*Tadarida brasiliensis*) and the southeastern bat (*Myotis austroriparius*), have been identified using the bridge as a roosting site. The bridge is also used as a maternity colony site and pre-fledged bats have been observed. Routine maintenance and repair operations on the bridge have been done on several occasions with no apparent impacts to the colony. In recent years, bat roosts have been identified in five other buildings/structures and may very likely occur elsewhere on KSC. Six bat houses have been installed; one near a pavilion at KARS Park I and five near the Logistics Facility.

The largest mammalian predators remaining on KSC are the bobcat and river otter. There are no population estimates available for these animals, and although they are commonly observed in many areas, the status of their populations is unknown. In data collected between 1992 and 1995, 31 bobcats and 17 otters were documented road mortalities on KSC. Many of the bobcats were juveniles, but all of the otters were adults. Loss of large predator populations can lead to habitat fragmentation leading to smaller patches of suitable habitat and increased road mortality are probable causes for the loss of black bears on KSC.
increased densities of prey populations and a proliferation of smaller predators, such as the raccoon. Table 3.9-7 lists upland mammals potentially found at KSC.

Table 3.9-7. Upland mammals of KSC

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Abundance as indicated by sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphis virginiana</td>
<td>Virginia opossum</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Cryptotis parva</td>
<td>least shrew</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Scalopus aquaticus</td>
<td>eastern mole</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Myotis austroriparius</td>
<td>southeastern bat</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Tadarida brasiliensis</td>
<td>Brazilian free-tailed bat</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
<td>nine-banded armadillo (ex)</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Sylvilagus floridanus</td>
<td>eastern cottontail</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Sciurus carolinensis</td>
<td>gray squirrel</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Sigmodon hispidus</td>
<td>hispid cotton rat</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Podomys floridanus</td>
<td>Florida mouse</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Peromyscus polionotus</td>
<td>southeastern beach mouse</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Peromyscus gossypinus</td>
<td>cotton mouse</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Ochrotomys nuttalli</td>
<td>golden mouse</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>black rat (ex)</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Procyon lotor</td>
<td>raccoon</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Mustela frenata</td>
<td>long-tailed weasel</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Spilogale putorius</td>
<td>eastern spotted skunk</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus</td>
<td>gray fox</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Vulpes vulpes</td>
<td>red fox (ex)</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Canis latrans</td>
<td>coyote (ex)</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Felis rufus</td>
<td>bobcat</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>wild hog (ex)</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Odocoileus virginianus</td>
<td>white-tailed deer</td>
<td>rarely seen</td>
</tr>
</tbody>
</table>

ex = exotic or non-native to the area

Invertebrates

Many species of marine, freshwater, and terrestrial invertebrates are found within MINWR’s boundaries. While some research has been conducted regarding benthic macro-invertebrates inhabiting the open estuary and select impoundments, no systematic survey has been performed for freshwater or terrestrial invertebrates of the refuge.

3.9.1.1.2.3 Special Status Species

Regulatory Overview

The Endangered Species Act of 1973 (PL-93-205) provides guidance regarding the management and protection of certain species based on determinations made regarding their relative ability to survive. The U.S. Fish and Wildlife Service is responsible for determining which species are listed as either Threatened or Endangered and for maintaining this listing. In addition, Section 7
of the statute provides for a consultation process between the Service and any federal agency that may, through one of its Proposed Actions, impact one of these species or their critical habitat.

The State of Florida also develops and maintains its own list of species suffering threats to populations and habitats. The FFWCC Endangered Species Coordinator is responsible for the review of species, designating their status and formally listing them in the State's Official List of Endangered and Potentially Endangered Fauna and Flora in Florida. This official list provides a comprehensive directory of the biota requiring special consideration in the State of Florida. Table 3.9-8 lists the terrestrial Federal and State protected wildlife species found at KSC.

Table 3.9-8. Federal and state protected terrestrial wildlife of KSC

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Level of Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rana capito aesopus</td>
<td>Florida gopher frog</td>
<td>FEDERAL</td>
</tr>
<tr>
<td>Gopherus polyphemus</td>
<td>Gopher tortoise</td>
<td>STATE</td>
</tr>
<tr>
<td>Drymarchon couperi</td>
<td>Eastern indigo snake</td>
<td>C</td>
</tr>
<tr>
<td>Pituophis melanoleucus mugitus</td>
<td>Florida pine snake</td>
<td>T</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Peregrine falcon</td>
<td>E</td>
</tr>
<tr>
<td>Falco sparverius paulus</td>
<td>Southeastern American kestrel</td>
<td>T</td>
</tr>
<tr>
<td>Aphelocoma coerulescens</td>
<td>Florida scrub-jay</td>
<td>T</td>
</tr>
<tr>
<td>Rostrhamus sociabilis plumbeus</td>
<td>Snail kite</td>
<td>T</td>
</tr>
<tr>
<td>Polyborus plancus audubonii</td>
<td>Audubon’s Crested caracara</td>
<td>E</td>
</tr>
<tr>
<td>Grus canadensis pratensis</td>
<td>Florida sandhill crane</td>
<td>T</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peromyscus polionotus niveiventris</td>
<td>Southeastern beach mouse</td>
<td>T</td>
</tr>
<tr>
<td>Podomys floridanus</td>
<td>Florida mouse</td>
<td>SSC</td>
</tr>
</tbody>
</table>

Key: SSC = Species of Special Concern; T = threatened; E = endangered.

Amphibians and Reptiles

The eastern indigo snake (*Drymarchon couperi*) is the longest snake in the U.S., reaching lengths greater than 2.5 m (8 ft.). Eastern indigo snakes became federally listed as threatened under the Endangered Species Act in 1978. Once common from the southern tip of South Carolina west to southeastern Mississippi and throughout Florida, the current range is restricted to southern Georgia and peninsular Florida, with a few small populations located in the Florida panhandle and Key Largo. Eastern indigo snakes have very large home ranges and use a variety of habitat types found within the refuge, including oak scrub, oak hammock, pine flatwoods, fresh and brackish wetlands, and disturbed habitats (Breininger et al., 2004). The species also shares a commensal relationship with the state-listed gopher tortoise (*Gopherus polyphemus*), whose burrows it uses as shelter from predation and temperature extremes.
Though the eastern indigo snake is federally listed as a threatened species, protection and conservation are difficult due to the lack of knowledge regarding their biology and their reclusive nature. There is little life history information available, and no reliable survey techniques exist to determine presence, absence, or abundance at a site. Eastern indigo snake radio-tracking first took place on KSC between 1990 and 1992. A small number of snakes were tagged to determine home range sizes and habitat use. From 1998 to 2002, in a study funded by a private wildlife foundation with support from NASA and the USFWS, more than 70 eastern indigo snakes were captured from throughout Brevard County and radio-tracked. Home range sizes were variable, with males generally using a larger area than females. It was found that indigo snakes used a wide variety of habitats, including suburban areas where they regularly come into contact with people. Road mortality and intentional killing by humans were two major sources of mortality. Land development, resulting in the fragmentation of habitat, is the greatest threat to indigo snake populations for a number of reasons: snakes are forced to cross more roads in their daily travels, are more likely to be seen and possibly killed by people, and the fire-maintained habitats that they use are degraded due to lack of naturally occurring fire.

The Florida gopher frog is a state-listed Species of Special Concern. The gopher frog lives in the dry upland scrub and pine habitats where it typically shelters in gopher tortoise burrows. During the breeding season, gopher frogs migrate to seasonally flooded freshwater swales that are found adjacent to the uplands habitats (NASA, 2015). Although gopher frogs have been documented from three sites on KSC, they are not thought to be very common and little is known about the population’s distribution or abundance.

Gopher tortoises are a Candidate species for listing under the ESA and a state-protected Species of Special Concern. They are long-lived terrestrial animals that dig burrows to use as refuge from inclement weather, fire, and predators. The burrow provides important habitat for hundreds of invertebrate and vertebrate species, earning the gopher tortoise the distinction of being a “keystone species” (NASA, 2015). Several of the animals that use tortoise burrows are also state or federally protected, and the value of healthy, reproductive
gopher tortoise colonies cannot be overstated from a conservation perspective. Several studies of
gopher tortoises have been conducted on KSC. In the mid-1980s, 112 plots were established in
tortoise habitats to determine burrow and tortoise densities, and to develop corrections factors to
correlate the number of burrows seen to the number of tortoises in the population. From 1989 –
1991, tortoises were radio-tracked to determine home range sizes and numbers of burrows used.
Tortoise burrows were found in the typical high, dry habitats, but radio-tracking showed that
they also utilize wetter habitats, such as the freshwater swales, for feeding.

Work began in 1998 to determine if the deadly bacterial disease, Upper Respiratory Tract
Disease (URTD), was present in KSC gopher tortoise populations. Antibodies for URTD were
found in several populations spread across KSC and CCAFS. Monitoring of URTD continues
and several sites may potentially have had die-offs that could be contributed to URTD (NASA,
2010a, 2015).

Other than the low-intensity URTD monitoring that continues, most of the work currently
occurring with gopher tortoises at KSC involves moving them from harm’s way for operational
requirements. New construction, renovations, repairs, and environmental cleanup efforts often
occur in areas occupied by tortoises. In these instances, the sites are surveyed to determine the
locations of all burrows, which are marked. The interiors of the burrows are examined with an
infrared burrow camera to determine occupancy. When tortoises are found, they are removed
from the burrow either by bucket trapping or excavation with a backhoe. In most instances, the
tortoises are relocated a short distance away, out of harm’s way, but still within their home range
and familiar surroundings. When the occasional longer distance relocation is required, suitable
recipient sites are identified, ideally in newly restored habitat that is capable of supporting an
increased tortoise population.

Birds

The Florida scrub-jay is a federally protected
threatened species that was elevated from subspecies
status in 1997. The four largest remaining
populations of scrub-jays occur on KSC, CCAFS,
Ocala National Forest, and the mainland of Brevard
County and Indian River County. Kennedy Space
Center has a potential population size of 700
breeding pairs but the population has declined to
perhaps half this number because of habitat
degradation (NASA, 2010a, 2015).

Research on color-banded scrub-jay populations on
KSC began in 1987 and showed that territory sizes
averaged 10 ha. Major sources of mortality for
adults are hawk predation and road mortality. A large number of nests (between 43% and 80%
of the total, depending on the site) are depredated, resulting in a decreasing population in some
areas. Two years of remote recording of egg and nestling predation events found that 13 of 19
were due to yellow rat snakes. Radio-tracking data showed that small mammals, other birds, and
snakes readily eat the fledgling scrub-jays before they become efficient fliers. Florida scrub-jays
are restricted to shrublands that have many scrub oaks and few trees (NASA, 2010a, 2015).
They have their greatest demographic success when territories include a matrix of recently burned scrub (<3 years since fire and patches of scrub oaks that are 120-170 cm [4 to 5.5 ft.] tall).

Fragmentation of scrub habitat and isolation of small patches of scrub result in habitat degradation from fire suppression, increased predation, and increased road mortality. Major scrub-jay populations are found in four areas on KSC as shown in Figure 3.9-8.
Mammals

The southeastern beach mouse (*Peromyscus polionotus niveiventris*) is federally protected as threatened while the Florida mouse (*Podomys floridanus*) is protected by the State of Florida as a Species of Special Concern. The USFWS at MINWR ranks management issues associated with the conservation of southeastern beach mice as one of their highest priorities due to the limited range and rapid loss of habitat outside of the refuge. Small mammal trapping, primarily done in coastal habitats expected to support southeastern beach mouse populations, has provided data on several species, including beach mice, cotton mice (*Peromyscus gossypinus*), cotton rats (*Sigmodon hispidus*), Florida mice, and golden mice (*Ochrotomys nuttalli*). In the mid-1970s, southeastern beach mice were trapped along the dunes at KSC/MINWR and were considered abundant with 771 captures in 2,256 trap nights (NASA, 2010a, 2015).

In 1990-1991, a baseline distribution survey (29 transects) at KSC/MINWR was conducted in the coastal dunes, strand, and scrub, which resulted in 539 beach mouse captures over 3,937 trap nights. In 1996-1998, surveys were conducted to evaluate Space Shuttle impacts on southeastern beach mice at four sites in the vicinity of the shuttle pads. Two areas (one near LC39A and one near LC39B) with the most frequent occurrence of near-field deposition were selected as treatment sites, and two areas not impacted by near-field deposition were selected as reference sites. A total of 479 beach mice were captured, 64% of which were adults, 28% were juveniles, and 4% were dependent young. No effects of launch could be inferred from the data collected (NASA, 2010a, 2015).

Overall, surveys indicated that the number of southeastern beach mice has remained relatively stable since 1990-1991 although year-to-year variation at a specific site can be high. KSC/MINWR is one of the last remaining intact areas to have a viable southeastern beach mouse population, but little is known about its habitat occupancy across the KSC landscape. Specimens have been captured as far inland as State Road 3 west of Happy Creek.

Live trapping for Florida mice was conducted four times between July 2001 and July 2002 at Happy Creek. Trapping grids were set in scrub habitat that was interspersed with shallow freshwater swale marshes. The July 2001 sample period consisted of six consecutive nights, and the remaining sample periods consisted of two consecutive nights each. There were 24 captures of 17 individual Florida mice. Eight were males and nine were females. Of these, 12 were adults and five were juveniles (NASA, 2010a, 2015).
3.9.1.1.2.3 Non-native and Invasive Wildlife

At least 15 species of non-native wildlife have been documented on KSC. These include introduced exotics, non-native species extending their ranges, and feral populations of domesticated species.

Introduced Exotics

Amphibians and Reptiles – The greenhouse frog (*Eleutherodactylus planirostris*) is native to the West Indies, but has become well established throughout peninsular Florida. It is nocturnal and prefers moist conditions, even within uplands habitats. It is one of the most common frogs at KSC.

Three species of lizards, the Cuban anole (*Anolis sagrei*), Indo-Pacific gecko (*Hemidactylus garnoti*), and Mediterranean gekko (*Hemidactylus turcicus*) were never reported in herpetological surveys done in the 1970s. All three species are now found around buildings and other facilities on KSC. The Cuban anole is native to Cuba, Jamaica, and the Bahamas, but is now well established in Florida, with populations also occurring in Texas, Louisiana, and Georgia. They probably were imported into the U.S. accidentally on landscaping plants. The Indo-Pacific gecko came to the U.S. from Southeast Asia and has spread throughout central and south Florida. One reason that these lizards are successful colonizers is that they are all self-fertilizing females. It only takes the introduction of a single lizard into a new area to begin a population. The Mediterranean gecko was introduced from the Mediterranean and is found in the Gulf States, Mexico, and Cuba. It is nocturnal, feeding on insects attracted to facility lighting (NASA, 2010a, 2015).

Birds – The rock dove (*Columba livia*) or pigeon was introduced to North America from Eurasia in the 1800s. They are extremely common around human habitations and are often considered pests. On KSC and CCAFS, rock doves are year-round residents and may take up residence in hangars and other open buildings, causing safety and sanitation concerns. Occasionally, the bodies of banded pigeons are retrieved, and these birds typically have traveled thousands of miles from the northeastern U.S.

The European starling (*Sturnus vulgaris*), intentionally introduced into New York City’s Central Park in 1890, had become established across the entire U.S by 1950. Starlings are an ecological concern because they often usurp cavities for nesting that are being used, or could be used, by native species such as screech owls, woodpeckers, bluebirds, and wrens. On KSC, there is a population of year-round residents and also an influx of migrant starlings in winter. Starlings often gather in huge flocks which are capable of devouring large quantities of food resources.

The English house sparrow (*Passer domesticus*) is the most widely introduced bird species in the world. They were purposely imported from Europe to Brooklyn, New York, in 1850, and within 20 years, they had spread in all directions across the continent. House sparrows are extremely aggressive and will extricate even larger birds from their nest sites. On KSC, they are extremely common around buildings and often get into buildings and hangars, causing safety and sanitation problems (NASA, 2010a, 2015).
Mammals – Originally native to South America, the nine-banded armadillo (*Dasypus novemcinctus*) extended its range into the U.S. through Texas in the late 1800s. It was intentionally introduced into Florida in the 1920s. Armadillos are extremely abundant, more so than is immediately evident, because they are generally crepuscular or nocturnal. They eat a variety of insects and other invertebrates, carrion, and eggs, and dig burrows for den and nesting sites. Nine-banded armadillos are not well studied, and their impacts on native wildlife are not known. They could potentially compete with gopher tortoises for burrows, and may eat eggs of native birds, amphibians, and reptiles.

Black rats (*Rattus rattus*) were stowaways on the ships of European explorers to the U.S. in the mid-1500s. They are found primarily associated with buildings. However, during beach mouse surveys occurring from 1996 – 1998 on the dunes near the Space Shuttle launch pads, nine black rats were captured in traps. Because these animals constituted a threat to the federally protected southeastern beach mouse, they were humanely destroyed. The extent to which black rats occur in natural habitats on KSC is not known, but could be a significant concern.

The red fox (*Vulpes vulpes*) was brought from England to the U.S. in the mid-18th century by hunters. They were released in the northeast U.S. and have since spread throughout most of the U.S. and Canada. Hunting kept populations in check for many years, but the devaluation of the fur market has caused red foxes to become more common. In some urban areas, they are considered to be pests and potential sources of rabies. The occurrence of red fox on KSC was documented from a single road mortality on SR 405 in front of the Space Station Processing Facility.

Typically associated with the southwest U.S., coyotes (*Canis latrans*) have taken advantage of human activities and impacts to increase their range to include every state in the U.S. except Hawaii. Although coyotes were introduced into Florida in the 1920s for hunting with dogs, their natural range expansion was probably inevitable. The coyote’s great success can be attributed to several factors. They are generalists in their habitat and food requirements, and they produce large litters that mature quickly. Several of the other large predators that were competitors with the coyote (e.g., red wolf and panthers) have been extirpated from many areas. Most importantly, coyotes are able to capitalize on and benefit from human activities such as farming, ranching, and urbanization in general. Coyote numbers have been increasing in Florida during the last 20 years, and the impacts on native wildlife are not well studied. They have been documented depredating marine turtle nests on KSC and CCAFS. Coyotes may directly compete with bobcats for food resources. However, they may also help mitigate the loss of other large predators that once kept prey populations of raccoons, rodents, rabbits, etc., in check (NASA, 2010a, 2015).

Range Extensions

The cattle egret (*Bubulcus ibis*) and brown-headed cowbird (*Molothrus ater*) are both examples of species that have managed to colonize Florida on their own (i.e., not introduced); both of these range extensions have occurred because of habitat changes caused by humans. The cattle egret reached Florida in the 1940s, via South America from Africa. Their entry was facilitated by deforestation, irrigation, and the cattle industry, all of which provided ample food resources. They may compete with native herons for food and nesting resources.
The brown-headed cowbird is native to the Great Plains and was originally associated with the American bison. The proliferation of the cattle industry and the conversion of land to agriculture have allowed the cowbird to occupy the entire U.S. mainland. Cowbirds have completely abandoned nest building and deposit their eggs in the nests of other birds, often destroying the host birds’ eggs in the process. Not all species of birds are susceptible to brown-headed cowbird parasitism, and as of yet, they have not been documented using Florida scrub-jay nests (NASA, 2010a, 2015).

Feral Populations of Domestic Species

Free-ranging feral house cats (*Felis domesticus*) are known to pose a significant threat to native species of wildlife. There is overwhelming evidence to show that feral cats eat adult birds, amphibians, and reptiles, their young, and eggs. They are also vectors for diseases infecting other wildlife (e.g., feline leukemia and distemper) and humans (e.g., rabies). In 1996, KSC workers concerned for the welfare of cats formed the Space Cats Club. By 1999, 100 feral cats had been trapped, neutered, and vaccinated, and were either adopted or housed in a closed facility on KSC.

After 1999, operations were moved off KSC into Brevard County. At this time, feral cat populations do not appear to be large or constitute a major impact to KSC wildlife. However, it is against federal regulations to feed or house feral cats on KSC.

Before NASA took control of the property that is now KSC, the area was home to many people who had livestock and/or citrus groves. As the people relocated to surrounding towns, their domestic hogs (*Sus scrofa*) were occasionally left behind. The mild central Florida winters and abundance of food resources made it possible for feral hog populations to explode. Hogs constitute an environmental problem for a number of reasons. They eat plants, small species of wildlife, and any eggs deposited on the ground. Their method of foraging is very destructive because they turn over large amounts of dirt and cause significant soil disturbance, allowing increased opportunity for exotic and pest vegetation germination (e.g., cogon grass, *Imperata cylindrica*). Hogs can seriously damage the shallow freshwater marshes that are crucial breeding habitat for amphibians, and feeding habitat for a large number of species, including gopher tortoises, indigo snakes, and several waterbirds (e.g., ducks, wading birds, shorebirds). Feral hogs also pose a safety concern because they are often killed on KSC roads each year, causing property damage and injury to the KSC workforce (NASA, 2010a, 2015).

3.9.1.2 Aquatic Environments

3.9.1.2.1 Wetlands (Freshwater and Brackish)

This section describes the biota of KSC’s extensive complex of wetlands and waterways. KSC is surrounded by the Indian River Lagoon System (IRL) and the Atlantic Ocean. The IRL (Figure 3.4-2) consists of the Mosquito Lagoon to the north, Banana River to the south, and Indian River to the west. This system was formed by changing sea levels and its prominent features are the southern barrier islands, the Cape Canaveral foreland formation, the western mainland ridges, and the valleys and sloughs between the ridges. These basins are shallow, aeolian, lagoons with depths averaging 1.5 m and maximums of 9 m generally restricted to dredged basins and channels (NASA, 2010a, 2015).
The Indian River Lagoon proper is almost entirely outside the western boundary of KSC, which is undeveloped and part of the MINWR. Most of the shoreline on KSC/MINWR is impounded with no direct runoff into the lagoon. The eastern shore of the IRL is highly developed in the area from Titusville south with many areas of point and non-point runoff. Mosquito Lagoon and the Indian River are connected by Haulover Canal and the Intracoastal Waterway. Water flow between these two systems is primarily wind-driven. Because of the various man-made modifications related to the space program and mosquito control, circulation between Mosquito Lagoon and the Banana River was blocked in the earlier 1960s.

The Indian and Banana Rivers mix in the southern region near Eau Gallie and through a man-made canal located just south of KSC. This navigation canal accesses the Atlantic Ocean through the Port Canaveral Locks, whose oceanic waters influence surface water quality in the northern Banana River. The northern-most Banana River is inside KSC property and closed to motorized boat traffic. It is part of the Merritt Island National Wildlife Refuge and its water quality is among the best in the Indian River Lagoon System. The region of the Banana River north of the NASA Causeway includes Pintail Creek and Max Hock Back Creek. Very little tidal fluctuation occurs, and the water movement in this location is influenced primarily by wind and evaporation (NASA, 2010a, 2015).

Within KSC property is Banana Creek, which drains the area adjacent to the Space Shuttle launch pads via a canal located northwest of the Vehicle Assembly Building to the Indian River. Salinity usually increases in a westward direction, but depending on wind direction, the Indian River system can have a greater or lesser effect on the Banana Creek water quality. Freshwater inputs to the estuarine system surrounding KSC include direct precipitation, stormwater runoff, discharges from impoundments, and groundwater seepage.
This area is very biologically diverse as it includes the temperate Carolinian and the subtropical Caribbean zoogeographic Provinces. The lagoonal waters surrounding KSC are shallow flats that support dense growths of submerged aquatic vegetation, including manatee grass (*Syringodium filiformis*), shoal grass (*Halodule wrightii*), widgeon grass (*Ruppia maritima*), gulf halophila (*Halophila engelmannii*) and various macroalgae such as Gracilaria, Caulerpa, Sargassum, Laurencia, Penicillus, Acetabularia and Acanthophora. Cool winter temperatures preclude the growth of turtle grass (*Thalassia testudinum*) in the KSC area. Shorelines of the system near KSC are dominated by white mangrove (*Laguncularia racemosa*) and black mangrove, *Avicennia germinans*), with red mangrove (*Rhizophora mangle*) occurring in small patches; however, this region represents the northern limit of their range and the winter freezes of 1983, 1984, and 1989 significantly impacted their populations.

Fauna in the lagoon system near KSC represents both the Carolian and subtropical provinces. Most common species mullet (*Mugil cephalus*), spotted sea trout (*Cynoscion nebulosus*), red fish (*Sciaenops ocellatus*), sea catfish (*Arius felis*), and blue crabs (*Callinectes sapidus*). Subtropical species are present but become more prevalent to the south of KSC. This unique environmental setting makes the KSC one of the most diverse areas in the United States (NASA, 2010a, 2015).

3.9.1.2.1 Native Plants

Wetland vegetation on KSC consists of both coastal and freshwater communities and cover approximately 14,600 ha (36,000 ac). Natural wetland communities occur on sites that are flooded for short to long periods in most years. Long, narrow freshwater marshes are interspersed among bands of uplands. Wetland communities include hardwood swamp, willow swamp, freshwater swale swamp, cattail marsh, cabbage palm savanna, brackish or saline wetlands, sand cordgrass/black rush, mixed salt-tolerant grasses marsh, sea oxeye, saltwort-glasswort, saltmarsh cordgrass, and mangrove (NASA, 2010a, 2015).

The most recent land cover map for KSC identifies 31 cover types (Figure 3.9-2 and Table 3.9-2). Types 20 through 31 are wetlands and open waters:

Wetlands – estuary, marsh, shrub, forest

20. Estuary: includes the Indian River, Banana River, Mosquito Lagoon, Banana Creek, and connected navigable waters. Does not include waters that may be connected via underground culverts

21. Water - interior – salt: waters surrounded by dikes that may be connected to estuarine waters via underground culverts and other more isolated waters that are salt or brackish

22. Water - interior – fresh: isolated waters and drainage areas that may be inundated for only brief periods

23. Barren land - may be inundated: lowland areas devoid of vegetation that may be periodically inundated

24. Ditch: areas excavated for drainage

25. Marsh - saltwater: herbaceous wetlands that includes impounded and unimpounded systems. Species composition includes sand cordgrass (*Spartina bakeri*), black rush (*Juncus roemerianus*), salt-tolerant grasses (including saltgrass [*Distichlis spicata*], seashore paspalum [*Paspalum vaginatum*], and seashore dropseed [*Sporobolus virginicus*]), and other species
26. Marsh – freshwater: herbaceous wetlands that include beardgrass (Bothriochloa laguroides), sand cordgrass, sawgrass (Cladium jamaicense), cattail (Typha spp.), and other species.

27. Mangrove: includes white mangrove (Laguncularia racemosa), black mangrove (Avicennia germinans), red mangrove (Rhizophora mangle), and buttonwood (Conocarpus erectus).

Woody vegetation along dikes (classified as ruderal - woody) may contain mangroves along the inundated edge mixed with Brazilian pepper (Schinus terebinthifolius).

28. Wetland scrub - shrub – saltwater: vegetation composition consists of low height, generally less than 5 m, woody species include saltwort, glasswort, and other species.

29. Wetland scrub - shrub – freshwater: vegetation composition consists of low height, generally less than 5 m, woody species including Carolina willow (Salix caroliniana) intermixed with other species.

30. Wetland coniferous / hardwood forest: mix of conifers, primarily slash pine (Pinus elliotti), and assorted hardwood trees including laurel oak (Quercus laurifolia), Virginia live oak (Quercus virginiana), cabbage palm (Sabal palmetto), red maple (Acer rubrum), American elm (Ulmus americana), and bay (Persea borbonia); generally greater than 5 m tall, with interlocking canopy.

31. Wetland hardwood forest: hardwood trees including red maple, American elm, laurel oak, live oak, cabbage palm, and bay, generally greater than 5 m tall, with interlocking canopy.

3.9.1.2.1 Invasive Plants

Invasive species pose a significant threat to aquatic and wetland resources. Invasive species thrive in new habitats because they generally lack predators and other natural controls, they have reproductive adaptations which allow them to disperse successfully, they can tolerate and adapt to a variety of environmental conditions and they establish self-sustaining populations. Invasive species can threaten the diversity or abundance of native species and the ecological stability of the whole habitat. Invasive species displace native species by outcompeting natives for breeding sites, prey and other needed resources. They disrupt food webs, degrade habitats and alter biodiversity.

Many invasive aquatic and wetland plants produce abundant fruit and seeds that are widely dispersed and remain viable in the substrate for years. Wetland invaders differ from many upland invaders in that seeds are often dispersed via water; whole plants and plant fragments can be dispersed via flotation; they have abundant air tissue that protects belowground plant tissues from flooding and anoxic (depleted of oxygen) soils; and they can take up nutrients rapidly, allowing rapid growth.

A complete list of the introduced plant species at KSC can be found in Appendix D of NASA (2010a). Of the 231 introduced plants at KSC, 33 are Category I invasive exotics and 24 are Category II invasive exotics as indicated by the FLEPPC. Invasive exotic plants are termed Category I invasives when they are altering native plant communities by displacing native species, changing community structures or ecological functions, or hybridizing with natives (FLEPPC, 2015). Category II invasive exotics have increased in abundance or frequency but have not yet altered Florida plant communities to the extent shown by Category I species. These species may become Category I if ecological damage is demonstrated. Table 3.9-9 lists the Category I and II species that can be found in wetlands of KSC.
Table 3.9-9. Category I and II invasive wetland species at KSC

<table>
<thead>
<tr>
<th>Category</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Casuarina equisetifolia</td>
<td>Australian-pine, beach she-oak</td>
</tr>
<tr>
<td>I</td>
<td>Casuarina glauca</td>
<td>Suckering Australian-pine, Gray she-oak</td>
</tr>
<tr>
<td>I</td>
<td>Colocasia esculenta</td>
<td>Wild taro</td>
</tr>
<tr>
<td>I</td>
<td>Eichhornia crassipes</td>
<td>Water-hyacinth</td>
</tr>
<tr>
<td>I</td>
<td>Imperata cylindrica</td>
<td>Cogon grass</td>
</tr>
<tr>
<td>I</td>
<td>Ludwigia peruviana</td>
<td>Peruvian primrose willow</td>
</tr>
<tr>
<td>I</td>
<td>Lygodium microphyllum</td>
<td>Old World climbing fern</td>
</tr>
<tr>
<td>I</td>
<td>Melaleuca quinquenervia</td>
<td>Melaleuca, Paper bark</td>
</tr>
<tr>
<td>I</td>
<td>Melinis repens</td>
<td>Natal grass</td>
</tr>
<tr>
<td>I</td>
<td>Panicum repens</td>
<td>Torpedo grass</td>
</tr>
<tr>
<td>I</td>
<td>Pennisetum purpureum</td>
<td>Napier grass, Elephant grass</td>
</tr>
<tr>
<td>I</td>
<td>Pistia stratiotes</td>
<td>Water lettuce</td>
</tr>
<tr>
<td>I</td>
<td>Psidium cattleianum</td>
<td>Strawberry guava</td>
</tr>
<tr>
<td>I</td>
<td>Ruellia simplex</td>
<td>Mexican petunia</td>
</tr>
<tr>
<td>I</td>
<td>Sapium sebiferum</td>
<td>Popcorn tree, Chinese tallow tree</td>
</tr>
<tr>
<td>I</td>
<td>Schinus terebinthifolius</td>
<td>Brazilian tree, Chinese tallow tree</td>
</tr>
<tr>
<td>I</td>
<td>Urena lobata</td>
<td>Caesar’s weed</td>
</tr>
<tr>
<td>I</td>
<td>Urochloa mutica</td>
<td>Para grass</td>
</tr>
<tr>
<td>II</td>
<td>Alternanthera phloxeroides</td>
<td>Alligator weed</td>
</tr>
<tr>
<td>II</td>
<td>Asystasia gangetica</td>
<td>Ganges primrose</td>
</tr>
<tr>
<td>II</td>
<td>Casuarina cunninghamiana</td>
<td>River she-oak, Australian pine</td>
</tr>
<tr>
<td>II</td>
<td>Melia azedarach</td>
<td>Chinaberry</td>
</tr>
<tr>
<td>II</td>
<td>Panicum maximum</td>
<td>Guinea grass</td>
</tr>
<tr>
<td>II</td>
<td>Sesbania punicea</td>
<td>Purple sesban, Rattlebox</td>
</tr>
<tr>
<td>II</td>
<td>Sphagenticola trilobata</td>
<td>Wedelia</td>
</tr>
<tr>
<td>II</td>
<td>Syagrus romanzoffiana</td>
<td>Queen palm</td>
</tr>
<tr>
<td>II</td>
<td>Talipariti tiliaeceum</td>
<td>Mahoe, Sea hibiscus</td>
</tr>
</tbody>
</table>

Note: Some species are found in both upland and wetland habitats.

Source: NASA, 2010a, 2015; FLEPPC, 2015

3.9.1.2.1.3 Special Status Plants

The Endangered Species Act of 1973 (PL-93-205) provides guidance regarding the management and protection of certain species based on determinations made regarding their relative ability to survive. The U.S. Fish and Wildlife Service is responsible for determining which species are listed as either Threatened or Endangered and for maintaining this listing. In addition, Section 7 of the statute provides for a consultation process between the Service and any federal agency that may, through one of its Proposed Actions, impact one of these species or their critical habitat.

The State of Florida also develops and maintains its own list of species suffering threats to populations and habitats. The FFWCC Endangered Species Coordinator is responsible for the review of species, designating their status and formally listing them in the State's Official List of
Endangered and Potentially Endangered Fauna and Flora in Florida. This official list provides a comprehensive directory of the biota requiring special consideration in the State of Florida.

No federally listed plant species have been found to occur on KSC. Thirty-nine taxa occurring on KSC are listed as threatened, endangered, or of special concern on state lists (NASA, 2010a, 2015). Eleven of these are found in wetland habitats. Taxa of special concern occur in all major habitats, but many are restricted to hammocks and hardwood swamps that constitute a minor proportion of the wetland vegetation. Table 3.9-10 lists the special status species that occur in wetlands and Table 3.9-11 shows the habitat, population status, and threats for wetland special status species.

Table 3.9-10. Special status wetland plants of the KSC area, including adjacent federal property

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>FDA</th>
<th>FCREPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avicennia germinans</td>
<td>Black mangrove</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>Encyclia tampensis</td>
<td>Butterfly orchid</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Epidendrum conopseum</td>
<td>Greenfly orchid</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Harrisella filiformis</td>
<td>Threadroot orchid</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Osmunda cinnamomea</td>
<td>Cinnamon fern</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Osmunda regalis var. spectabilis</td>
<td>Royal fern</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Pogonia ophioglossoides</td>
<td>Rose pogonia</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>Red mangrove</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>Spiranthes laciniata</td>
<td>Lace-lip ladies’-tresses</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tillandsia fasciculata</td>
<td>Common wild pine</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Tillandsia utriculata</td>
<td>Giant wild pine</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Sources: NASA, 2010a, 2015

1 Designated Status: E = Endangered; T = Threatened; SP = Special Concern; C = Commercially Exploited
2 Florida Department of Agriculture and Consumer Services
3 Florida Committee on Rare and Endangered Plants and Animals

Table 3.9-11. Common habitats of special status wetland plants of the KSC area, including adjacent federal property

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Habitat</th>
<th>Population Status</th>
<th>Threats to Existence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avicennia germinans</td>
<td>Mangrove swamps</td>
<td>Common within habitat</td>
<td>Habitat loss, freezes</td>
</tr>
<tr>
<td>Encyclia tampensis</td>
<td>Hammocks, hardwood swamps - epiphytic</td>
<td>One small population</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Epidendrum conopseum</td>
<td>Hammocks, hardwood swamps - epiphytic</td>
<td>Two small populations</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Habitat</td>
<td>Population Status</td>
<td>Threats to Existence</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Harrisella filiformis</td>
<td>Hardwood swamps - epiphytic</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Osmunda cinnamomea</td>
<td>Hardwood swamps</td>
<td>Common within habitat</td>
<td>Habitat loss, collection</td>
</tr>
<tr>
<td>Osmunda regalis var. spectabilis</td>
<td>Hardwood swamps</td>
<td>Common within habitat</td>
<td>Habitat loss, collection</td>
</tr>
<tr>
<td>Pogonia ophioglossoides</td>
<td>Marshes and wet pine flatwoods</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>Mangrove swamps</td>
<td>Occasional within habitat</td>
<td>Habitat loss, freezes</td>
</tr>
<tr>
<td>Spiranthes laciniata</td>
<td>Marshes</td>
<td>Unknown</td>
<td>Habitat loss</td>
</tr>
<tr>
<td>Tillandsia fasciculata</td>
<td>Hammocks and hardwood swamps - epiphytic</td>
<td>Five small populations</td>
<td>Exotic insect, habitat loss</td>
</tr>
<tr>
<td>Tillandsia utriculata</td>
<td>Hammocks and hardwood swamps - epiphytic</td>
<td>Three small populations</td>
<td>Exotic insect, habitat loss</td>
</tr>
</tbody>
</table>

Source: NASA, 2010a, 2015

Seagrasses

During the last thirty years, attention has focused on the role of seagrasses in ecosystem productivity and the associated documentation of human influence on the worldwide decline in abundance and distribution. Numerous recreational and commercial fish found offshore spawn and grow in shallow seagrass beds. Seagrasses and submerged aquatic vegetation (SAV) are currently considered the ecological foundation of the IRL system (NASA, 2010a, 2015).

The decline of SAV in various estuaries has been attributed to increases in stormwater runoff associated with urbanization of watersheds, industrial discharges, agricultural herbicides, increased nutrient loads, suspended sediments, and other noxious discharges. Any factor that negatively influences the underwater light field has the potential to causes a major effect on production, biomass, and morphology.

Seagrass beds are found in varying sizes along the IRL shoreline (Figure 3.9-11). There are seven species with distributions that vary along the north-south axis of the IRL. All seven species occur in the southern third. Three of the seven (*Thalassia testudinum*, *Halophila johnsonii*, and *H. dicapiens*) are not found in the northern IRL where *Halodule wrightii*, *Syringodium filiforme*, *Ruppia maritima*, and *Halophila engelmannii* do occur. Primary production and habitat/species interactions research has been predominantly conducted in the southern part of the lagoon.

The seagrass beds in Mosquito Lagoon provide direct forage for marine turtles (*Chelonia mydas*) and manatees (*Trichechus manatus*). The Banana River portion of the study area supports fewer marine turtles but provides habitat for large numbers of manatees. Several studies have begun to explore the relationships between this large herbivore and its seagrass forage.
KSC began supporting baseline ecological studies in the 1970s in preparation for the space transportation system EIS and operations. In 1983, Brevard County and the Space Center began a cooperative project to set up transects in various seagrass beds that would provide ground truth sites to coordinate with aerial photography. The objective was to create a baseline dataset from

Figure 3.9-11. Seagrass beds at KSC prior to 2011

Source: NASA, 2015
each transect to provide descriptive information regarding species composition, percent cover, and frequency of occurrence. Collected over the long term, these data provide time series information for assessment of trends in seagrasses in northern IRL.

Assessments of long-term trends of seagrass beds in waters of KSC, using aerial photography from the 1940’s through 2005, suggest little or no change in bed distributions. Analyses of field data from collected between 1983 and 1996 were conducted to assess local trends in more detail. These analyses included 8,150 samples collected along 37 shallow-water transects. Species composition and percent cover were determined at 5-m intervals along each transect using a canopy-coverage technique originally developed for terrestrial systems.

Four seagrass species and one attached algae are typically the most commonly occurring submerged aquatic vegetation in KSC waters. The overall frequency of occurrence for each species, indicated the following dominance: *Halodule wrightii* (71.9%), *Ruppia maritima* (23.7%), *Syringodium filiforme* (9.4%), *Halophila engelmannii* (2.3%) and *Caulerpa prolifera* (5.4%). *H. wrightii* and *R. maritima* are represented on most transects. Temporal trends in percent cover for *H. wrightii* indicates a significant long-term decline. Variation in overall species composition and coverage appears to be linked to salinity trends. These data provide a benchmark that will be useful to researchers and managers in comparing trends observed elsewhere in the lagoon and determining if these are site specific or regional trends (NASA, 2010a, 2015).

3.9.1.2.2 Wildlife and Aquatic Biota

3.9.1.2.2.1 Native Species

Amphibians and Reptiles

The wetlands and waterways of KSC support a variety of amphibian and reptile species (Table 3.9-12) including the commonly seen and heard southern leopard frog (Figure 3.9-12), American alligator, sirens and other salamander species, and a number of water snakes. The American alligator (*Alligator mississippiensis*) is federally listed as threatened only as a result of its similarity in appearance to the federally endangered American crocodile. The species is not regulated under Section 7 of the Endangered Species Act and is not in danger of becoming extinct. American alligators are abundant on MINWR, with an estimated population of over 3,000 individuals (NASA, 2010a, 2015).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance as indicated by Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salamanders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiuma means</td>
<td>two-toed amphiuma</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Notophthalmus viridescens</td>
<td>red-spotted newt</td>
<td>common, but rarely seen</td>
</tr>
<tr>
<td>Siren intermedia</td>
<td>lesser siren</td>
<td>very common, but rarely seen</td>
</tr>
<tr>
<td>Siren lacertian</td>
<td>greater siren</td>
<td>very common, but rarely seen</td>
</tr>
<tr>
<td>Frogs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rana utricularia</td>
<td>southern leopard frog</td>
<td>commonly seen and heard</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Abundance as indicated by Sightings</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Pseudacris nigrita</td>
<td>chorus frog</td>
<td>rarely seen, commonly heard</td>
</tr>
<tr>
<td>Rana grylio</td>
<td>pig frog</td>
<td>rarely seen, commonly heard</td>
</tr>
<tr>
<td>Acris gryllus</td>
<td>cricket frog</td>
<td>rarely seen, commonly heard</td>
</tr>
</tbody>
</table>

Reptiles

Snakes

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance as indicated by Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerodia clarkia</td>
<td>Atlantic saltmarsh snake</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Nerodia fasciata</td>
<td>banded water snake</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Nerodia floridana</td>
<td>green water snake</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Regina alleni</td>
<td>striped crayfish snake</td>
<td>common, but rarely seen</td>
</tr>
</tbody>
</table>

Turtles

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Abundance as indicated by Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caretta caretta</td>
<td>loggerhead</td>
<td>commonly seen while nesting</td>
</tr>
<tr>
<td>Chelonia mydas</td>
<td>Atlantic green turtle</td>
<td>occasionally seen while nesting</td>
</tr>
<tr>
<td>Chelydra serpentina</td>
<td>snapping turtle</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Derochelys reticularia</td>
<td>chicken turtle</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Dermochelys coriacea</td>
<td>leatherback sea turtle</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>diamondback terrapin</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Pseudemys peninsularis</td>
<td>Florida cooter</td>
<td>commonly seen</td>
</tr>
<tr>
<td>Kinosternon baurii</td>
<td>striped mud turtle</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Kinosternon subrubrum</td>
<td>common mud turtle</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Sternotherus odoratus</td>
<td>common musk turtle</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Apalone ferox</td>
<td>Florida softshell turtle</td>
<td>commonly seen</td>
</tr>
</tbody>
</table>

Figure 3.9-12. The southern leopard frog is commonly seen and heard at KSC
Birds

The extensive wetlands on KSC provide habitat for many species of aquatic birds, several of which are protected by State or Federal laws. The herons, egrets, ibises, and other birds in the Order Ciconiiformes are collectively called wading birds. Thirteen species of wading birds are year-round residents on KSC, and due to the large numbers of waders using the habitats here for feeding and nesting, KSC is crucial for the conservation of several species. The impounded saltmarsh habitat and shallow areas along the estuarine shorelines are extensively used by wading birds. While the roadside ditches and natural freshwater swales are not used by as many wading birds as are the impoundments, they are also an important component of the overall feeding habitat. This is particularly true in the winter (Oct. – Jan.), when the number of waders feeding in roadside ditches increases. KSC is also important for breeding sites for several species of wading birds including white ibis, great egret, snowy egret, and tricolored heron. For example, species and numbers of nests of wading birds were monitored yearly from 1987 through 2000, excluding 1991. The number of nests and islands used for nesting was variable between years with white ibis nests accounting for 53% of the total nests counted (NASA, 2010a, 2015).

Reddish egrets and roseate spoonbills, two species of wading birds mostly found in the Caribbean and South America, are found at the northern limits of their ranges in the KSC region. The reddish egret is a tropical heron that nests at only a few estuaries in Florida (Florida Bay, Tampa Bay and the IRL). Similarly, the roseate spoonbill has a limited range in Florida due to extirpations during the plume hunting era (around the late 1800s). The roseate spoonbill population on KSC has been expanding over the two decades since they have returned to nesting in the IRL. Roseate spoonbills were first documented nesting on KSC in 1987, and their numbers have increased steadily since that time. A study of foraging habitat preference by nesting Great and Snowy Egrets showed some evidence for a slight preference for impounded wetlands over other available wetland types on KSC. Brown pelicans and double-crested cormorants also frequently nest in the wading bird colonies in large numbers.

KSC also supports a large wintering waterfowl population, and hunting takes place each year on the MINWR portion from November through January for 25 days. Twenty-nine species of waterfowl have been documented on KSC, with 23 species regularly occurring, and one, the mottled duck, a year-round resident. Mottled ducks inhabit estuarine edges, impoundments, freshwater wetlands, and occasionally roadside ditches. Important waterfowl species wintering on KSC include: blue-winged teal, American wigeon, northern pintail, lesser scaup, redhead, redbreasted merganser and hooded merganser. KSC and the adjacent estuarine areas support up to two-thirds of the lesser scaup wintering along the Atlantic Flyway (NASA, 2010a, 2015).

Other species of waterbirds which are important components of the KSC avifauna include the numerous shorebirds that migrate through and overwinter on KSC. These birds use the beaches and impounded wetland habitats. It has been estimated that as much as five percent of the dunlin using the Atlantic flyway overwinter on KSC.

Several species of rails are found in the salt marshes on KSC. The black rail is perhaps the most important as an indicator of ecosystem health. This species is cryptic and little is known about
its population status in Florida. It is noteworthy that the black rail inhabits habitat very similar to that which the now extinct dusky seaside sparrow preferred.

Mammals
Common mammals of KSC wetlands include the marsh rabbit, marsh rice rat, round-tailed muskrat and river otter (Table 3.9-13).

Table 3.9-13. Common mammals of KSC wetlands

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvilagus palustris</td>
<td>Marsh rabbit</td>
<td>occasionally seen</td>
</tr>
<tr>
<td>Oryzomys palustris</td>
<td>Marsh rice rat</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Neofiber alleni</td>
<td>Round-tailed muskrat</td>
<td>rarely seen</td>
</tr>
<tr>
<td>Lutra canadensis</td>
<td>River otter</td>
<td>occasionally seen</td>
</tr>
</tbody>
</table>

Fish
A variety of fish species utilize Merritt Island NWR. In 2001, 132 fish species were identified in the lagoon waters of the refuge. Surveys conducted in 1994 listed 782 fish species for east central Florida, with at least half of these using the Indian River Lagoon at HMP-28 some point during their life history. Fish species within the refuge are important not only to commercial and recreational interests, but also to the ecology of the area. Important fish habitat, such as fish spawning and fish settlement sites in the refuge, must be protected to ensure healthy, sustainable fish populations (USFWS, 2008).

More than 140 species of freshwater and saltwater fish are known to use refuge estuarine areas, impoundments, and freshwater wetlands. Of the species known to occur in refuge waters, only one is a currently federal- or state-listed species, the smalltooth sawfish (E) would be suspected to occur, but rarely and in small numbers. Fish within the refuge are important not only to commercial and recreational interests, but also to the ecology of the area. The refuge protects important fish habitats, such as fish spawning and fish settlement sites, ensuring healthy, sustainable fish populations. The open water estuary habitat of the Indian River Lagoon is one of the most renowned sportfishing sites in the world (Roberts et al., 2001). This system is essential to several interjurisdictional and economically important fish species, including snook, tarpon, red and black drum, spotted seatrout, and striped mullet.

Invertebrates
A wide variety of marine and freshwater invertebrates are found within KSC/MINWR’s boundary. While some research has been conducted regarding benthic macro-invertebrates inhabiting the open estuary and select impoundments, no systematic survey has been performed for freshwater invertebrates of the refuge. The mangrove crab is found on the refuge and is listed by the Florida Committee on Rare and Endangered Plants and Animals. Some of the more common invertebrates include conchs, snails, oysters, land crabs, and dragonflies. A keystone species, the horseshoe crab (Limulus polyphemus) which generally inhabits estuarine areas of the refuge, has been in decline. The reason for the decline in horseshoe crab abundance is currently unknown (USFWS, 2008).
On KSC the vast majority of the estuarine wetlands have been impounded for mosquito control and isolated from the estuary since the late 1950s and 1960s. Salt marsh mosquitoes (Aedes sp.) need moist exposed substrate for oviposition sites and then flooding to produce a brood. The intertidal shorelines and tidal wetlands and marshes along the Indian River Lagoon system (including the Banana River and Mosquito Lagoon) are ideal for mosquito production. These conditions are present throughout the year with peak conditions occurring during the summer wet season from May-September (NASA, 2010a, 2015).

To control the salt marsh mosquitoes, managers can use chemical agents (pesticides) or use a biological control to interrupt part of the mosquito's life cycle. The portion of the life cycle easiest to interrupt is the oviposition site. This can be accomplished by either drying out and keeping dry the exposed moist substrate needed for oviposition or by keeping this substrate flooded. In the 1950-1960s, mosquito control managers set about to control mosquitoes by interrupting the oviposition portion of the life cycle. To achieve this goal, the wetlands and exposed intertidal areas along the coastal and estuarine shorelines were impounded. This was done by digging steep ditches and using the excavated soil to build earthen dikes around the marshes. These areas were then flooded. This worked well for controlling mosquitoes; however, it removed not only tidal access, but any type of water connection between the estuary and the wetlands. These habitats that were once accessible to fish and macro-crustaceans were removed from the ecosystem which was changed dramatically. Beginning in the early 1980’s the SJRWMD refocused their efforts into restoring these impounded saltmarshes in an attempt to regain those habitats for both fish and bird use.

The impoundment method of mosquito control had been effective in reducing the mosquito populations but at the same time, radically altered the saltmarsh habitat. Hypersaline and hyposaline conditions eradicated saltmarsh vegetation, freshwater input altered the saltmarsh habitat into a freshwater marsh type. Efforts now are focused on restoring these marshes and introducing normal connections to the Indian River Lagoon, primarily through water control structures. The initial restoration efforts focused on reconnecting impoundments using culverts placed in the dikes. This provided the flexibility to use these culverts to control water levels in the marshes if needed. The culverts had flapgates installed which allowed water to enter and exit the marsh, but which could be closed if mosquito breeding increased. This method proved to allow better flushing of the marsh and allowed limited access to the marshes by fish. It became evident that keeping these culverts open did not create the mosquito populations that were expected. It also helped restore a more natural water quality condition in the marsh. However, this limited access to the marsh to the culvert locations only.

Subsequent restoration efforts involved complete removal of the dikes that had been constructed. This was accomplished by placing the fill material that had been dredged from the interior of the marsh, back into the perimeter ditch and leveling the dike areas down to existing marsh elevation, allowing for natural inundation of the marsh. This method of marsh restoration has shown to be successful in both restoring natural hydrology to the marsh, as well as allowing natural recruitment of native saltmarsh vegetation, fish and wading bird populations. Over the past decade, NASA and the USFWS have reconnected over 1,072 acres of impoundments and restored over 564 acres of impoundments.
Special Status Species

Table 3.9-14 lists wetland wildlife at KSC with Federal and/or State protected status.

Table 3.9-14. Aquatic and transitional Federal and State protected wildlife of KSC

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Level of Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acipenser brevirostrum</td>
<td>Shortnose sturgeon</td>
<td>E E</td>
</tr>
<tr>
<td>Pristis pectinata</td>
<td>Smalltooth sawfish</td>
<td>E E</td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alligator mississippiensis</td>
<td>American alligator</td>
<td>T(S/A) SSC</td>
</tr>
<tr>
<td>Caretta caretta</td>
<td>Loggerhead turtle</td>
<td>T T</td>
</tr>
<tr>
<td>Chelonia mydas</td>
<td>Atlantic green turtle</td>
<td>E E</td>
</tr>
<tr>
<td>Dermochelys coriacea</td>
<td>Leatherback sea turtle</td>
<td>E E</td>
</tr>
<tr>
<td>Eretmochelys imbricata</td>
<td>Hawksbill</td>
<td>E E</td>
</tr>
<tr>
<td>Lepidochelys kempii</td>
<td>Kemp's ridley</td>
<td>E E</td>
</tr>
<tr>
<td>Nerodia clarkii taeniata</td>
<td>Atlantic salt marsh snake</td>
<td>T</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelecanus occidentalis</td>
<td>Brown pelican</td>
<td>SSC</td>
</tr>
<tr>
<td>Egretta thula</td>
<td>Snowy egret</td>
<td>SSC</td>
</tr>
<tr>
<td>Egretta caerulea</td>
<td>Little blue heron</td>
<td>SSC</td>
</tr>
<tr>
<td>Egretta tricolor</td>
<td>Tricolored heron</td>
<td>SSC</td>
</tr>
<tr>
<td>Egretta rufescens</td>
<td>Reddish egret</td>
<td>SSC</td>
</tr>
<tr>
<td>Eudocimus albus</td>
<td>White ibis</td>
<td>SSC</td>
</tr>
<tr>
<td>Ajaia ajaja</td>
<td>Roseate spoonbill</td>
<td>SSC</td>
</tr>
<tr>
<td>Mycteria Americana</td>
<td>Wood stork</td>
<td>T T</td>
</tr>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>Bald eagle</td>
<td>*</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>Peregrine falcon</td>
<td>E</td>
</tr>
<tr>
<td>Falco sparverius paulus</td>
<td>Southeastern American kestrel</td>
<td>T</td>
</tr>
<tr>
<td>Rostrhamus sociabilis plumbeus</td>
<td>Snail kite</td>
<td>E</td>
</tr>
<tr>
<td>Polyborus plancus audubonii</td>
<td>Crested caracara</td>
<td>T T</td>
</tr>
<tr>
<td>Aramus guarauna</td>
<td>Limpkin</td>
<td>SSC</td>
</tr>
<tr>
<td>Grus canadensis pratensis</td>
<td>Florida sandhill crane</td>
<td>T</td>
</tr>
<tr>
<td>Charadrius melodus</td>
<td>Piping plover</td>
<td>T T</td>
</tr>
<tr>
<td>Charadrius alexandrinus</td>
<td>Snowy plover</td>
<td>T</td>
</tr>
<tr>
<td>Haematopus palliatus</td>
<td>American oystercatcher</td>
<td>SSC</td>
</tr>
<tr>
<td>Sterna dougallii</td>
<td>Roseate tern</td>
<td>T T</td>
</tr>
<tr>
<td>Sterna antillarum</td>
<td>Least tern</td>
<td>T</td>
</tr>
<tr>
<td>Rynchops niger</td>
<td>Black skimmer</td>
<td>SSC</td>
</tr>
<tr>
<td>Calidris canutus rufa</td>
<td>Rufa red knot</td>
<td>T</td>
</tr>
</tbody>
</table>

3.9.1.2.2.2 Special Status Species

Table 3.9-14 lists wetland wildlife at KSC with Federal and/or State protected status.
### Scientific Name	Common Name	Level of Protection
Mammals | |
Peromyscus polionotus niveiventris | Southeastern beach mouse | FEDERAL | STATE
Podomys floridanus | Florida mouse | SSC |
Trichechus manatus | West Indian manatee | E | E

Key: SSC = Species of Special Concern; T(S/A) = threatened because of similarity of appearance to another protected species; T = threatened; E = endangered.

The bald eagle is federally protected under the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act.

Fish

In the U.S., the federally endangered smalltooth sawfish is found only in Florida, and is common only in the Everglades at the southern tip of the state. It can grow to 770 pounds, reach 20 feet in length, and live to 30 years. Like sharks, skates, and rays, sawfish have skeletons made of cartilage (NOAA, 2014c). The shortnose sturgeon is the smallest of the three sturgeon species found in eastern North America, growing to nearly five feet in length and up to 50 pounds. They are long-lived fish that are found in most major river systems and estuaries along the eastern seaboard of the U.S. Adults primarily feed on mollusks and large crustaceans (NOAA, 2014d).

Amphibians and Reptiles

KSC is home to three species of marine turtles that commonly nest on the beaches: loggerheads, green turtles, and leatherbacks. Kemp's ridley and hawksbill sea turtles also rarely occur and potentially nest here. Two species, loggerheads and green turtles, also occur in the KSC waters of the IRL (NASA, 2010a, 2015).

Sea Turtles

Harvesting of green turtles from the IRL began in about 1878, and early reports describe a turtle fishery that took many green turtles. Fishing for turtles was concentrated more in the south end of the system near Sebastian and Ft. Pierce, rather than in the lagoon near KSC. Green turtles were severely affected by commercial harvesting, and by 1895, captures of turtles from the IRL dropped sharply.

Three different sea turtle species annually nest along the nearly 10-kilometer stretch of MINWR beach between March and September. These turtles include the federally threatened loggerhead sea turtle (*Caretta caretta*), federally endangered green turtle (*Chelonia mydas*), and federally endangered leatherback turtle (*Dermochelys coriacea*). The loggerhead (Figure 3.9-13) is the primary nesting turtle on the refuge with over 95 percent of the nesting and with previous annual averages of 1,300 nests. Green sea turtle nest numbers oscillate between 50 and 200 every other year. Leatherback sea turtles nest infrequently on the refuge beach, with only one or two nests recorded in a typical year (USFWS, 2008).
Management for these species includes beach protection, NASA coordination efforts, nest monitoring during the nesting season, and predator control. Primary nest predators include raccoons (*Procyon lotor*), feral hogs (*Sus scrofa*), and ghost crabs (*Ocypode quadrata*). Nest depredation was greater than 90 percent of nests during the late 1970s before predator control (USFWS, 2008). Today, an active predator control program has reduced the depredation of nests well below an annual rate of 10 percent. In addition, the disorienting effects of artificial nighttime lights from NASA and U.S. Air Force facilities on nesting and hatching sea turtles are a concern. NASA monitors this turtle disorientation annually. USFWS coordinates efforts with NASA and the Air Force to help reduce or eliminate the adverse effects of nighttime lighting on sea turtle nesting and hatching disorientation.

Beyond the nesting beaches, MINWR also provides a juvenile sea turtle nursery. Mosquito Lagoon is considered a developmental habitat for sub-adult loggerhead and green sea turtles. The lagoon once supported vast numbers of wintering juvenile sea turtles and an historic sea turtle fishery that extended into the 1960s, which was thought to contribute to the decline in population numbers. Turtles may remain in Mosquito Lagoon until maturity. Turtles wintering in the lagoon are plagued by winter freezes, which can cold-stun the animals and cause mortality. The refuge has developed a plan to coordinate the handling of cold-stunned turtles and prevent mortalities. Monitoring of wintering sea turtles in the Mosquito Lagoon in the mid-1970s found higher numbers than presently found and an increase in sea turtle fibropapillomas (FP), a complex and disfiguring disease that causes tumors on the skin and which plagues sea turtles worldwide.

Documented historical evidence for marine turtles’ occurrence in Mosquito Lagoon begins with an anecdotal statement that 150 green turtles were exported from Mosquito Lagoon in 1879. Scientific research on marine turtles in Mosquito Lagoon began in 1975. Four species were found in the area: green turtles and loggerheads were most common, but during five years of netting, two Kemp’s ridleys and one hawksbill were also captured. Mosquito Lagoon is a nursery habitat for green turtles and loggerheads; the size classes present range from post-yearling to sub-adults. The capture rate for Mosquito Lagoon was 0.67 turtles per day; this rate is an order of magnitude lower than the capture rate near Sebastian Inlet, but greater than the 0.02 turtles/day reported for the northern section of the Indian River.

Information on marine turtles residing in Mosquito Lagoon was gathered opportunistically during cold-stunning events in 1977, 1978, and 1989. When the water temperatures fall below 8°C (46°F), marine turtles become lethargic and float to the surface, and can die if not rescued and rehabilitated. During the 1989 freeze, 246 green turtles and ten loggerheads were recovered.
from Mosquito Lagoon and nearby waters of the northern Indian River, representing the largest recorded cold-stunning event in this region. The relative abundance, distribution and status of the marine turtle population inhabiting Mosquito Lagoon are currently being assessed as part of EMB conservation and stewardship activities. Objectives are to compare the present-day population to baseline data collected in 1976-1979, to determine species ratios, population abundance, and genetic characteristics of marine turtles in the IRL.

Recent data indicate green turtles are more abundant than loggerhead turtles, the inverse of findings observed in the late 1970s. The observed sex ratio is skewed towards females and determined to be 94.4% for greens and 66.6% for loggerheads. Catch per unit effort (CPUE), a standardized technique to compare sea turtle netting worldwide indicate that green turtles are much more abundant today than in the 1970’s. Loggerhead captures indicate a slight decline in their numbers since the 1970’s. Several turtles originally tagged in Mosquito Lagoon have been recaptured as far away as Cuba. DNA analyses revealed the presence of sea turtles originating from Florida, Mexico, Aves Island, Surinam and Costa Rica. This indicates the Mosquito Lagoon has a significant role in the sea turtle life cycle.

An additional difference between observations in the 1970s and current observations is the occurrence of fibropapillomatosis (FP). This debilitating disease is transmitted by a retrovirus that manifests itself as tumors. Tumors may grow to a considerable size, usually attached to soft-tissues such as the eyes and flippers. They may occlude the sea turtle’s vision, potentially leading to starvation. Occasionally, recaptured individuals showed regression of FP tumors. FP was not observed in any green turtles in the 1970s in Mosquito Lagoon. Unfortunately, today 57 percent of the green turtles have FP tumors. FP is extremely rare in loggerhead sea turtles (NASA, 2010a, 2015).

Birds

Bald eagles are protected under the Bald and Golden Eagle Protection Act of 1940. Bald eagles arrive each year on KSC in the fall, nest during the winter, and leave KSC in early spring after the young have fledged. Records of bald eagle nesting have been kept on KSC continuously since 1978 by MINWR and/or FFWCC. The numbers of nests have increased steadily over the years, in keeping with the general recovery of bald eagle populations in the U.S. since the banning of the pesticide DDT. Between 1998 and 2009, the number of nests was 12, and the average number of known fledglings per year was 12. Eagle nest trees are protected from disturbance within zones of no activity or permitted-only activity. One nest located on KSC is very well known locally as it has been used almost continuously for at least 40 years. The nest measures 0.2 m (7 ft.) in diameter and is 3 m (10 ft.) deep. It is a regular stop for KSC tour buses, and has been equipped with video and still cameras during different time periods, providing an incredible up-close look at life in the nest.

The piping plover, a federally threatened bird, is occasionally found using KSC beach habitat during migration. Least terns and black skimmers are two state-listed species of beach nesting birds that also nest on gravel rooftops; colonies of these birds exist on KSC. Much of the natural beach and sandbar habitat for these birds is no longer suitable, due to habitat alteration and introduced or natural predators. In recent years most nesting attempts on KSC have occurred on rooftops. However, changing construction materials is causing most gravel rooftops to be
replaced with other materials on KSC, thus reducing the available nesting habitat for these species.

The wood stork is federally listed as threatened. Long-term monthly monitoring of feeding sites on KSC began in 1987. Sites surveyed include a sample of mosquito control impoundments, a portion of the edge of the estuary and associated creeks, and a sample of roadside ditches. Results show that wading birds prefer feeding in open water over other available habitats, but will feed in marsh grasses, particularly when the water level is high. More detailed analysis of habitat preference showed that wading birds feeding in impounded salt marsh on KSC preferred areas within 1 m of the boundary between marsh vegetation and unvegetated open water. Wood stork nesting occurred in large numbers prior to 1985, and then again in smaller numbers from 1988 - 1990, but it has not been documented since 1990. However, wood storks do continue to use sites on KSC for feeding and loafing.

The rufa red knot (Calidris canutus rufa) is an occasional visitor to the KSC shoreline, mostly during migration. They have not been documented to nest in Florida. Their body shape and size is typical for the sandpipers: they have a small head and eyes, a short neck, a slightly tapering bill that is no longer than its head, and short dark legs. Their winter plumage as observed in Florida is uniformly pale grey, and it is similar between the sexes, in striking contrast to their bright breeding colors. The rufa red knot was federally listed as Threatened in 2014 (NASA, 2015).

The roseate tern (Sterna dougallii), listed as a federally protected Threatened species, is similar in size and appearance to several other tern species, although it is shorter-winged and has faster wing beats than other terns. Its thin sharp bill is black, with a red base that develops through the breeding season. Roseate terns do not nest in Florida and are present only during the winter or when they pass through during migration seasons.

Among special status bird species at KSC are wading birds, waterbirds, waterfowl, and shorebirds.

Mammals

The manatee (Trichechus manatus) (Figure 3.9-14) is federally listed as endangered. In 1977, KSC supported inventory actions to determine the abundance and distribution of the manatee throughout Florida including the KSC property. The surveys indicated that a large number of manatees were utilizing the same body of water that NASA intended to use for Space operations. As much as 15 percent of the total manatee population of the U.S. is located within the waters immediately surrounding KSC property. Monitoring the distribution and abundance manatees at KSC has been primarily performed through aerial surveys that have been funded by KSC intermittently from 1977-1983 and almost continuously since 1984. Mean numbers of manatees observed in KSC waters during summer have fluctuated around 160 individuals. Since 1991, KSC aerial surveys have been conducted during cold periods in conjunction with the FFWCC's population census referred to as the Statewide Synoptic Survey.
Figure 3.9-14. The federally-endangered manatee abounds in the waters around KSC

The data collected are immediately shared with the FFWCC. The data have been shared with various agencies and universities, presented at scientific meetings and published in peer-reviewed journals. Data sets have been shared with FFWCC on many occasions over the years and more recent data were submitted (with restricted use) to FFWCC for their evaluation of speed zone regulations which were being developed. Data have also been shared with the public through invited presentations to environmental and educational audiences, marine industry groups, the Brevard County Commission, Marine Mammal Commission, and the USACE.

In 1990, to further protect this endangered species, the USFWS created a sanctuary for manatees covering the majority of the KSC section of the Banana River. The USFWS officially designated the following areas at KSC as Critical Habitat: (1) the entire inland section of water known as the Indian River, from its northernmost point immediately south of the intersection of U.S. Highway 1 and Florida State Road 3; (2) the entire inland section of water known as the Banana River, north of KARS Park; (3) and all waterways between the Indian and Banana Rivers (exclusive of those existing manmade structures or settlements which are not necessary to the normal needs of survival of the species). Critical habitat and areas of manatee concentration are shown in Figure 3.9-15. KSC biologists also participate in the manatee-stranding network, for which dead and live standings are reported to FFWCC and USFWS agencies. Those agencies collect the animals, rehabilitate or file necropsy reports. Those data are maintained and archived by FFWCC.
Figure 3.9-15. Manatee protection zones at KSC
3.9.1.2.2.3 Invasive Species

Raccoons are a native species that is common in most habitats on KSC, but particularly abundant near water sources of all kinds. Raccoons have been documented as predators on wildlife and eggs of any kind that are available to them. Although there are no historical data on raccoon densities on KSC, it is thought that populations may have become unnaturally high when mosquito control impoundments were built in the early 1960s. The sudden access to marsh interiors and all of the resources within them may have contributed to a raccoon population expansion. Raccoons are also an animal that coexists well with people and can flourish in situations that might inhibit population growth of other more sensitive species. In the 1970s, raccoons took nearly 100% of the marine turtle eggs that were deposited on the beaches of KSC, CANA, and CCAFS. This trend continued until the responsible agencies implemented various raccoon predation control strategies on their respective beaches. Raccoons have also been implicated in the apparent decline of diamondback terrapin populations on KSC because they have been observed eating adults and destroying nests to obtain eggs (NASA, 2010a, 2015).

3.9.2 Environmental Consequences including Cumulative Impacts

3.9.2.1 Terrestrial Environment – Vegetation

3.9.2.1.1 Proposed Action

3.9.2.1.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Impacts of the Land Use Plan, Future Development Plan, and Functional Area Plans on upland vegetation are considered in this section. Actions from these plans that could affect upland vegetation include ground disturbing construction of:

- Vertical launch pads and landing areas
- Horizontal launch and landing areas
- Launch operations and support areas
- Assembly, testing, and processing areas
- Utility systems areas and corridors
- Administration facilities
- Central Campus facilities
- Support Services facilities
- Public Outreach facilities
- Research and Development facilities
- Renewable energy areas

The acreage of some land use areas would increase, while others would decrease (see Table 2.1-1). Overall, the effort to reduce NASA’s footprint and consolidate operations into specific functional areas would reduce the total area of existing facilities. However, 6,279 acres that are currently part of the operational buffer, both public use and conservation components, and open space, would be allocated for other land uses. On these sites open space and native vegetation communities (both upland and wetland) would be lost to development (Table 2.1-1). Concentrations of functions and uses would occur in functional areas as listed in Section 2.1.5, which would minimize impacts to native upland vegetation over the long-term.
Native Plants
Ground disturbing construction activities would occur in some areas where vegetation has previously been disturbed, but activities would also occur in areas of relatively undisturbed, natural vegetation communities. In previously disturbed areas, adverse impacts on native upland vegetation would be considered minimal. Where disturbance of intact native plant communities may occur as a result of project activities, the impacts would be greater. The types of impacts are described below.

The use of heavy equipment for construction of facilities would be short-term during project activities, and the degree of vegetation impacts would depend on the community type and the areal extent of the project area. Some native trees, shrubs, and ground cover located in the project footprint may need to be cleared, which would cause long-term adverse impacts on existing vegetation. Loss of an individual or small number of members of a given plant species would not jeopardize the viability of the population in the area. Heavy equipment may also cause temporary disturbance and damage to plants in adjacent areas beyond the footprint of the project site; impacts to surrounding vegetation could be minimized by plainly demarcating site boundaries. The overall impact on vegetation would be reduced by concentrating the area of disturbance to the smallest area necessary to complete the project.

Repeated disturbance of vegetation (i.e., due to vehicle passes) during project activities in areas where plants are not cleared would cause damage to plants and destruction of the vegetation mat. There would also be localized vegetation trampling from foot traffic during project activities. Adverse impacts from trampling would be short-term as vegetation would be expected to recover over time.

Disturbance from construction may allow invasive plant establishment, soil erosion or compaction, a lessened litter layer, decreased soil microbial activity, reduced plant biomass and cover of native species, decreased reproductive success, changes in genetic structure of plant populations, and alteration of wildlife habitats. In order to minimize soil erosion, inhibit the establishment and propagation of invasive exotic plant species, and reestablish the natural vegetation community, disturbed project areas should be revegetated or reseeded with native plant species once construction is complete.

Impacts of proposed project activities on native upland vegetation would be short-term and long-term, direct, adverse, and negligible to moderate depending on whether the site is already disturbed or not, extent of the project area, and type of vegetation occurring onsite. Impacts on native upland vegetation would be less than significant.

Invasive Plants
Invasive plant species are generally found in disturbed soil conditions. Disturbed soil generally attracts infestation by fast-growing invasive weed species; thus any disturbed ground from construction activities would be susceptible to establishment and spread of invasive species. Disturbance events, such as construction activities, can increase weed-seed banks in the soils. Due to the longevity of the seed banks of weed species, any habitat that may be disturbed can promote weed growth.
Exotic plants or seeds could be brought to a project site with fill material, topsoil, or on heavy equipment. Heavy equipment, however, should be cleaned and weed-free before entering a project area. New introductions could allow for exotic plants to become established and spread. Exotic plants currently growing in the area can also become established and spread on newly disturbed substrates. Previously undisturbed habitats are highly susceptible to invasive plant infestations once disturbed. Non-native species could spread and become established, and their proximity to native vegetation communities would represent a threat to native habitats. Best Management Practices (BMPs) to ensure that imported material does not contain exotic plants or seeds should be implemented.

Impacts to native vegetation from introduction, establishment, and spread of invasive species due to project activities would be long-term, direct, adverse, and minor to moderate depending on the whether the site is already disturbed or not, extent of the project area, type of vegetation occurring onsite, and whether invasive plants and seeds can be prevented from introduction and establishment. Impacts of invasive upland plants would be less than significant. To ensure that impacts of invasive species do not surpass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Special Status Plants

Human activities, development, and construction may affect special status species if the activities occur in habitats which the species utilize. Targeted surveys for presence of special status species should be conducted prior to the start of any project activities. In the event that protected plant species are observed in the project area, populations should be flagged for avoidance. Mitigation measures would be implemented as necessary to avoid impacting listed plants. If they can be avoided, adverse impacts on special status species would not be expected. If they cannot be avoided, similar impacts would occur as described above for native plants.

Where construction activities occur, special status plants may be directly impacted. Construction could alter the amount of habitat available for future colonization by special status plant species. Project actions that decrease the areal extent of habitat or increase cover of invasive species could lower the potential for special status species to colonize in the project area. This would be considered a long-term, adverse effect with the magnitude of impact depending on many site specific factors. Indirect impacts to special status species may occur through dispersal of invasive species from construction activities.

Impacts of proposed project activities on special status species would either not occur if they can be avoided, or would be short-term and long-term, direct and indirect, adverse, and minor to moderate depending on the plant’s state status, how many individuals or populations are impacted, and how much habitat remains intact for a special status species to use. Impacts on upland special status species would be less than significant.

3.9.2.1.2 Launch, Landing, Operations and Support

Impacts of Launch, Landing, Operations and Support on upland vegetation are considered in this section. Actions from this program that could affect upland vegetation include:

- Vertical launches and landings
• Horizontal launches and landings

Other activities associated with launches and landings, such as preparation for launch, safing operations, and payload operations would not affect vegetation as they would occur on already developed and hardened surfaces.

Native Plants

Vertical and horizontal launches may result in local adverse impacts on native upland vegetation. Such impacts would result from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances based on the propellant type and characteristics) which would decrease the fitness of an affected local plant population, but would not likely result in the permanent removal or loss of a particular vegetative community (FAA, 2005).

Reduction in the number of plant species present and reduction in total cover may occur as a result of vertical and horizontal launches. Damage to vegetation is to be expected within a small radius of the launch pad due to scorching of vegetation within the path of the flames. Vegetation effects would differ by strata; shrubs and small trees may be eliminated by repeated defoliation more rapidly than forbs and graminoids (NASA, 2010a, 2015). The most severely impacted areas may eventually result in bare ground. However, regrowth is expected in periods without launches.

Due to the location of existing and proposed vertical launch pads, some launches may result in damage to the coastal dune community when the near-field zone extends across the dunes. Thin leafed herbaceous species and shrubs with succulent leaves are more sensitive to launch cloud deposits than are typical dune grasses (NASA, 2010a, 2015). Dune community species exhibiting sensitivity to launch cloud effects include camphorweed (*Heterotheca subaxillaris*), inkberry (*Scaevola plumieri*), beach sunflower (*Helianthus debilis*), and marsh elder (*Iva imbricata*). Dune species exhibiting resistance to launch cloud effects include sea oats (*Uniola paniculata*), beach grass (*Panicum amarum*), and slender cordgrass (*Spartina patens*), and sea grape (*Coccoloba unifera*). During periods without launches, vegetation recovery may be nearly complete within six months (NASA, 2010a, 2015).

Far-field deposition of acids and particulate matter from individual launches can produce damage to foliage of vegetation. Areas receiving 1000 mg/m² of chlorides would experience damage from acid etching of the leaves; sensitive species can be damaged by 100 mg/m² of chlorides (NASA, 2010a, 2015). No discernible vegetation damage appears to have been caused by particulate deposition in the past, so none is expected in the future. Far-field deposition may be sufficiently dispersed and variable from launch-to-launch that successive launches would seldom affect the same areas.

The deposition of launch vehicle (LV) stages (i.e., booster rockets), the landing of a reentry vehicle (RV), or launch failures in vegetative areas would result in an adverse impact on the localized vegetative community in the event that they are deposited on land rather than water. Plants may be damaged or killed by the impact of LV stages or RVs.

Overall, the effects of vertical and horizontal launches and landings on upland vegetation are expected to be short-term to medium-term, direct, adverse, and minor to moderate depending on
the frequency of launches and landings and the proximity of a particular vegetation community to the launch or landing site. Impacts on native upland vegetation would be less than significant.

Invasive Plants

Vertical and horizontal launches and landings would have similar effects on invasive species as described for Native Plants above. However, the reduction in number of plants and cover of invasive species would result in beneficial impacts instead of adverse, at least for the short-term. Previous studies found that the reduction in total species number included both loss of sensitive species and invasion of weedy ones, where losses exceeded new invasion (NASA, 2010a, 2015). This indicates that it is possible over the long-term for invasive species to become re-established, but perhaps at a slower rate.

The effects of vertical and horizontal launches and landings on invasive plants are expected to be direct, beneficial, and negligible to minor in the short-term to medium-term depending on the frequency of launches and landings and the proximity of invasive species to the launch or landing site. Over the long-term, invasive species could become established again. Impacts of invasive upland plants would be less than significant. To ensure that impacts of invasive species do not pass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Special Status Plants

Vertical and horizontal launches and landings would have similar effects on special status species as described for Native Plants above. Unlike with construction activities, although surveys for special status species can be conducted in areas in close proximity to launch sites, impacts from launches to individuals or populations would not be avoidable. Additionally, the deposition of LV stages or the landing of an RV in areas with special status species would also be unavoidable, resulting in adverse impacts.

Previous studies found that the reduction in total species number as a result of launches included both loss of sensitive species and invasion of more weedy ones, where losses exceeded new invasion (NASA, 2010a, 2015). The loss of sensitive species, such as special status species, would likely occur more readily than their ability to re-establish.

The effects of vertical and horizontal launches and landings on special status species are expected to be long-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of listed populations to the launch or landing site. Impacts on upland special status species would be less than significant.

3.9.2.1.3 Future Transportation Plan

Impacts of the Future Transportation Plan on upland vegetation are considered in this section. Actions from this plan that could affect upland vegetation include:

- Road improvements, repair, and resurfacing
- Bridge replacement
- Parking lot repurposing or demolition
• Expansion of the Horizontal Launch and Landing capability with a new runway, facilities, infrastructure, and other airfield systems

Other actions in this plan that would impact upland vegetation would need separate NEPA analysis and would not be covered under this Programmatic EIS. These actions include development of railroads and seaports.

Native Plants
Activities that require construction, renovation, or replacement of facilities would have similar impacts on native upland vegetation as described for ground disturbing construction in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans. It is likely that actions such as road improvements or bridge replacement would impact road shoulders and other areas that have been previously disturbed, thus effects on native plant communities would be minimal. If construction occurs in larger areas of undisturbed native vegetation, such as building new runways, impacts would be much greater. Parking lot demolition would have beneficial effects if the site is then revegetated with native plants.

Impacts of proposed project activities on native upland vegetation would be short-term and long-term, direct, adverse, and negligible to moderate depending on whether the site is already disturbed or not, extent of the project area, and type of vegetation occurring onsite. Impacts on native upland vegetation would be less than significant. To ensure that impacts of invasive species do not pass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Invasive Plants
Future Transportation Plan actions would have similar effects on invasive plants as described for ground disturbing construction in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans. Many actions would take place in already disturbed areas, such as roadsides, where invasive plants already likely occur. Thus impacts at such sites would not be as great as for the actions that would take place in undisturbed native communities (i.e., where runway construction may occur) where invasive plants could get established due to ground disturbance.

Impacts to native vegetation from introduction, establishment, and spread of invasive species due to project activities would be short-term and long-term, direct, adverse, and negligible to moderate depending on whether the site is already disturbed or not, extent of the project area, type of vegetation occurring onsite, and whether invasive plants and seeds can be prevented from introduction and establishment. Impacts of invasive upland plants would be less than significant.

Special Status Plants
Surveys for presence of special status species should be conducted prior to the start of any project activities. In the event that protected plant species are observed in the project area, populations should be flagged for avoidance. Mitigation measures would be implemented as necessary to avoid impacting listed plants. If they can be avoided, adverse impacts on special status species would not be expected. If they cannot be avoided, similar impacts on special status species would occur as described for ground disturbing construction in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans.
Impacts of proposed project activities on special status species would either not occur, or would be short-term and long-term, direct and indirect, adverse, and minor to moderate depending on the plant’s state status, how many individuals or populations are impacted, and how much habitat remains intact for a special status species to use. Impacts on upland special status species would be less than significant.

3.9.2.1.4 Cumulative Impacts

Upland vegetation at KSC has been, and continues to be, cleared and/or disturbed for such purposes as construction of roads, facility development, launches, recreation, and wildfire, fire suppression, and prescribed fire. These activities involve removal, trampling, or destruction of vegetation; disturbance of ground cover; and introduction of invasive species. Many of these actions also contribute to soil compaction and erosion, making it more difficult for native plant species to re-inhabit an area after disturbance. Additionally, pressure from increasing human presence includes trampling of vegetation due to pedestrian traffic and concentrated areas of foot traffic which removes vegetation and fragments habitat and vegetative populations. Beneficial effects also occur from hazard fuel reduction and habitat improvements achieved by prescribed fire.

Some upland vegetative damage may occur from occasional brush fires and/or heat from launches and wet deposition in the near-field areas. The loss of tree and shrub species and an increase of grass and sedge species may occur. Far-field vegetation should recover between launches since far-field deposition would not occur in the same area after each launch.

Adverse upland vegetation impacts associated with Proposed Actions would be minor as compared to cumulative past, present, and foreseeable future effects. Cumulative impacts from the Proposed Action alone would vary with the nature and extent of projects, but impacts would be expected to be minor and adverse.

When considered in context of the two other large reasonably foreseeable projects described in Section 3.2, the Shiloh Launch Complex on the northern edge of KSC and the Port Canaveral Rain Extension in the southern portion of it, these conclusions as to cumulative impacts may change. While detailed impacts of both Shiloh and the rail extension are not yet available, both would require the clearing of non-trivial amounts of native upland vegetation and habitat. When all three projects (KSC master plan, Shiloh, rail extension) are considered in combination, cumulative impacts on upland vegetation may shift from minor and adverse to moderate and adverse (noticeable change in a resource occurs, but the integrity of the resource remains intact), but they would still not likely be major or significantly adverse (substantial impact or change in a resource area that is easily defined, noticeable, and measurable, or exceeds a standard).

3.9.2.1.2 Alternative 1

The direct, indirect, and cumulative impacts of Alternative 1 on vegetation would be similar to but less than the Proposed Action, because the two proposed new seaports would not be built. Overall losses of vegetation and habitat would be 1,100 acres less than in the Proposed Action.
3.9.2.1.3 No Action Alternative

Under the No Action Alternative, upland vegetation would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Effects on upland vegetation from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus the No Action alternative would not have any additional impacts on upland vegetation.

3.9.2.2 Wetlands Vegetation

3.9.2.2.1 Proposed Action

3.9.2.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Impacts of the Land Use Plan, Future Development Plan, and Functional Area Plans on wetland vegetation are considered in this section. Actions from these plans that could affect wetland vegetation include ground disturbing construction of:

- Vertical launch pads and landing areas
- Horizontal launch and landing areas
- Launch operations and support areas
- Assembly, testing, and processing areas
- Utility systems areas and corridors
- Administration facilities
- Central Campus facilities
- Support Services facilities
- Public Outreach facilities
- Research and Development facilities
- Renewable energy areas
- Seaport facilities

The acreage of some land use areas would increase, while others would decrease (see Table 2.1-1). Overall, the effort to reduce NASA’s footprint and consolidate operations into specific functional areas would reduce the total area of existing facilities. However, 6,279 acres that are currently part of the operational buffer, both public use and conservation components, and open space, would be allocated for other land uses where native vegetation communities (both upland and wetland) would be lost to development (Table 2.1-1). Concentrations of functions and uses would occur in functional areas as listed in Section 2.1.5, which would minimize impacts to native wetland vegetation over the long-term.

However, construction of two new seaports under the Proposed Action – one on Banana Creek (a tributary of the Indian River Lagoon) and one on the Banana River just south of the Exploration Park and Industrial Functional Areas (see Figure 2.1-3 for a more detailed map) – would take place in wetlands and waters of the U.S. (see Figure 2.1-1 and Figure 3.9-2), occupying 286 additional acres, much or most of which is wetlands. Unless mitigated, this would constitute a permanent, adverse, medium-scale, moderate to major, potentially significant impact on wetlands and waters of the U.S. However, under its Section 404 Clean Water Act permitting authority, the
U.S. Army Corps of Engineers would require avoidance or compensatory mitigation for construction (dredging and filling) in wetlands on this scale, which would reduce impacts to below the level of significance.

Native Plants
The activities that require ground disturbing construction would have similar impacts on wetland vegetation as described in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for native upland plants. However, wetlands can be very sensitive to disturbance and have a greater likelihood of slow recovery compared to the adjacent uplands. It is likely that many wetland areas at KSC that would be impacted by project activities have not been previously disturbed. If construction activities affect disturbed wetlands or those with an abundance of invasive species, then the adverse impacts on native wetland vegetation would not be as great.

Permanent wetland loss occurs when wetlands are converted to upland or to developed areas (buildings, launch pads, seaports, etc.). Temporary impacts occur when material is placed in wetlands to create access and storage for construction, and then removed when construction is complete. Vegetation clearing adjacent to wetlands may also be considered a permanent impact. Indirect impacts to wetland vegetation include increased sedimentation and erosion from construction; increased pollution in runoff, which reduces the water quality of wetland habitats; and increased potential for invasive species introduction in areas where native vegetation is disturbed. These indirect effects could result in changes to native wetland species composition, species diversity, and habitat characteristics.

Impacts to wetlands and wetland vegetation would be mitigated by the use of BMPs to reduce erosion and sedimentation during construction activities. These practices include minimizing the length of time bare soil is exposed, along with timely reseeding and mulching. In addition, construction and maintenance of portable and long-term sediment and surface-water retention features would further reduce the potential for erosion and sedimentation. Landscaping within and near wetlands would include the planting of native species.

NASA would try to keep unavoidable wetland impacts within the threshold of the USACE and state-issued required permits. Mitigation would be needed to compensate for unavoidable wetland loss. This could include purchase of credits from a wetland mitigation bank, a monetary compensation for wetland loss, or wetland restoration or preservation.

Except potentially in the case of the two seaports described above, impacts of proposed project activities on native wetland vegetation would be short-term and long-term, direct and indirect, adverse, and minor to moderate depending on the extent of the project area and whether or not the wetland has been previously disturbed. Impacts are likely to become negligible to minor with mitigation. Impacts on native wetland vegetation would be less than significant.

Invasive Plants
The activities that require ground disturbing construction would have similar impacts on wetland invasive species as described in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for upland invasive plants. It is likely that many wetland areas at KSC that would be impacted by project activities have not been previously disturbed. Previously
undisturbed habitats are highly susceptible to invasive plant infestations once disturbed. Invasive species can outcompete native wetland vegetation, making wetlands less habitable for wildlife and decreasing native plant diversity. If construction activities affect disturbed wetlands or those with an abundance of invasive species, impacts from invasive species would be lower.

Many wetland invaders, including those found at KSC, form monotypes which alter habitat structure, lower biodiversity (both number and “quality” of species), change nutrient cycling and productivity (often increasing it), and modify food webs (Zedler and Kercher, 2004). Wetlands are landscape sinks, which accumulate debris, sediments, water, and nutrients, all of which facilitate invasions by creating canopy gaps or accelerating the growth of opportunistic plant species. These and other disturbances to wetlands create opportunities that wetland invasive plants take advantage of.

Impacts of proposed project activities on invasive wetland vegetation would be long-term, direct, adverse, and minor to moderate depending on whether the site is already disturbed or not, extent of the project area, type of vegetation occurring onsite, and whether invasive plants and seeds can be prevented from introduction and establishment. Impacts on invasive wetland vegetation would be less than significant. To ensure that impacts of invasive species do not pass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Special Status Plants
Surveys for presence of special status species should be conducted prior to the start of any project activities. In the event that protected plant species are observed in the project area, populations should be flagged for avoidance. Mitigation measures would be implemented as necessary to avoid impacting listed plants. If they can be avoided, adverse impacts on special status species would not be expected. If they cannot be avoided, similar impacts on wetland special status species would occur as described in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for upland special status species.

Impacts of proposed project activities on special status species would either not occur, or would be short-term and long-term, direct and indirect, adverse, and minor to moderate depending on the plant’s state status, how many individuals or populations are impacted, and how much habitat remains intact for a special status species to use. Impacts on wetland special status species would be less than significant.

3.9.2.2.1.2 Launch, Landing, Operations and Support
Impacts of Launch, Landing, Operations and Support on wetland vegetation are considered in this section. Actions from this program that could affect wetland vegetation include:

- Vertical launches and landings
- Horizontal launches and landings

Other activities associated with launches and landings, such as preparation for launch, safing operations, and payload operations would not affect vegetation as they would occur on already developed and hardened surfaces.
Native Plants
Launch and landing activities would have similar impacts on wetland vegetation as described in Section 3.9.2.1.1.2, Launch, Landing, Operations and Support for native upland plants. These impacts include decrease in the fitness of affected local wetland plant populations, reduction in the number of plant species and total cover, vegetation damage, and vegetation loss. However, wetlands can be very sensitive to disturbance and have a greater likelihood of slow recovery compared to the adjacent uplands.

In addition, chemical deposition from launch clouds would have adverse impacts on water quality and soils in wetlands, as described in Sections 3.3 and 3.4, which would lead to indirect adverse impacts on wetland vegetation from contamination or water and soil, such as alteration of metabolism and disruption of photosynthesis resulting in loss of vigor and mortality.

Overall, the effects of vertical and horizontal launches and landings on wetland vegetation are expected to be short- to medium-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of a particular wetland community to the launch or landing site. Impacts on native wetland vegetation would be less than significant.

Invasive Plants
Vertical and horizontal launches and landings would have similar effects on invasive species as described in Section 3.9.2.1.1.2, Launch, Landing, Operations and Support for invasive plants. However, the reduction in number of plants and cover of invasive species would result in beneficial impacts, at least for the short-term, as invasive plants are eliminated. Additionally, contamination of water and soil from chemical deposition from launch clouds could kill or stunt invasive wetland plants as it would native wetland plants; however, this would also be an indirect beneficial effect.

The effects of vertical and horizontal launches and landings on invasive plants are expected to be direct, beneficial, and negligible to minor in the short-term depending on the frequency of launches and landings and the proximity of invasive species to the launch or landing site. Over the long-term, invasive species could become established again. Impacts of invasive wetland plants would be less than significant. To ensure that impacts of invasive species do not pass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Special Status Plants
Vertical and horizontal launches and landings would have similar effects on special status species as described in Section 3.9.2.1.1.2, Launch, Landing, Operations and Support for special status plants. Unlike with construction activities, although surveys for special status species can be conducted in areas in close proximity to launch sites, impacts from launches to individuals or populations would not be avoidable. Additionally, the deposition of LV stages or the landing of an RV in wetlands with special status species would also be unavoidable, resulting in adverse impacts. Also, as discussed above for Native Plants, chemical contamination of wetland water and soil from launch cloud deposition would also be detrimental to special status species.
The effects of vertical and horizontal launches and landings on special status species are expected to be long-term, direct, adverse, and minor to moderate depending on the frequency of launches and landings and the proximity of listed populations to the launch or landing site. Impacts on wetland special status species would be less than significant.

3.9.2.2.1.3 Future Transportation Plan

Impacts of the Future Transportation Plan on wetland vegetation are considered in this section. Actions from this plan that could affect wetland vegetation include:

- Road improvements, repair, and resurfacing
- Bridge replacement
- Parking lot repurposing or demolition
- Expansion of the Horizontal Launch and Landing capability with a new runway, facilities, infrastructure, and other airfield systems

Other actions in this plan that would impact upland vegetation would need separate NEPA analysis and would not be covered under this Programmatic EIS. These actions include development of railroads and seaports.

Native Plants

The activities that require ground disturbing construction, renovation, or replacement of facilities would have similar impacts on wetland vegetation as described in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for native upland plants. It is likely that actions such as road improvements or bridge replacement would impact road shoulders and other areas that have been previously disturbed, thus effects on native wetland plant communities would be minimal. If construction occurs in larger areas of undisturbed wetland vegetation, such as building new runways, impacts would be much greater.

Impacts of proposed project activities on native wetland vegetation would be short-term and long-term, direct, adverse, and negligible to moderate depending on the whether the site is already disturbed or not, extent of the project area, and type of vegetation occurring onsite. Impacts on native wetland vegetation would be less than significant.

Invasive Plants

Future Transportation Plan ground disturbing actions would have similar effects on invasive plants as described in Section 3.9.2.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for invasive plants. Some activities would take place in already disturbed areas, such as wetlands around bridges where invasive plants already likely occur. Thus impacts at such sites would not be as great as for the actions that would take place in undisturbed native communities where invasive plants could get established due to ground disturbance.

Impacts to native vegetation from introduction, establishment, and spread of invasive species due to project activities would be long-term, direct, adverse, and minor to moderate depending on the whether the site is already disturbed or not, extent of the project area, type of vegetation occurring onsite, and whether invasive plants and seeds can be prevented from introduction and establishment. Impacts of invasive upland plants would be less than significant. To ensure that impacts of invasive species do not pass the threshold of significance, BMPs and mitigation...
measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

Special Status Plants

Surveys for presence of special status species should be conducted prior to the start of any project activities. In the event that protected plant species are observed in the project area, populations should be flagged for avoidance. Mitigation measures would be implemented as necessary to avoid impacting listed plants. If they can be avoided, adverse impacts on special status species would not be expected. If they cannot be avoided, similar impacts on wetland special status species would occur as described in Section 3.9.2.1.1.1, Land Use Plan, Future Development Plan, and Functional Area Plans for special status plants.

Impacts of proposed project activities on wetland special status species would either not occur, or would be short-term and long-term, direct, adverse, and moderate depending on the plant’s state status, how many individuals or populations are impacted, and how much habitat remains intact for a special status species to use. Impacts on wetland special status species would be less than significant.

3.9.2.2.1.4 _Cumulative Impacts_

Wetland vegetation at KSC has been, and continues to be, cleared and/or disturbed for such purposes as construction of roads, facility development, launches, recreation, and prescribed fire. These activities involve removal, trampling, or destruction of vegetation; disturbance of ground cover; and introduction of invasive species. Many of these actions also contribute to soil compaction and erosion, making it more difficult for native plant species to re-inhabit an area after disturbance. Prescribed fire has had beneficial effects as well as it was used along with water management to improve the quality of wetlands. Some vegetative damage may occur from heat from launches and wet deposition in the near-field areas. Far-field vegetation should recover between launches since far-field deposition would not occur in the same area after each launch.

Adverse wetland vegetation impacts associated with Proposed Actions would be minor as compared to cumulative past, present, and foreseeable future effects. Cumulative impacts from the Proposed Action would vary with the nature and extent of projects, but impacts would be expected to be minor and adverse.

Considered in combination with the other two major projects described in Section 3.2 – the Shiloh Launch Complex and the Port Canaveral Rail Extension – the “minor and adverse” determination would not change, because both of these would be constructed predominantly on upland sites, and have at most indirect effects on wetland vegetation.

3.9.2.2.2 _Alternative 1_

Overall, the direct, indirect, and cumulative impacts of Alternative 1 on wetland vegetation would be similar to but somewhat less than those of the Proposed Action, because the two proposed new seaports would not be built under Alternative 1. Thus, the wetland vegetation at these two proposed seaport sites on Banana Creek and the Banana River would remain unchanged and the impacts associated with the construction and operation of these facilities would be avoided.
The other consequences described above in Section 3.9.2.2.1 under the various actions associated with the Land Use Plan, Future Development Plan, Future Transportation Plan, Functional Area Plans, and Launch, Landing, Operations and Support would be the same.

3.9.2.2.3 No Action Alternative

Under the No Action Alternative, wetland vegetation would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Effects on wetland vegetation from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus the No Action alternative would not have any additional impacts on wetland vegetation.

3.9.2.3 Upland Wildlife

3.9.2.3.1 Proposed Action

Actions that could affect upland wildlife species under the Proposed Action alternative include:

- Consolidation of administrative facilities at a central campus which would require:
 - Demolition of unused structures and restoration of those sites
 - Site preparation and construction of new facilities at the new site
- Creation or expansion of the site footprints for a broad array of functions including:
 - Assembly, Testing and Processing
 - Central Campus
 - Horizontal Launch
 - Horizontal and Vertical Landing
 - Launch Operations and Support
 - Operational Buffer/Conservation
 - Operational Buffer/Public Use
 - Public Outreach
 - Renewable Energy
 - Research and Development
 - Seaport
 - Utility Systems
 - Vertical Launch

Impacts to terrestrial wildlife under the Proposed Action would be caused by loss or restoration of wildlife habitat, changes in habitat quality caused by fragmentation or human disturbance, injuries and mortalities caused by vehicles and equipment on roads, parking areas and construction sites, and the heat, noise, and chemical launches and landings of spacecraft.

3.9.2.3.1.1 Construction and Transportation Impacts

Habitat losses would be caused by clearing and conversion of currently occupied wildlife habitat to one of the land uses that would not support habitat as listed in Table 3.9-15. For example, any of the 1,419 acres planned to be added to the Assembly, Testing and Processing function, that currently supports habitat for terrestrial wildlife species would be lost to those species when site
clearing for construction is undertaken. Overall, the largest loss of habitat stemming from the proposed changes in land use would result from conversion of up to 4,386 acres of operational buffer/conservation and 1,874 acres of open space to other land uses. This total of 6,260 acres would constitute some 7.3 percent of the future non-water land uses at KSC, making it a substantive but likely minor, adverse, long-term impact on KSC habitats in general for wildlife species whose populations are currently well-distributed and not stressed by other factors across KSC.

Table 3.9-15. Existing and proposed future land uses at KSC

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Existing Acreage</th>
<th>Future Acreage</th>
<th>Change in Acreage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>104.76</td>
<td>40.72</td>
<td>-64.03</td>
</tr>
<tr>
<td>Assembly, Testing and Processing</td>
<td>475.41</td>
<td>1,894.77</td>
<td>1,419.36</td>
</tr>
<tr>
<td>Central Campus</td>
<td>NA</td>
<td>138.75</td>
<td>138.75</td>
</tr>
<tr>
<td>Horizontal Launch and Landing</td>
<td>501.25</td>
<td>2,838.84</td>
<td>2,336.94</td>
</tr>
<tr>
<td>Launch Operations and Support</td>
<td>398.75</td>
<td>506.14</td>
<td>107.39</td>
</tr>
<tr>
<td>Open Space</td>
<td>1,873.64</td>
<td>NA</td>
<td>-1,873.64</td>
</tr>
<tr>
<td>Operational Buffer/Conservation</td>
<td>44,583.14</td>
<td>40,196.94</td>
<td>-4,386.20</td>
</tr>
<tr>
<td>Operational Buffer/Public Use</td>
<td>34,844.14</td>
<td>34,824.72</td>
<td>-19.42</td>
</tr>
<tr>
<td>Public Outreach</td>
<td>216.01</td>
<td>522.13</td>
<td>306.12</td>
</tr>
<tr>
<td>Recreation</td>
<td>161.36</td>
<td>161.36</td>
<td>0.00</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>66.54</td>
<td>1,109.85</td>
<td>1,043.31</td>
</tr>
<tr>
<td>Research and Development</td>
<td>88.36</td>
<td>867.49</td>
<td>779.13</td>
</tr>
<tr>
<td>Seaport</td>
<td>30.92</td>
<td>317.26</td>
<td>286.34</td>
</tr>
<tr>
<td>Support Services</td>
<td>723.91</td>
<td>471.40</td>
<td>-252.51</td>
</tr>
<tr>
<td>Utility Systems</td>
<td>1,327.23</td>
<td>1,329.60</td>
<td>2.37</td>
</tr>
<tr>
<td>Vertical Launch</td>
<td>360.32</td>
<td>536.42</td>
<td>176.10</td>
</tr>
<tr>
<td>Vertical Landing</td>
<td>NA</td>
<td>75.73</td>
<td>75.73**</td>
</tr>
<tr>
<td>Water</td>
<td>55,541.81</td>
<td>55,541.81</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>141,297.54</td>
<td>141,297.54</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*Total difference in size between each existing land use category and future land use category. Numbers in red represent a future land use category that is SMALLER than its existing category while numbers in green signify that the future land use category contains a LARGER amount of acres than its existing land use category.

**Difference in Total Acreage is due to addition of Vertical Landing category, which lies within same geographical footprint as Horizontal Launch and Landing Category.

Habitat quality changes would result where new facilities are sited in previously unbroken areas of uniform habitat. Fragmentation would be greatest where linear features such as roads or pipeline/cable rights-of-way are cut through larger areas of relatively uniform habitat. These transects change the nature of the habitat so as to introduce human disturbance through a substantial portion of the habitat, reduce the size of the available habitat patches below the preferred patch size of an animal’s home range for foraging or reproductive success, and facilitate the introduction of invasive plants and animals. An example of the latter is the invasive cowbird that becomes a more effective brood parasite on songbirds when unbroken forested areas are transected by roads.
Some benefit would be derived in terms of habitat recovery as well as improvements in habitat quality from reducing the footprint of Administration facilities and Support Services facilities which would result in a net gain of 317 acres of unused land that could be restored to wildlife habitat. As noted in Chapter 2 under the Centerwide Strategy, the consolidation of NASA operations into a smaller geographic footprint is a major component of the Future Land Use Plan. Applying the Central Campus concept, for example, will allow NASA to recapitalize, over time, functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint.

Wildlife habitat not directly affected in clearing for construction or road or other facilities building would be affected to the extent that wildlife species in nearby uncleared habitats would be subject to human disturbances in the short term during construction and in the longer term by continuing disturbance from vehicle noise and exhaust as well as human voices, car alarms, and other related human sounds. Some species are not greatly affected by these types of disturbances and would not diminish in number in those adjacent habitats. Other species might find these locations unacceptable habitats and move off to other areas, competing with the current conspecific occupants. These effects would occur wherever new ground is broken for construction at any location on KSC which is currently not already fully developed.

Protected Species
Special status terrestrial species may be adversely affected by the land use changes under the Proposed Action. Of primary importance in evaluating impacts in KSC upland areas, including scrub habitats and beaches, are the federally protected Eastern indigo snake and Florida scrub-jay, the southeastern beach mouse, piping plover, and Roseate tern. The wood stork, bald eagle and manatee are discussed later under wetlands impacts and protected seas turtles under marine biota impacts.

The southeastern beach mouse, federally listed as a threatened species as well as a State of Florida species of special concern, mainly lives along the primary coastal dunes of the Merritt Island National Wildlife Refuge, Canaveral National Seashore, and CCAFS. Activities associated with the Proposed Action would occur inland on KSC, away from coastal dunes. Therefore, the Proposed Action would not be expected to affect the southeastern beach mouse.

The Proposed Action could disrupt ongoing turtle and endangered species bird nesting monitoring and studies due to the potential for increased operations and related beach closures.

Non-native and invasive wildlife
Non-native and invasive wildlife species may be adversely affected by loss of some habitat as described above for general wildlife species. Any reduction in non-native or invasive species numbers would likely be a benefit to native species, and in particular, any that have special protected status. Many invasive species may benefit from habitat disturbance and the presence of human development so their numbers may slightly increase due to new construction. Consolidation of administrative facilities may somewhat offset this potential increase.

3.9.2.3.1.2 Launch Impacts
During future spacecraft launches, short-term disturbance would occur in the immediate vicinity of the launch pads, but the disturbance would be short-lived and wildlife fatalities would not be
common. Because of the location of the pads and the size of the area (35 miles in length), NASA operations as well as those of private entities would likely have minimal effects on wildlife.

Biologists at MINWR have studied the impacts of rocket launches on wildlife for years. The biological impacts of shuttle launches have been documented since the beginning of the program. Through the 30-year flight history of the Space Shuttle Program there were 135 launches, 82 from Pad 39A and 53 from Pad 39B. The shuttle SRBs were the largest solid rocket motors ever built and flown. Each contained 498,950 kg of propellant. The propellant consisted of an aluminum (Al) powder fuel (16%), ammonium perchlorate as an oxidizer (69.9%), a 100 catalyst of iron oxidizer powder (0.07%), a rubber-based binder of polybutadiene acrylic acid acrylonitrile (12.04%), and an epoxy curing agent (1.96%). Each SRB produced approximately 2,650,000 pounds of thrust at sea level. The exhaust from the SRBs was directed northward from the launch pads by the split flame trench (Anderson and Keller, 1983). The exhaust was composed primarily of aluminum, hydrogen, nitrogen, carbon, oxygen, and chloride compounds.

At each launch pad, a sound suppression water system was utilized to protect the shuttle and payloads from damage by acoustical energy reflected from the mobile launch platform during launch. The system consisted of an elevated 2,006,050 l (530,000 gal) tank and associated plumbing that includes a system of six large rain birds and 16 nozzles above the flame deflectors. At approximately 12 seconds prior to launch, the system was activated, initiating a 25 to 30 second dump of the entire water system. The system also contained an overpressure suppression system consisting of two compartments. A water spray system provided a cushion of water that is routed directly into the flame hole beneath each booster. This was supplemented by a series of water hammocks stretched across each hole in the mobile launch platform. This dual system provided a 26,495 l (7,000 gal) water mass to dampen the pressure pulse resulting from ignition of the SRBs. At launch minus 12 seconds, the sound suppression system was activated, starting flow of water onto the launch pad and structure. At minus nine seconds, the three shuttle main engines were ignited and throttled toward full power. At zero the two SRBs were ignited. The initial blast hit the sound suppression hammocks and water that had been pouring onto the pad, instantly vaporizing and atomizing it.

The resulting mixture of deluge water, debris, and exhaust chemicals exploded from the flame trench at a velocity of approximately 85-100 meters per second. As the shuttle rose from the launch pad, the exit velocity and percent of SRB exhaust exiting the flame trench decayed to zero. At this point, the exhaust ground cloud formation ceased and column cloud formation predominated. Exhaust effluent can follow three paths:

- **Near-field** – wet exhaust deposited north of the flame trench resulting from the SRM ignition and initial blast,
- **Far-field** – wet deposition that “rains out” of the ground cloud as it rises, cools and drifts from the pad on prevailing winds,
- **Column-cloud** – dry particulate and HCl gas that did not entrain water from the deluge and sound suppression system that disperses with prevailing winds.

The near-field deposition consisted primarily of the Al₂O₃ particulates, HCl liquid, H₂O, and sand, shell fragments and other materials such as metals entrained into the exhaust cloud from
the pad surface by the SRB blast. HCl deposition was heavy in the near-field zone 101 causing small fish kills in shallow water areas and vegetation damage as a result of the low pH.

Cumulative vegetation damage from repeated launches included loss of woody species, loss of sensitive species, and increased bare ground. During times of no launches recovery of vegetation occurred. Soil surface chemistry was altered by the HCl neutralization process that dissolved calcium and magnesium carbonates. Waters and soils in the area have high buffering capacity and typically returned to pre-launch pH levels within 96 hours. Fish repopulated the area from adjacent areas of no impact and vegetation re-sprouts if the launch frequency was low enough to allow for it. Launch frequencies as high as 40 per year were projected (NASA, 1978). If these had been achieved, there would have been a reduction in soil buffering capacity, plants would not have had time to re-sprout or recolonize the area and impacts would have been more severe. This would result in loss of vegetation cover, exposing bare soil.

Far-field deposition displayed no impacts other than periodic spotting on plant leaves. There is much uncertainty associated with projecting impacts from higher launch rates. Current data and observations indicate the shuttle launch rate that was achieved had no substantial ecosystem impacts. An ongoing ecological risk assessment is being conducted to quantify possible metals impacts to the local food chain. Alligators, sea turtles, gopher tortoises, sport fish, manatees, southeastern beach mice, and other species continue to utilize the area (NASA, 2010a, 2015).

Soils and Upland Habitat Effects

Impacts of future spacecraft launches at KSC would likely be concentrated in the near-field impact zones north of each launch complex. Acute impacts of the acid ground cloud on the terrestrial environment near the launch pads would likely include: alteration of the vegetation community structure and species composition and changes in soil chemical characteristics.

In the Shuttle Program cumulative impacts in the most frequently exposed area north of LC39A through STS-9 included reduction in the number of plant species present and reduction in total cover; the reduction in total species number included both loss of sensitive species and invasion of more weedy ones, but losses exceeded new invasion. Vegetation effects differed by strata; shrubs and small trees were eliminated by repeated defoliation more rapidly than forbs and graminoids. The community level effects consisted of retrogressive changes. These changes continued until launches ceased in 1986 with an increasing amount of bare ground in the most severely impacted area. Considerable regrowth occurred in the period without launches. Resumption of launches in September 1988 initiated another retrogressive sequence. Similar changes have occurred at LC39B (NASA, 2010a, 2015).

Some launches result in damage to the coastal dune community when the near-field zone extends across the dunes. Thin-leafed herbaceous species and shrubs with succulent leaves are more sensitive to launch cloud deposits than are typical dune grasses. Dune community species exhibiting sensitivity to launch cloud effects include camphorweed (*Heterotheca subaxillaris*), inkberry (*Scaevola plumieri*), beach sunflower (*Helianthus debilis*), and marsh elder (*Iva imbricata*). Dune species exhibiting resistance to launch cloud effects include sea oats (*Uniola paniculata*), beach grass (*Panicum amarum*), and slender cordgrass (*Spartina patens*), and sea grape (*Coccoloba unifera*). Within six months vegetation recovery is nearly complete. Impacts to the dunes are infrequent, and cumulative changes in vegetation have not occurred.
Far-field deposition from individual launches can produce damage to foliage of vegetation. Areas receiving 1000 mg/m² chlorides experience damage from acid etching of the leaves; sensitive species can be damaged by 100 mg/m² chlorides. Far-field deposition is sufficiently dispersed and variable launch-to-launch that successive launches seldom affect the same areas. No changes in plant community composition or structure due to cumulative effects of far-field deposition have been seen.

Overall, the effects of vertical and horizontal launches and landings on upland wildlife habitat are expected to be direct, adverse, localized, short-term to medium-term, and minor to moderate, depending on the frequency of launches and landings.

Wildlife

Acute impacts of Space Shuttle launches to wildlife populations at KSC appear minimal, with the majority of birds being able to flee the pad area in a fright response to the ignition of the shuttle main engines seven seconds prior to the ignition of the SRBs. On occasion some individuals are caught in the exhaust blast and are killed or injured. Examples of species observed include armadillo, marsh rabbits, snowy egret, killdeer, frogs, and alligators. Because injured animals tend to hide in burrows or dense vegetation, the number may be greater than observed. To date no federally listed threatened or endangered species have been directly identified as being killed as a result of the launch event (NASA, 2010a, 2015).

Based on half a century of observation of impacts from past launches, including the three-decade shuttle program, the program of launches that would take place under the Proposed Action would also not likely incur substantial impacts on upland ecosystems, including wildlife populations. Overall, the effects of vertical and horizontal launches and landings on upland wildlife are expected to be direct and indirect, adverse, localized short-term to medium-term, and minor to moderate depending on the frequency of launches and landings and the proximity of given wildlife species to the launch or landing site.

Terrestrial Plants and Animals

The exhaust heat and atmospheric deposition of emissions associated with the launch and operation of a reusable suborbital rocket has the potential to harm nearby vegetation. Vegetation around launch areas is regularly mowed, and although heat and emissions could result in localized vegetation scorching and spotting, similar effects from other rocket launches have been shown to be temporary and not of sufficient intensity to cause long-term damage to the vegetation. There could be some temporary distress to nearby vegetation from launch emissions, resulting in a minor short-term impact, but no long-term adverse effects would be expected.

The greatest effects on terrestrial wildlife occur from collisions with aircraft and from visual and noise disturbances during launch activities. Although the KSC is considered a low-volume airfield, supporting less than 10,000 aircraft operations annually, its location within the Merritt Island National Wildlife Refuge and its proximity to a variety of upland and wetland habitats poses the potential for a bird strike hazard. However, because the Proposed Action would not vastly increase the number of launches at KSC, an adverse impact on wildlife from potential collisions would not be expected.
During launch activities, birds in the immediate area could be startled and flee the site for a short time; however, the continued presence of sea and shore birds at KSC demonstrates that launches have had little lasting effects on these species. In addition, terrestrial animals might suffer startle responses and be subject to temporary displacement during launch activities. While initially startling to wildlife, animals generally adapt to over-flight activities by changing their behavior and responses, and the overall effects appear to be negligible. Furthermore, launch activities would not be expected to significantly affect local wildlife populations.

Special Status Species

In the Shuttle Program environmental reviews, two taxa – the Florida scrub-jay (*Aphelocoma coerulescens*) and the wood stork (*Mycteria americana*) were given special consideration due to possible impacts that may result from the extreme noise levels near the pads at the time of launch. Low frequency noise levels in the 145-160 dB range have been measured near the launch pads. The Florida scrub-jay, a species listed as threatened by the U.S. Fish and Wildlife Service, inhabits scrub vegetation in the vicinity of the two launch pads. After launch, observations were made of the behavior of individuals and their responses to alarm calls. To date no acute effects have been documented. Given this record, the Florida scrub-jay is unlikely to be significantly affected by periodic launches associated with the Proposed Action.

The wood stork nested at the Bluebill Creek Rookery approximately 750-800 m (0.47-0.50 mi) south of Pad 39A. During three nesting seasons, observations of nesting success were conducted at the colony to document possible adverse effects resulting from launch noise or acid deposition. It was speculated that the high noise levels, fright response, or acid deposition on eggs might interfere with some aspect of nesting success. Wood storks were flushed from their nests on several launches with most individuals returning within four minutes. Nests that could be easily seen from boats showed production of two to three young and no evidence that launches reduce nest success. It is plausible that some egg or chick losses were undetected but these are unlikely to have been significant to the species. In December 1989, a severe freeze damaged the black mangroves (*Avicennia germinans*) in which the storks nested. These trees deteriorated in subsequent years and became unsuitable for stork nesting. During the period of observation, success of wood stork nesting at the Bluebill Creek site continually declined, with total failure during the 1992 nesting season. Given the loss of mangroves from the freeze, this decline in nesting could not be associated with launches (Schmalzer et al., 1993).

Essential feeding and nesting habitat for the federally listed threatened wood stork is widespread in the region. Impacts to the wood stork during Space Shuttle launches were examined in 2003 and while a startle response was noted during the launch, within 10 minutes the colony appeared to be functioning normally and no young were observed to be injured or killed from startle effects. Site visits made before and after the launches did not indicate any obvious adverse effects. Wood stork colonies could be susceptible to detrimental effects if the flight path of a rocket strayed within 500 feet of the colony. However, the flight path of reusable suborbital rocket launches from the Shuttle Landing Facility would not be expected to stray within 500 feet of a colony.

Overall, given this history of observations, it is unlikely that future launches associated with the Proposed Action would prevent the reestablishment wood stork nesting in the vicinity or have a detectable adverse effect on the local wood stork population.
Protected Species and Habitat

Two protected bird species, five protected reptiles or amphibians, and two protected mammals have the potential to be affected by future launches and reentries. Although both commercial and NASA launches and reentries under the Proposed Action could cause short-term effects on these species, the launches would not be likely to adversely affect the long-term well-being, reproduction rates, or survival of any of these species. Based on the location of the launch area, the other protected species would not be expected to be affected by the Proposed Action.

In the FAA’s regular review of licenses for launch and reentry as well as its review of applications for an experimental permit that proposes to launch from the Shuttle Landing Facility at KSC, the FAA would coordinate with NASA in determining if there is a need to further consult with either USFWS or NMFS based on any new activities proposed by the applicant. In the FAA’s review of licenses for launch and reentry or review of applications for an experimental permit at KSC, the FAA would coordinate with NASA to determine whether there is a need to further consult with either USFWS or NMFS, based on any new activities proposed by the applicant. The FAA would similarly coordinate with NASA regarding any need to further consult with the appropriate state agency regarding any applicable requirements for State listed protected species and habitat. If potential impacts are identified, the FAA would consult with the appropriate agencies to develop any mitigation measures that may be warranted, as described in Chapter 4 of this PEIS. On NASA-initiated launches, NASA will coordinate with USFWS and NMFS.

Bird Species

Essential feeding and nesting habitat for the federally listed threatened Florida scrub-jay is widespread in the region. A noise survey in 1990 assessed the noise levels in Florida scrub-jay habitat during a Titan 34D launch at CCAFS. Although no conclusions were drawn from the field data, ongoing observations of the scrub-jay have not indicated any adverse impact. In addition, there have been studies of reproductive success and survival of Florida scrub-jays in the area surrounding the CCAFS former Titan launch pads. The studies did not identify acute or obvious direct impacts to the scrub-jay from the Titan launches.

The state-listed least tern has also been known to nest near launch pads at KSC. Individual launches may disturb or startle a few individual terns due to noise and vibration levels associated with the Proposed Action. These impacts would be temporary and would be limited to individual birds close to the launch site during launch activities. Impacts on least terns would be expected to be similar to that of scrub-jays.

Amphibians and Reptiles

The federally listed threatened Atlantic salt marsh snake and eastern indigo snake are present at KSC and the Merritt Island National Wildlife Refuge. The Atlantic salt marsh snake inhabits coastal salt marshes and mangrove swamps, while the eastern indigo snake prefers open undeveloped habitat. Because the Proposed Action would primarily occur on developed inland areas of KSC, launches would not be expected to affect the Atlantic salt marsh snake, which would not likely be found around operational areas. Since the eastern indigo snake utilizes a wider range of habitat types than the Atlantic salt marsh snake, it is possible that this species could be present around operational areas at KSC.
3.9.2.3.2 Alternative 1

Overall, the direct, indirect, and cumulative impacts of Alternative 1 on upland wildlife would be very similar to those of the Proposed Action.

3.9.2.3.3 No Action Alternative

Under the No Action Alternative, upland wildlife would not be affected directly or indirectly by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Effects on upland wildlife from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus the No Action alternative would not have any additional impacts on upland wildlife.

3.9.2.4 Wetlands and Aquatic Wildlife

3.9.2.4.1 Proposed Action

Construction of facilities, roads or other improvements would not be done within wetlands if at all possible. The exception to this general rule is the construction of the two seaports on Banana Creek and the Banana River discussed above. Up to 286 acres of wetland habitat on KSC could be eliminated permanently if these two seaports were constructed; this would directly and indirectly, adversely affect wildlife dependent on wetland habitat for foraging, resting, cover, nesting, or as a nursery (in the case of some juvenile fish). In any case, there would be no construction in wetlands without first determining that such construction is unavoidable and not until a Section 404 permit is issued by the U.S. Army Corps of Engineers allowing such construction. Any wetland losses would be mitigated as appropriate.

Wetlands would be indirectly affected by soil particles suspended in rainfall runoff from newly developed sites. This would contribute to increased turbidity and loss of productivity for aquatic vegetation. Turbidity could adversely affect the reproduction and foraging success of fishes and other aquatic organisms that rely on relatively clear waters for those purposes.

Protected Wetland Species

The bald eagle, though no longer listed under the endangered species act remains protected under the Bald and Golden Eagle Act as well as the Migratory Bird Treaty Act.

Impacts to estuarine biota in general would occur if changes in land use involving land clearing and construction of new facilities caused an increase in runoff of petroleum products from vehicles and equipment, other chemicals such as herbicides used for site clearing or maintenance, or suspended soil particles thereby causing degradation of water quality that ultimately reaches estuarine organisms in the long term. As noted in Section 3.4 on Water Resources, water quality has been impaired and aquatic vegetation and wildlife in the Indian River Lagoon has suffered mortality in recent years due to that impairment. While no other components of the Proposed Action would likely contribute incrementally toward that impaired condition, the two proposed seaports, in contrast, raise both water quality and lagoon habitat (and related wildlife) concerns. These would have to be addressed in site- and project-specific NEPA compliance documentation and Section 404 permitting analysis with the USACE at such time as a specific proposal were to be put forward.
Protected Marine Species

The federally listed threatened Atlantic loggerhead sea turtle, and the federally listed endangered Atlantic green sea turtle and leatherback sea turtle are found along KSC beaches. Sea turtle activities, including nesting, along KSC, Merritt Island National Wildlife Refuge, and Canaveral National Seashore beaches would not be expected to be affected by daytime launch activities. Facility lighting associated with nighttime launches could disorient sea turtles and hatchlings, and cause them to move in the wrong direction, away from the ocean. Such occurrences could be prevented by implementing a light management plan, as appropriate.

The Proposed Action could disrupt ongoing monitoring and studies of turtle nesting and reproductive success due to the potential for increased operations and related beach closures.

Impacts to protected marine biota would occur if activities under the Proposed Action affected the eggs of sea turtles that use the beaches at KSC to deposit their eggs. These impacts are highly unlikely to occur because the nesting of endangered sea turtles is monitored and nest predators are controlled.

3.9.2.4.1.1 Launch Impacts

Aquatic Habitat and Fish Impacts

In the Shuttle Program, cumulative impacts in the most frequently exposed area north of LC39A through STS-9 included short-term depression of surface water pH, short-term alteration of water chemistry, and kills of small fish in shallow water areas north of the launch pads (NASA, 2010a, 2015).

For many launches, a fish kill occurred in the shallow surface waters of the lagoon (Pad 39A) or impoundment (Pad 39B) immediately north of each launch complex in line with the SRB flame trench. This fish kill is the direct result of the surface water acidification that often exceeds 5 pH units. The rapid drop in pH produced severe damage to the gill lamella of fish exposed to the near-field launch deposition. Field surveys conducted after each launch have indicated that this event is generally limited to the shallow shoreline closest to the pad and the stormwater ditches leading away from the north side of the pad surface. At Pad 39A the fish kill appears limited to a band of shallow water approximately 10 m wide (the 0.5 m depth contour). In deeper, open water, fish apparently dive below the area of acidification avoiding the rapid drop in pH. At Pad 39B, the fish kill may cover a larger area and involve a larger number of individuals, because the impoundment water depth is generally less than 0.5 m year round, and the fish are not able to avoid the rapid drop in pH. In every event, the fish kill occurs in direct relation to the spatial pattern of the near-field deposition footprint.

Species observed after almost every launch included the rainwater killifish (*Lucania parva*), mosquito fish (*Gambusia holbrooki*), sheepshead minnow (*Cyprinodon variegatus*), and sailfin molly (*Poecilia latipinna*). The numbers of individuals observed after each launch were highly variable, depending on such factors as deposition pattern, seasonal water depths, and seasonal reproductive activity (presence of large numbers of juveniles). These species are aggressive invaders of open habitats and begin to recolonize the area within several days after each launch.
This rapid immigration is possible because only a small portion of the larger contiguous population is actually impacted. Also, these species are tolerant of a wide range of environmental conditions and are extremely prolific, making them ideally suited for life in the shallow brackish waters around the pads. Other taxa that have been observed less frequently have included mullet (\textit{Mugil cephalus}), sheepshead (\textit{Archosargus probatocephalus}), black drum (\textit{Pogonias cromis}), needle fish (\textit{Strongylura} spp.) lady fish (\textit{Elops saurus}) and red drum (\textit{Sciaenops ocellatus}) (NASA, 2010a, 2015).

Most suborbital rockets would use propellants that emit H$_2$O, HCl and CO. Surface-water monitoring conducted for large launch systems at KSC and other launch facilities has shown that the emissions from rocket engines have not had a long-term effect on basic water chemistry or resulted in alterations of the aquatic vegetation. The continued classification of the Indian River Lagoon system as one of the richest and most productive estuarine faunas in the continental United States demonstrates that launches from KSC have had little lasting effects on aquatic plants and wildlife. Acidification and impacts to marine aquatic wildlife would not be expected in the nearby Atlantic Ocean because emissions and fluids would be neutralized by sea salt and quickly diluted in the open ocean. Therefore, the impacts of atmospheric deposition from launch emissions on aquatic vegetation and wildlife would be expected to be negligible.

The risk of operations at KSC affecting or taking a marine mammal would be extremely low. A take would only occur if a reusable suborbital rocket failed or a projectile fell on a marine mammal. Such events would be very unlikely. In addition, no notable adverse impacts to fish or essential fish habitat surrounding KSC would be expected, because ocean currents would rapidly dilute any emission deposition that entered the water.

Overall, launches at KSC under the Proposed Action would likely continue to have recurring, short-term, localized to medium, minor to moderate adverse impacts to aquatic habitats and fish for the duration of the Center Master Plan. These impacts would not be significant because aquatic habitats and wildlife have proved resilient in the face of these environmental stresses over the past 50 years.

3.9.2.4.2 Alternative 1

Overall, the direct, indirect, and cumulative impacts of Alternative 1 on wetland and aquatic wildlife would be similar to but somewhat less than those of the Proposed Action. Because the two new seaports on Banana Creek and the Banana River would not be constructed and operated under Alternative 1, those particular impacts associated with the Proposed Action would be avoided.

3.9.2.4.3 No Action

Wildlife and aquatic species would continue to be affected to a negligible to minor degree from continuation of activities at KSC under the No Action Alternative, but the impacts discussed above under the Proposed Action would not occur. Activities that would continue under the No Action alternative that constitute a background contributor to the current status of wildlife and aquatic species at KSC are noted here.

Under the No Action Alternative, the total land and water area under jurisdiction of KSC would remain at approximately 140,000 acres. Of this total area, about 85,000 acres would continue to
be owned by NASA and the remaining 55,000 acres by the State of Florida and dedicated for the exclusive use of the U. S. Government under Deeds of Dedication. The acreage remaining under permit to the Merritt Island National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service, would not change. This entire 140,000-acre area, in association with adjacent water bodies, would continue to serve as buffer zones to afford adequate safety to the surrounding civilian communities for vehicle launches and other KSC activities. A portion of the seashore on the eastern edge of the Center would continue to be available for public recreation purposes on a non-interference basis. It is further assumed that the KSC workforce would remain a total of 13,100, of which approximately 2,100 are employees of the federal government, and the remainder employees of companies working under contract to NASA or other federal agencies.

The environmental, social, and economic conditions described as the affected environment would not be affected by construction or operations as described under the Proposed Action alternative. Existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions proposed from the Proposed Action or any of the alternatives may proceed but would have to do so after environmental assessment under separate environmental documentation.

Land Use

Under the No Action Alternative, current land uses and their configuration at KSC would remain unchanged for the duration of the 20-year planning horizon (2012-2032). Existing land uses are shown in Figure 2.3-1. The same land use classifications are used to describe the primary activity of all existing facilities and associated land areas as are used in the Proposed Action above.

Transportation

Under the No Action Alternative, the existing KSC transportation system would remain essentially unchanged except for routine maintenance.

Environmental Remediation

Under the No Action Alternative, the numerous sites known to have been environmentally contaminated by past practices would continue to be monitored and remediated proportional to available funding. Development in environmental remediation areas would be avoided in favor of unencumbered sites. Environmental baseline studies documenting existing conditions and identification of any past contamination would be carried out by NASA prior to allowing any new uses to develop or redevelop KSC property and facility sites. Any new users would accept liability for their future activities, outlined in a corresponding commercial agreement.

Launch, Landing, Operations and Support

Under the No Action Alternative, KSC would continue to use a variety of areas around the Center for the vertical launch and landing of vehicles. In general, vertical launch and landing of NASA missions and non-NASA commercial missions under the No Action Alternative would take place at a reduced rate or frequency (launches/landings per year) from that anticipated under the Proposed Action.

Under the No Action Alternative, in contrast to the Proposed Action, no new construction would occur at both the south-field and mid-field sites along the SLF.
All existing vehicles that currently launch and/or land at KSC (and are listed and described under the Proposed Action) would continue to do so under the No Action Alternative, and at current levels of activity.

KSC would continue to use a variety of areas around the Center for assembly, testing and processing (described above in Section 2.1.4.4) under the No Action Alternative.

Other Actions
As discussed under Water Resources (Section 3.4), cumulative impacts have already harmed the IRL, with sudden die-offs of submerged aquatic vegetation and even prominent mammals and birds in recent years, reversing a period of gradual improvement. As overall human population, infrastructure, development, and activity in the surrounding watershed and adjacent areas all increase in the coming decades, to which the No Action Alternative at KSC and other actions such as the Shiloh Launch Complex and Port Canaveral Rail Extension would materially contribute, federal and state agencies, along with local jurisdictions and communities, recreationists, and the public are going to have to cooperate and implement costlier measures and restrictions to avoid further impairment of this valuable natural resource and the aquatic wildlife it supports.

These cumulative impacts on the IRL would be expected with or without implementation of the Proposed Action. That is, the No Action Alternative would neither significantly increase or decrease their magnitude.

Climate Change and Sea Level Rise
Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread or large extent, and possibly significant, even under the No Action Alternative.

3.9.2.5 Cumulative Impacts to Upland Wildlife, Wetlands and Aquatic Biota
The Proposed Action, Alternative 1, and No Action Alternative would add incrementally to the impacts of other factors affecting the wildlife and aquatic species of KSC as discussed in the Merritt Island NWR Comprehensive Conservation Plan (USFWS, 2008).

Human impacts and underlying threats to biological diversity on and off the refuge include:

- Direct loss of habitat due to development and other human activities;
- Simplification and degradation of remaining habitats, including habitat alteration;
- Fragmentation;
- Loss and decline of species and biological diversity;
- Effects of constructing navigation and water diversion facilities;
- Introduction and spread of exotic, nuisance, and invasive species;
- Lack of environmental regulation and enforcement;
- Cumulative effects of land and water resource development projects;
- Ongoing wildlife disturbance due to development and other human activities;
- Impacts of nonpoint sources of pollution and water quality degradation; and
• Impacts of sea level rise and global warming.

As a result of these threats, some species endemic to the northern Indian River Lagoon have become extinct, endangered, or threatened. MINWR provides habitat to support 15 federally listed species, among them, the Florida scrub-jay, eastern indigo snake, piping plover, roseate tern, southeastern beach mouse, Atlantic salt marsh snake, loggerhead sea turtle, green sea turtle, and leatherback sea turtle. Further, the refuge also supports an additional 47 species listed by the State of Florida as either threatened, endangered, of special concern, or commercially exploited. Of those species that have a state or federal designation, 46 are listed by the Florida Committee on Rare and Endangered Plants and Animals; 53 are listed by the Florida Natural Areas Inventory; and 26 are on the Audubon Society’s Watch List.

MINWR serves to protect, maintain, and enhance the high productivity and biological diversity within this system. Increasing human population growth and impact have altered many ecological characteristics of Indian River Lagoon. The refuge faces ongoing threats from contaminated air, soil, and water; from erosion and sedimentation; and from cumulative habitat impacts from land and water resource development activities adjacent to and on the refuge (e.g., NASA’s facilities and operations). The MINWR Comprehensive Conservation Plan outlines ecological threats and problems facing the MINWR, including: the direct loss of habitat due to development and other human activities; the simplification and degradation of remaining habitats, including habitat alteration and fragmentation; the loss and decline of species and biological diversity; the effects of constructing navigation and water diversion facilities; the introduction and spread of exotic, nuisance, and invasive species; the lack of environmental regulation and enforcement; the cumulative effects of land and water resource development projects; the ongoing wildlife disturbance due to development and other human activities; the impacts of nonpoint sources of pollution and water quality degradation; and the impacts of sea level rise and global warming (USFWS, 2008).

Rapid population growth and development in the region have resulted in long-term negative impacts to the refuge, including increased boat traffic in the shallow waters of the lagoon, increased use and development of natural resources in the area, local habitat fragmentation, and the introduction and spread of exotic species.

Native terrestrial habitats that once dominated uplands include hardwood hammocks, which are very important for mammals and migratory birds. Urbanization and agricultural operations (e.g., large citrus groves) now dominate land uses in the upland areas along the entire Indian River Lagoon. Historically, citrus and other agricultural operations, such as cattle pastures, dominated the area’s landscape, but these are quickly being replaced by urban and suburban sprawl. Stormwater inputs, saltwater exchange through fortified ocean inlets, pollution, habitat destruction, and continual land and water use practices are constant threats to fish and wildlife resources in this area. By the year 2015, Florida is expected to reach 20 million residents, and by 2040, Brevard County is projected to have 668,020 residents (an increase of more than 100,000 from the population at present), and Volusia County 591,980, an increase of nearly 100,000 (EDR, 2015).

The reduction of ecological function and connection are major concerns, especially in areas where the modification of inland waterways has caused declines in fisheries and aquatic resource
productivity. Beaches, seagrass beds, salt marshes, mangrove islands, and hammocks are subject to further loss or elimination. Some known environmental modification includes the construction of causeways (e.g., impacting seagrasses); the construction and maintenance of the Intracoastal Waterway (e.g., changing hydrological functions and salinity); the development of beaches and shorelines (e.g., impoundments, impacting fragile coastal habitats for migratory birds, small mammals, and nesting sea turtles); and fishing activities (e.g., increasing recreational and commercial uses) in transitional and aquatic communities and habitats. Causeway construction, canal dredging, and commercial agricultural operations have contributed to the long-term loss and elimination of aquatic resources and habitats. In addition, declining water quality due to increased sediment and nutrient runoff is likely to adversely impact seagrass communities, resulting in declines in fish and mollusk (fisheries and aquatic resource) production.

Estuarine wetlands (native salt marsh and mangrove swamps) on the refuge were impounded to meet mosquito control needs. Refuge wetland management objectives include reconnecting impoundments and restoring natural-like flow and biological interchange, while maintaining mosquito control and migratory bird habitats.

Construction of the two large reasonably foreseeable projects listed in Section 3.2, Shiloh and the rail extension, would add to the cumulative stresses that local wildlife populations face in the future, primarily by eliminating and fragmenting additional habitat. If KSC and Shiloh launches were both conducted at capacity in the future, local ecosystems in MINWR could be subjected to discontinuous, recurring perturbations from general disturbance, noise, and the chemicals discussed above. These would be transient or short-lived, but recurring on a regular basis, and local ecosystems and their wildlife species would have to adapt, but some species and communities would be more adaptable than others. Overall cumulative impacts on wildlife would be long-term, of medium extent and moderate magnitude, but not significant.

3.9.2.5.1 Invasive Species

Invasive exotic plants have displaced many native species in upland and wetland communities. Brazilian pepper and Australian pine, for example, are two invasive species that are widespread throughout the refuge, and melaleuca, cogongrass, and other invasive plants are locally abundant. Citrus trees for agricultural harvest cover other large areas. As adjacent urbanization and suburbanization continue to increase, KSC, MINWR, and CANA are all likely to experience an increased threat from feral animals, free-roaming pets, recreational boating, elevated nutrient loading, and pollution, as well as from the increased demand for public use activities that are not directly linked to fish and wildlife goals. Overall cumulative impacts on invasive species would be minor to moderate, but not significantly adverse.

3.9.2.5.2 Recreational Use

This section briefly discusses general impacts of growing outdoor recreation in the area on biological resources in the KSC region. See Section 3.15 on Recreation in this PEIS for more detailed discussion of cumulative impacts of the Proposed Action, Alternative 1, and the No Action Alternative on recreation at MINWR and CANA.

Year-round recreation at Canaveral National Seashore includes fishing, boating, canoeing, surfing, sunbathing, swimming, hiking, camping, enjoying nature and historic trails, and exploring cultural resources. From 2010 to 2014, the seashore hosted between about 970,000 and
1.4 million recreation visits annually. Visitation has fluctuated by as much as about 300,000 visitors from year to year. Visitation at the South District (Playalinda Beach) has increased more than 75 percent from 2010 to 2014, with over 875,000 visitors in 2014. More detailed visitation figures for CANA are included in Section 3.15.1.2 of this PEIS.

Popular with anglers, kayakers, birders, wildlife enthusiasts, and photographers, MINWR has the distinction of being one of the most visited refuges in the National Wildlife Refuge System with almost 1.2 million visitors in 2011. Non-consumptive recreation accounted for 1.0 million visits with residents comprising 42 percent of total visitation. Fishing, crabbing, clamming, oystering, and shrimping are permitted in the Indian River Lagoon, Mosquito Lagoon, Banana River Lagoon, Mosquito Control Impoundments and Interior Freshwater Lakes except for the restricted areas of the KSC (USFWS, 2016). More detailed figures for non-consumptive activities are included in Section 3.15.1.1.1 of this PDEIS.

Increased disturbance of fish spawning areas and nesting and roosting birds, and impacts to water quality and habitat are likely to lower MINWR’s biological integrity. Management overlap of refuge lands and waters is shared by multiple agencies and a continual challenge is to coordinate conservation management with the more than 100 agencies and organizations which share the responsibility of managing the Indian River Lagoon watershed (IRL National Estuary Program, 1996).

Saltwater fishing is the fastest growing public use activity. Twenty years ago, about 25,000 anglers a year used the IRL (Lenze, 2002). By 2011 saltwater fishing in MINWR had increased to almost 167,000. This estimate is even considered low as access from Parrish Park, Titusville Marina, Jones Landing, Scottsmoor Landing, and River Breeze boat ramps is not captured; nor is fishing visitation in the Banana River (USFWS, 2013). While in general, more residents (or those from Brevard and Volusia counties) than non-residents participated in freshwater fishing, residents and non-residents participated equally in saltwater fishing. As shown in Table 3.14-1, the populations of Brevard and Volusia counties have increased by more than 1 million from 2000 to 2013, or by about 14 percent. The population of the six surrounding counties increased almost 20 percent from 2005 to 2015, reaching 3.3 million residents (EDR, 2015).

With this rapid population growth the USFWS anticipates fishing pressure to escalate at similar rates. The increase in fishing pressure has resulted in habitat impacts to Mosquito Lagoon. Prop scarring on the flats is increasing. Prop scarring occurs when power boats operating in shallow water cut into the bottom and destroy linear strips of rooted sea grass and dredge cuts into the bottom. This impacts sea grasses and stirs up bottom sediment which increases turbidity. Studies show increasing levels of boating activity also negatively impact populations of waterfowl and other waterbirds. A study completed at Merritt Island in 2002 showed that lesser scaup were changing their feeding habits from daytime to nighttime. Bird nesting on historic nesting islands has also declined.

With the lack of fresh water, the refuge has limited opportunities for freshwater fishing. Most freshwater fishing occurs in several man-made borrow pits which were dug for road construction material. These borrow pits provide easy access to bank fishing opportunities for anglers who do
not have a boat. However, they can become overfished and need management to sustain a quality freshwater fishery.

As discussed under Water Resources (Section 3.4), cumulative impacts have already harmed the IRL, with abrupt die-offs of submerged aquatic vegetation (seagrass beds) and even prominent mammals (manatees and bottlenose dolphins) and birds (brown pelicans) in recent years, reversing a period of gradual improvement. As overall human population, infrastructure, development, and activity in the surrounding watershed and adjacent areas all increase in the coming decades, to which the Proposed Action and Alternative 1 at KSC and other actions in the region would materially contribute, federal and state agencies, along with local jurisdictions and communities, recreationists, and the public are going to have to cooperate and implement costlier measures and restrictions to avoid further impairment of this valuable natural resource and the aquatic wildlife it supports.

3.9.2.5.3 Climate Change and Sea Level Rise

As discussed in Section 3.7, impacts on the KSC and MINWR stemming from global warming and climate change may manifest themselves through rising sea level and increased tropical cyclones, due to elevation, topographic relief, and proximity of the refuge to the ocean. Rising sea level could result in wetter hydrologic regimes and saltwater intrusion. The extent and nature of the refuge’s impoundments and marshes could be altered. More frequent and more intense tropical cyclones could cause alteration to the beach profiles and affect the flora and fauna that presently use these habitats.

State and federal assessments of coastal zone vulnerability from current and future sea level rise reflect coastal changes, particularly to coastal barrier island systems (see Section 3.7 Climate Change). Impacts to the refuge could include beach and dune habitat changes that would pose threats to several federally listed sea turtles and the southeastern beach mouse. Loss of dune systems and lowered dune profile could increase sea turtle disorientation from lighting at NASA’s and the U.S. Air Force’s launch facilities. The refuge’s beach has been changing with a mix of points of accretion and erosion since the 1800s with no observed long-term trend. However, increased sea level would exacerbate beach erosion and may reconfigure the beach and shoreline contour (e.g., the beach could experience increased overwash and the formation of an inlet in Mosquito Lagoon).

Additional impacts could include inundation of low-lying areas along the Mosquito Lagoon, Indian River Lagoon, and the Banana River, including marshes, impoundment dikes, marsh islands, and spoil islands. The changes could include habitat transitions from upland to coastal wetlands. Saltwater intrusion into aquifers and increased flooding potential (increasing the potential for impacts from disasters) are also important considerations, particularly in beach areas that have already been developed (Leatherman and Kershaw, 2001).

Coastal wetland ecologists have suggested that the coastal marshes may be impacted if they cannot maintain the detrital-building process and the marsh elevation due to sea level rise (accretion deficit; Reed and Cahoon, 1993). They suggest that some marsh management practices (e.g., burning or migratory bird management) would inhibit marsh accretion in a system that has a narrow tidal range, low sediment accretion rate, and a low tolerance for accelerated sea level rise (Cahoon et al., 2004). The rise in sea level could effectively cause the
transition of high marsh systems to lower marshes and the migration of high marshes into the fringing upland ecotones. Marsh expansion may have beneficial impacts; however, the increase in salt marsh may also increase the production potential of the salt marsh mosquito.

Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, widespread or large extent, and possibly significant.

3.10 Cultural Resources

3.10.1 Affected Environment

Cultural resources are historic properties as defined by the National Historic Preservation Act of 1966 (NHPA), cultural items as defined by the Native American Graves Protection and Repatriation Act of 1990 (NAGPRA), archaeological resources as defined by the Archaeological Resources Protection Act of 1979 (ARPA), sacred sites as defined by EO 13007, and collections and associated records as defined by 36 CFR 79. Cultural resources are associated with human use of an area. They may include archaeological sites, historic properties, or ethnographic locations associated with past and present use of an area. A cultural resource can be physical remains, intangible traditional use areas, or entire landscape, encompassing past cultures or present, modern-day cultures. Physical remains of cultural resources are usually referred to as archaeological sites or historic properties.

3.10.1.1 Regulatory Framework

Relevant executive agency directives for the federal government include Executive Order (EO) 13287, Preserve America (2003); EO 11593, Protection and Enhancement of the Cultural Environment (1971); EO 13007, Indian Sacred Sites (1996); and EO 13175, Consultation and Coordination with Indian Tribal Governments (2000). Chapter 267 of the Florida Statutes (F.S.) contains legislation which parallels the federal requirements on the state level.

The following rules in the Code of Federal Regulations (CFR) also address cultural resources: 36 CFR 60, National Register of Historic Places (NRHP); 36 CFR 61, Procedural for Approved State and Local Government Historic Preservation Program; 36 CFR 63, Determinations of

Under Section 106 of NHPA, and its amendments, important cultural resources must be given consideration in the environmental planning and permitting process. Implementing regulations for Section 106 are at 36 CFR 800 (Protection of Historic Properties), which requires the responsible federal agency, in consultation with the State Historic Preservation Officer (SHPO) or Tribal Historic Preservation Officer (THPO), to determine the level of effort to identify historically significant cultural resources in the area of potential effects (APE) of the undertaking. This usually requires a review of existing records to determine the presence of properties that are listed on the National Register of Historic Places (NRHP) within the area of potential effects and archaeological survey of the APE to identify potential historic properties that have not been previously identified and evaluate their potential for inclusion on the NRHP (NPS, 2015). The responsible federal agency must then give consideration to the effects of the undertaking upon properties listed on the NRHP or potentially eligible for listing on the register, in consultation with the appropriate SHPO and/or THPO.

Figure 3.10-1. LC-39 – Pad A is one of several facilities at KSC listed on the NRHP
National Historic Landmarks (NHLs) are nationally significant districts, sites, buildings, structures, and objects significant in American history, architecture, archaeology, engineering, or culture. NHLs are automatically listed in the NRHP and designated by the Secretary of the Interior because they possess exceptional value or quality in illustrating or interpreting the heritage of the United States. Today, fewer than 2,500 historic places bear this national distinction.

In accordance with 36 CFR Part 800, federal agencies are encouraged to coordinate studies and documents prepared under Section 106 with those done under NEPA. Section 800.8(a) of the regulations provides guidance on how NEPA and Section 106 process can be coordinated. KSC also will conform to the consultation, identification and documentation standards set forth in 36 CFR Part 800.8(c), and will notify in advance, the SHPO and Advisory Council on Historic Preservation (ACHP), where it intends to use the NEPA process to comply with Section 106.

Section 110 of the NHPA (as amended in 1992) obligates federal agencies to establish a historic preservation program for the identification, evaluation and nomination to the NRHP of historic properties under their jurisdiction and to ensure that such properties are managed and maintained in a way that considers their historic, archaeological, architectural, and cultural values. Section 110(a) requires federal agencies to give priority to the use of historic properties for agency purposes. Section 110(a)(2)(D) requires that the federal agency’s preservation-related activities are carried out in consultation with other federal, state, and local agencies, Indian tribes, and other stakeholders, including the private sector. Section 110(b) mandates that federal agencies document historic properties that may be destroyed or altered as a result of federal actions or assistance. It also calls for such records to be deposited in the Library of Congress or other designated repository for “future use and reference.” Section 110(d) calls for agencies to integrate historic preservation concerns into their plans and programs and Section 110(f) addresses impacts to NHLs.

Section 111 of the NHPA addresses the lease or exchange of historic properties owned by federal agencies, provided such actions “will adequately ensure the preservation of the historic property” Section 111(a)). Under Section 111(b) the proceeds of the lease may be used by the agency to defray the costs of administering and maintaining its historic properties.

Section 112 of the NHPA addresses both professional standards for agency personnel and contractors responsible for historic resources (Section 112(a)(1)(A)), as well as records and data management (Section 112(a)(2)).

Section 304 of the NHPA discusses confidentiality regarding the locations of historic resources which stipulates that disclosure shall be withheld from the public if it has the potential to cause “significant invasion of privacy,” harm to the historic resources, or “impede the use of a traditional religious site by practitioners.”

The Antiquities Act of 1906 and the Archaeological Resources Protection Act of 1979 (ARPA) prohibit the unauthorized excavation, removal, damage, alteration, defacement, or the attempt of such acts on federal lands. ARPA provides legal penalties and establishes a permitting system to authorize excavation or removal of archaeological resources by qualified applicants.
The American Indian Religious Freedom Act (AIRFA) of 1978 applies the First Amendment guarantee of religious freedom to Native Americans whose religious practices may involve requirements to access sacred sites on federal property. Under AIRFA Native Americans must be provided with access and ceremonial use of Native American sacred sites on federal property, and the federal agency must avoid adversely impacting those sites and maintain the confidentiality of sacred site locations.

The Native American Graves Protection and Repatriation Act (NAGPRA) of 1990 was intended to ensure the protection and the rightful disposition of Native American cultural items (which, under NAGPRA, include human remains, associated funerary objects, unassociated funerary objects, sacred objects, and objects of cultural patrimony) located on federal or Native American lands and in the federal government’s possession or control. NAGPRA requires agencies to determine what Native American cultural items are within its possession or located at its facilities and then notify potentially effected tribes concerning possible repatriation. Upon inadvertent discovery and intentional excavation of potential cultural items, it is necessary for the federal agency to identify proper ownership and to ensure the rightful disposition of cultural items (NASA, 2010a, 2015).

3.10.1.2 Integrated Cultural Resources Management Plan

The KSC has a stewardship responsibility for managing the cultural resources on NASA-owned lands, as well as the NASA-owned facilities located within the Cape Canaveral Air Force Station (CCAFS). To this end, KSC has developed an Integrated Cultural Resource Management Plan (ICRMP) that reflects the Agency’s commitments to the protection of its significant cultural resources. The most recent version of the ICRMP covers the 2014-2018 time period (InoMedic, 2014). The Center has a designated Historic Preservation Officer (HPO) under the Environmental Management Branch to manage the ICRMP and to report to NASA Headquarters, Federal Preservation Officer, as required. It is the goal of KSC to balance historic preservation considerations with NASA’s missions and mandates and to avoid conflict with ongoing operational requirements.

Historic preservation is an integral part of KSC’s environmental mission and is part of the decision-making process for activities at KSC. The ICRMP provides an inventory of significant cultural resources and a plan of action to identify, assess, manage, preserve and protect these resources. It also includes a guide for impact analysis review and a set of Standard Operating Procedures (SOPs) for ongoing cultural resource management activities. The ICRMP is also consistent with KSC’s Environmental Policy which promulgates compliance, “through a proactive, systematic approach that integrates environmental management system elements into KSC’s operations and practices to comply with all environmental laws, regulations, policies, EO’s and with NASA environmental directives, procedures, and requirements” (NASA, 2010a, 2015).

3.10.1.2.1 Prehistoric and Historic Archaeological Resources

The general KSC area has been the focus of archaeological investigations for over 100 years. The area has been studied by many investigators conducting a number of archaeological surveys. Most of the studies and surveys focused upon small parcels of lands proposed for facility
development. Details of the surveys can be found in the ICRMP. The 104 known archaeological sites at KSC contain a total of 120 identified temporal/cultural components of which 92 (77 percent) are precontact and 28 (23 percent) are historic.

Between 1990 and 1996, a KSC-wide archaeological survey was conducted to establish differential Zones of Archaeological Potential (ZAPs) within all areas of the KSC. Based on background research and archaeological surveys, the ZAPs were defined as low, medium, and high probability zones based upon the anticipated potential for containing significant or potentially significant archaeological sites. The determination of these ZAPs resulted in a KSC-specific archaeological site location predictive model. A set of U.S. Geological Survey (USGS) quadrangle maps were prepared showing the ZAPs defined by this effort, as well as the locations of known archaeological sites. These baseline maps are used to create layers in the KSC Geographic Information System (GIS). Predictive modeling has been used as an effective tool for KSC during the early planning stages of an undertaking, for targeting field surveys, and for other management purposes.

From 2007 to 2008, NASA initiated a study of the last 200 years of KSC history, including the development of a historic context and expansion of the predictive model to include historic period archaeological sites, circa 1700 to 1958. Work included field reconnaissance (e.g., limited shovel testing) to validate the predictive model. A total of 126 historic ZAPs were identified within KSC. These ZAPs were incorporated into the KSC GIS. As funds become available, potential historic period archaeological sites will be surveyed, evaluated, and recorded in the Florida Master Site File (FMSF).

All recorded archaeological sites within KSC are classified into one of five evaluation categories:

A. National Register Site - Site is listed in the NRHP;

B. National Register Eligible - Site is considered significant based on existing information, and thus is deemed eligible for listing in the NRHP;

C. Potentially Significant - Site appears potentially significant but additional archaeological data is needed before a final determination can be made;

D. Not Determined - Not enough information currently exists to make an informed assessment of significance; and

E. Not Significant/Not Eligible - Site is considered not regionally significant because of limited data, potential or site destruction, and therefore, is not deemed eligible for listing in the NRHP.

Currently, 2.2% of the sites are presently listed (Category A) in the National Register; 13.5% are considered eligible for listing (Category B); 11.9% appear to be potentially eligible (Category C) but require additional information before a final determination can be made; 39.5% have not
been adequately investigated to make a determination (Category D); and 33%.0 have been adjudged not significant, and thus, not National Register eligible (Category E) (InoMedic, 2014).

3.10.1.2.2 Historic Buildings, Structures, Objects, and Districts

As of November 2008, a total of 89 historic properties had been identified within KSC, including six historic districts, 29 individually listed or eligible properties, and 54 resources that are contributing to a historic district, but not individually eligible. The individually eligible properties include multiple resources such as two crawler transporters, three mobile launcher platforms, and two payload canisters. The ICRMP includes descriptions and summary statements of the 29 individually eligible properties (including 14 buildings, 14 structures, and one object), as well as the six historic districts.

In September 1983, a revised NHL Federal Agency Nomination was prepared by the NPS History Division at the direction of the Secretary of the Interior’s Advisory Board to reflect an agreement between the NPS, the U.S. Air Force, and the Board. The nomination highlighted the national significance of those principal facilities associated with the manned and unmanned space program of the United States, included Launch Pads 5, 6, 13, 14, 19, 26, 34, and the original Mission Control Center (MCC). Of these, LC 5/6, 19, 34, and the MCC are NASA-owned properties. At the direction of the Secretary of the Interior’s Advisory Board, the boundary of the NHL District included only the area immediately surrounding the seven launch pads and the MCC. The Cape Canaveral Air Force Station Historic District was listed as a NHL on April 16, 1984 (NASA, 2010a, 2015).

3.10.2 Environmental Consequences including Cumulative Effects

3.10.2.1 Proposed Action

All activities under the Proposed Action that may have adverse effects on cultural resources at KSC would be managed in accordance with the KSC Integrated Cultural Resources Management Plan. The ICRMP provides an inventory of significant cultural resources and a plan of action to identify, assess, manage, preserve and protect these resources. It also includes a guide for impact analysis review and a set of SOPs for ongoing cultural resource management activities.

At the programmatic level of analysis, such as this PEIS, specific project impacts cannot be determined, since specific actions have not been defined. Although specific project locations are not currently known, it is possible that some project locations may occur in or adjacent to areas with a high potential for the presence of archaeological sites. As the project locations are defined, the NHPA Section 106 process would be initiated and determinations would be made for the APE and potentially impacted cultural resources. Appropriate surveys and studies would be conducted so that the effect of the undertaking upon the cultural resources can be determined. Consultations would be undertaken on a project-by-project basis with the respective SHPO or THPO and interested or affected Native American tribes.

Should previously undiscovered artifacts or features be unearthed during any of the proposed projects, in accordance with SOP #5 (InoMedic, 2014; p. 6-11), work would be stopped in the immediate vicinity of the find, a determination of significance made by the KSC HPO, and if significant; a mitigation plan would be formulated in consultation with the respective THPO or...
SPHO and with American Indian entities that may have interests in the project area. If not significant, the HPO would provide approval for the project to proceed.

When implementing the Proposed Action, NASA will continue to follow stipulations identified in the ICRMP, existing Memoranda of Agreements (MOAs), and an existing Programmatic Agreement (PA). If a specific project of detailed dimensions and scale is proposed at a specific location, this PEIS will serve as a master NEPA document to which future NEPA compliance documents may be “tiered”. That is, having already been addressed at a programmatic level, an agency can subsequently tier from this analysis, and analyze narrower, site-or proposal-specific issues (CEQ, 2014a). If existing KSC cultural resource management practices do not address potential affects to cultural resources, a Section 106 consultation may need to be initiated and new agreements, such as a project-specific MOA or project PA, may need to developed and implemented. KSC will conform to the consultation, identification and documentation standards set forth in 36 CFR Part 800.8(c), and will notify in advance, the SHPO and ACHP where it intends to use the NEPA process to comply with Section 106.

The remainder of this subsection describes how MOAs and PAs are used to manage cultural resources, and identifies the existing NASA KSC MOAs and PA that are in place. If the need arises, NASA will develop new MOAs or modify the existing PA to address proposed activities that are not currently addressed in the existing agreements.

NASA has implemented MOAs with Florida SHPO, ACHP, and other organizations to record agreed upon resolutions for specific undertakings with a defined beginning and conclusion, where adverse effects are understood. Below are the MOAs that NASA has executed (NASA, 2010a, 2015).

1. MOA for the LC-39 Site between KSC, the ACHP, and the Florida SHPO permits KSC to proceed with the design and development of Space Shuttle facilities including modifications to existing facilities and new construction (1974);

2. MOA between NASA and the Smithsonian Institution concerning the Transfer and Management of NASA Historical Artifacts. NASA must offer all personal property including historic artifacts to the Smithsonian after NASA Programs/Projects and other federal agencies have screened the property for government use. The Smithsonian Institute is responsible for preserving the artifacts that represent aviation and space flight (1998);

3. MOA for the Launch Control Center (LCC) between KSC and the SHPO addresses the removal of the Sun Louvers and Replacement of the Window Framing Unit from the LCC (2008);

4. MOA for the Demolition of Launch Complex (LC)-34 Environmental Support Building between KSC and the SHPO (2006);

5. A Non-Reimbursable Space Act Agreement Regarding the Clifton Schoolhouse for the removal of the remaining schoolhouse structure (2006); and
6. MOA for the Demolition of the Mission Control Center between KSC, the SHPO and the ACHP (2009).

In contrast to MOAs, PAs are appropriate for multiple or complex federal undertakings where: 1) effects to historic properties cannot be fully determined in advance, 2) for federal agency programs, 3) for routine management activities by an agency, or 4) to tailor the standard Section 106 process to better fit in with agency management or decision making. PAs generally fall into two types: project PAs or program PA.

Project PAs are typically developed for occasions where completing the Section 106 process prior to making a final decision on a particular undertaking is not practical. The regulations allow an agency to pursue a project PA (36 CFR § 800.14(b)(3)), rather than an MOA under certain circumstances. The most common situation where a project PA may be appropriate is when, prior to approving the undertaking, the federal agency cannot fully determine how a particular undertaking may affect historic properties or the location of historic properties and their significance and character. For instance, the agency may be required by law to make a final decision on an undertaking within a timeframe that simply cannot accommodate the standard Section 106 process, particularly when the undertaking's area of potential effects encompasses large areas of land or when the undertaking may consist of multiple activities that could adversely affect historic properties.

A federal agency may pursue a program PA (36 CFR § 800.14(b)(2)) when it wants to create a Section 106 process that differs from the standard review process and that will apply to all undertakings under a particular program. Reasons justifying program PAs include having a program that has undertakings with similar or repetitive effects on historic properties to avoid the need for a separate Section 106 review for each project, or that relies on delegating major decision making responsibilities to non-federal parties. The ACHP has helped develop numerous program PAs for routine management of real property, land, and historic properties at federal facilities like military installations, national forests, national energy laboratories, and NASA centers.

KSC has executed a PA called the Programmatic Agreement for the Management of Historic Properties. This agreement streamlines the Section 106 process and documentation for “like” multiple assets (e.g., launch pads, mobile launcher platforms, crawler transporters). It also allows KSC to do normal maintenance and minor modifications, as well as reuse facilities and property. Moreover, it ensures that historic, engineering, and architectural values are recognized and considered in the course of ongoing KSC programs (InoMedic, 2014).

In conclusion, since the Proposed Action would be implemented in accordance with the KSC Cultural Resources Management Plan and associated MOAs and PAs, direct and indirect impacts on cultural resources at KSC, while long term, would not be significant.

3.10.2.1.1 Cumulative Effects

KSC works in partnership with the USFWS and NPS to manage MINWR and CANA – both of which are located within the boundaries of KSC. KSC is also bordered on the east by the CCAFS, where NASA operates several facilities.
The boundaries of KSC include cultural resources from CANA and MINWR, although these cultural resources are managed by NPS and USFWS separately. Cultural resources in areas where the MINWR and CANA overlap are managed by the NPS. One cultural site, known as the Elliot Plantation, is a large, multicomponent archaeological complex consisting of approximately 2,585 acres. The Elliot Plantation proper lies within MINWR and a KSC designated buffer zone, west of SR 3 (though the larger cultural landscape spans east and west of SR 3). Built during the British Period of Florida, it is comprised of a former sugar works factory, rum distillery, slave village, overseer’s house, canals and other agricultural remnants. It is listed on the Florida Master Site File and the NPS Southeast Archeological Center has determined it to be eligible for inclusion in the NRHP and for consideration of NHL designation (NPS, 2014).

Dating to the 1760s, this site is the southernmost and earliest British period sugar plantation in North America. It is unusually well preserved, and contains one of the most significant African-American landscapes known (NPS, 2014; Schwadron, 2013). As noted in the NPS submission, “It is our opinion that this property represents one of the most significant properties in North America.” The nearly 250-year-old site is of special interest “because it is one of the most significant and well-preserved African-American landscapes known.”

The Proposed Action would not directly impact the Elliot Plantation. As part of the Proposed Action, NASA activities in operational buffer zones would limit development to include infrastructure, operations of low impact, or small footprint facilities that may be required for support of space launch or landing operations. That said, the Elliot Plantation is part of the larger cultural landscape that extends beyond the Elliot Plantation proper and the MINWR. Space Florida proposes to develop the Shiloh Launch Complex, a state-controlled and state-managed launch site, in the vicinity of the Elliot Plantation. A separate EIS is being prepared by the Federal Aviation Administration (FAA) for the Shiloh project. The Canaveral Port Authority proposes to develop the Port Rail Extension, which would also occur in the vicinity of the Elliot Plantation. A separate EIS is being prepared by the State Transportation Authority (STA). Potential impacts to cultural resources from the proposed Shiloh Launch Complex and/or from the proposed Port Rail Extension have not yet been analyzed. As such, cumulative impacts from the Proposed Action cannot be analyzed in relation to these two projects at this time.

Overall, the Proposed Action would not have additional adverse cumulative impacts over and above those of its direct and indirect effects.

3.10.2.2 Alternative 1
The direct, indirect, and cumulative impacts of Alternative 1 on cultural resources would be essentially the same as those of the Proposed Action.

3.10.2.3 No Action Alternative
Under the No Action Alternative, cultural resources would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws, regulations, and policies. Existing uses would continue
at current levels. Effects on cultural resources from existing activities, such as maintenance of roads and facilities, vertical and horizontal launches, and recreation would remain unchanged from current levels. Thus the No Action Alternative would not have any additional impacts on cultural resources.

3.11 Land Use

3.11.1 Affected Environment

KSC is located on the east coast of Florida approximately 242 kilometers (km) (150 miles [mi]) south of Jacksonville and 40 miles (64 km) east of Orlando on the north end of Merritt Island, which forms a barrier island complex adjacent to Cape Canaveral. The total KSC land and water area jurisdiction is approximately 140,000 acres in Brevard and Volusia counties. It is 34 miles (55 km) long and roughly 6 miles (10 km) wide, covering 219 square miles (570 km²). All KSC facilities are located on Merritt Island and Cape Canaveral.

KSC is bordered on the west by the Indian River and on the east by the Atlantic Ocean and Cape Canaveral Air Force Station (CCAFS) (see Figure 1.2-1). The northernmost end of the Banana River (another brackish-water lagoon) lies between Merritt Island and CCAFS and is included as part of KSC submerged lands. The southern boundary of KSC runs east-west along the Merritt Island Barge Canal, which connects the Indian River with the Banana River and Port Canaveral at the southern tip of Cape Canaveral. The northern border lies in Volusia County near Oak Hill across Mosquito Lagoon. The Indian River, Banana River and the Mosquito Lagoon collectively make up the Indian River Lagoon system.

Undisturbed areas, including uplands, wetlands, mosquito control impoundments, and open water areas, comprise approximately 95 percent of the total KSC area. Nearly 40 percent of KSC consists of open water areas. NASA maintains operational control of approximately 4,463 acres (1,806 hectares [ha]) of KSC. NASA’s operational area contains developed facility sites, roads, lawns, and maintained right-of-ways. The remaining undeveloped portions of the operational area are dedicated as safety zones around existing facilities or held in reserve for future expansion. Developed facilities within the NASA operational area are dominated by the Space Shuttle Landing Facility, the Industrial Area, and the Vehicle Assembly Building (VAB) area. All launch operations are conducted from Pads A and B at Launch Complex 39 (LC-39). Both pads are close to the ocean, three miles (five km) east of the VAB. The varying administrative areas at KSC are shown in Figures 3.11-1 and 3.11-2.

The KSC Industrial Area (Figure 2.1-4), where many of the Center's support facilities are located, is five miles (eight km) south of LC-39. It includes the Headquarters Building, the Operations and Checkout Building and the Central Instrumentation Facility. KSC was also home to the Merritt Island Spaceflight Tracking and Data Network station (MILA), a key radio communications and spacecraft tracking complex. The Center operates its own short-line railroad.

KSC is a major central Florida tourist destination and is approximately one hour's drive from the Orlando area. The Visitor Complex offers public tours of the center and CCAFS. Because much
of the installation is a restricted area and only nine percent of the land is developed, the site also serves as an important wildlife sanctuary.

Figure 3.11-1. General land use and administration at KSC
Figure 3.11-2. General land cover at KSC
The areas outside the NASA operational control area, including the Canaveral National Seashore and Merritt Island National Wildlife Refuge (MINWR), are managed by the National Park Service and U.S. Fish and Wildlife Service (USFWS).

3.11.1.1 NASA Zoning and Land Use Planning

All zoning and land use planning is under NASA directive for implementation of the nation's space program. Land use at KSC is carefully planned and managed to provide required support for missions and to maximize protection of the environment. Essential safety zones, clearance areas, lines-of-sight, and other such elements have been developed as guides to master planning and, where applicable, as mandatory operational requirements. For areas not directly utilized for NASA operations, land planning and management responsibilities have been delegated to the USFWS at MINWR and the National Park Service (NPS). These agencies exercise management control over agricultural, recreational, and environmental programs at KSC (NASA, 2012b).

Land use surrounding KSC includes an active seaport; recreation and wildlife management areas; and agricultural uses that include citrus and other crops and pasturage. Major municipalities outside of, but near, KSC include the city of Titusville, which is approximately 9.5 miles (15.2 km) from the KSC Industrial Area and the city of Cape Canaveral, which is approximately 8.5 miles (13.6 km) from the KSC Industrial Area.

The new Central Center Master Plan (CMP) is currently being developed by the Center Planning and Development Office at NASA. The CMP will includes, among other plans, a Future Land Use Plan, Facility Development Plan, and Area Development Plans. KSC’s last major revision to its CMP was performed in 2002, with an update to define Area Development Plans (ADPs) in 2008 (Rivera, 2008).

3.11.1.2 Land Cover at KSC

The most recent land cover map for KSC is based on high-resolution imagery acquired during December 2003 with additional source data including land cover from the St. Johns River Water Management District (SJRWMD) (as KSC is located in the watershed area administered by the SJRWMD), planimetrics from KSC Master Planning, and light detection and ranging data for height profiles. The classification scheme is partly derived from the Florida Land Use, Cover and Forms Classification System (FLUCCS) with site-specific descriptions of class composition from Schmalzer and Hinkle (1990). The total land cover area defined in Figure 3.11-2 is 2,226 acres (901 ha) larger than the area inside the KSC boundary. This difference is comprised of contiguous brackish and estuarine aquatic habitats that are under management jurisdiction of the USFWS at MINWR.

The 2003 land cover map in Section 3.9.1.1.1 (Table 3.9-2) (NASA, 2010a, 2015) identifies 31 cover types on KSC (Figure 3.9-2 and Table 3.9-2). Types 1 through 19 are found in upland areas. Types 20 through 31 are wetlands and open waters.

The varying types of land cover shown in the table and figure above are discussed in greater detail in Section 3.4, Water Resources; and Section 3.9, Biological Resources.
3.11.1.3 Existing Land Uses at KSC

3.11.1.3.1 Vertical Launch

Vertical launch includes all facilities and land area directly related to vertical launch operations, including launch pads 39A, 39B and 41, as well as future vertical launch facilities. It also includes immediately adjacent launch support facilities and countdown facilities required to be operational at the time of launch. Quantity Distance (QD) arcs and other related safety setback and exposure limits are considered restrictions on the use of land adjacent to vertical launch complexes. Land within these QD arcs limits is not designated part of the vertical launch use.

3.11.1.3.2 Vertical Landing

Accommodating vertical landing capability, both powered and unpowered, will promote reusability of space flight hardware and significantly lower the price point for access to space. In anticipation of these advances, KSC has designated areas along its northeastern secure boundary as lands that could accommodate such activity. These areas could accommodate the return of first stage boosters or possibly vehicles returning from orbit.

3.11.1.3.3 Horizontal Launch and Landing

Horizontal launch and landing includes pavements, infrastructure, facilities and land area directly related to horizontal launch and landing operations. Horizontal Launch and Landing includes all paved runway surfaces, aprons, or similar runway features primarily associated with the Shuttle Landing Facility (SLF). Imaginary surfaces related to airfield safety clearances consistent with FAA clearance criteria and requirements, as well as QD arcs and related safety setback criteria, are considered restrictions on the use of land in and adjacent to Horizontal Launch and Landing areas. Land within those surface areas, setback, and limits is not designated as part of Horizontal Launch and land use classification.

3.11.1.3.4 Launch Operations and Support

Launch operations and support includes facilities and associated land areas essential to supporting a mission during launch and flight, including command, control and compilation, evaluation and communication of the data associated with launch vehicle activities. Storage of propellants and munitions is also included in this classification.

3.11.1.3.5 Assembly, Testing and Processing

Assembly, testing and processing includes facilities, operations and land areas that are essential to space vehicle component assembly, integration and processing prior to launch. Laboratories, material support and interface testing to achieve final assembly, test and closeout to prepare and test payloads, space systems and systems components for flight and integration, which may include hazardous commodities, are also included in this clarification. Primary uses and facilities support both government and commercial capabilities for payload assembly, integration, and processing; the development and testing of launch vehicle or spacecraft equipment at the component or system level; post-flight servicing and refurbishment activities; and spaceport infrastructure and operations. Secondary uses and facilities include associated and compatible manufacturing, logistics, or technical support functions.
3.11.1.3.6 Utility Systems
Utilities systems land use classification includes land and facilities associated with KSC utilities infrastructure and systems (i.e., water, wastewater, gas, electrical, chilled water, medium temperature hot water, communications and sewer systems). Utility easements help to define patterns and impacts associated with the development of utility systems and the overall land use pattern. Communications lines for line-of-sight are identified visual corridors associated with communications components.

3.11.1.3.7 Administration
Administration includes facilities supporting operations management and oversight activities. Administrative functions/uses associated with management are more focused in the Industrial Area. A subset of administration applies to administrative functions that are adjacent to and in support of assembly, integration and processing operations.

3.11.1.3.8 Central Campus
The area identified as Central Campus would be utilized as a means to consolidate NASA operations into a smaller more cost-effective operational footprint. The Central Campus land use includes all non-hazardous NASA operations that occur in support of NASA missions and programs. Ideal land uses for consolidation include: Administration, Research and Development, and non-hazardous Support Services.

3.11.1.3.9 Support Services
Support services includes all functions other than administration that provide management and oversight of KSC operations and services provided for overall KSC benefit, including operations and maintenance. Operations and maintenance land uses include supply, storage, facilities maintenance, motor pool, service stations, railroad, reclamation areas, roads and grounds maintenance and sanitary landfill facilities. Service land uses include: access control and entry gates; fire protection facilities and training areas; security facilities and related training areas; child development and care; training and conference; dispensary; data processing; environmental and occupational health; food service and photo operations facilities.

3.11.1.3.10 Public Outreach
The public outreach land use classification includes facilities and associated land areas that promote an educational, research or informational connection between the community and KSC. Examples of Public Outreach use include public reception/welcome centers, tour facilities, display and education areas, museums, memorials, launch viewing areas, recreation areas and conference centers.

3.11.1.3.11 Recreation
Recreation areas include parks, outdoor fitness, athletic fields, recreation buildings, centers and clubs. Examples of recreation land uses include KARS Park North and KARS Park South complexes. Coastal beaches and supporting facilities are part of the Canaveral National Seashore and are classified as Operational Buffer/Public Use. Hunting, fishing, wildlife observation and photography, and environmental education and interpretation associated with the Merritt Island National Wildlife Refuge are also classified as Operational Buffer/Public Use.
3.11.1.3.12 Research and Development

The research and development (R&D) land use classification includes non-program specific laboratories, related facilities and associated land areas that perform research, experimentation and testing in support of developing new technologies, procedures and products to enhance existing and future programs at KSC.

Light industrial and manufacturing functions, as well as commercial uses may also be accommodated within R&D land use areas. Integration of educational institutions offering advanced degrees in disciplines supporting space-related research and development activities provide added enhancement and support reinforcing R&D collaboration between KSC, private industry and the educational community. Examples of R&D land uses include chemical and physical standards and laser testing laboratories; missile research and testing facilities; centers for experimentation; innovative science and technology; and life science activities accommodated in Exploration Park.

3.11.1.3.13 Seaport

The Seaport land use classification includes: port, harbor, wharves, docks and associated land areas to accommodate authorized delivery or embarkation of materials, equipment or people via access to the mainland through means of seagoing vessels. Land areas contiguous to wharves and docks that are used for the staging, off-loading, transfer and storage/processing of materials, equipment or people are also classified as Seaport land use.

3.11.1.3.14 Renewable Energy

Land areas designated to accommodate varying forms of renewable energy are designated Renewable Energy land use. Corresponding to fallow agricultural land and other underutilized property, land areas designated as Renewable Energy also includes research and production facilitating KSC’s goal for achieving increased on-site generation of its power from renewable sources. This includes current and future accommodation of solar array fields, as well as other emerging renewable energy technologies that may be developed in the future.

3.11.1.3.15 Operational Buffer

The buffer land and water area includes the beach; hunting and fishing areas; trails; submerged areas; areas vulnerable to inundation by rising waters under storm events and climate change impacts; and areas of high value for species of critical concern such as Florida scrub-jay, red knot, West Indian manatees, and sea turtles. The two sub-categories of Operational Buffer are: Public Use and Conservation. Operational Buffer/Public Use areas correspond to publically accessible areas of Merritt Island NWR and the Canaveral National Seashore for recreational use in the northern portion of KSC, as a conditional use subject to the operational activities associated with KSC’s mission. Operational Buffer/Conservation areas correspond to land areas in the southern portion of KSC that may never have been developed, or sites that may have reverted to a natural environment over the years.

3.11.1.3.16 Open Space

Open space at KSC currently consists of 1,873 acres of land.
3.11.1.3.17 Roads and Bridges

KSC is serviced by over 211 miles (340 km) of roadway with 163 miles (263 km) of paved roads and 48 miles (77 km) of unpaved roads. Of the five access roads onto KSC, NASA Parkway West serves as the primary access road for cargo, tourists, and personnel entering and leaving. This four-lane road originates in Titusville as State Road 405 and crosses the Indian River Lagoon onto KSC. Once passing through the Industrial Area, the road reduces to two lanes of traffic. It then crosses the Banana River and enters the CCAFS. The third point of entry onto KSC is from the south via South Kennedy Parkway, which originates on north Merritt Island as State Road 3. This road is the major north-south artery for KSC and is also a four-lane highway. The fourth entry point is accessible from Titusville along Beach Road, which connects to North Kennedy Parkway. The final access point is south of Oak Hill at the intersection of U.S.1 and North Kennedy Parkway.

A railroad spur runs from the Florida East Coast rail line to KSC. The spur spans the Indian River and Intracoastal Waterway via a causeway and bascule bridge from Wilson, on the mainland, to Merritt Island. Approximately 40 miles (65 km) of rail track provide heavy freight transport to KSC. Transportation infrastructure and systems are covered in greater detail in Section 3.12, Transportation.

3.11.1.4 Land Use Controls

By separate Memorandum of Agreement (MOA), effective February 23, 2001, with the EPA and Florida Department of Environmental Protection (FDEP), KSC, on behalf of NASA, agreed to implement Center-wide, certain periodic site inspection, condition certification and agency notification procedures designed to ensure the maintenance by Center personnel of any site-specific land use controls (LUCs) deemed necessary for future protection of human health and the environment. Although the terms and conditions of the MOA are not specifically incorporated or made enforceable within each LUC Implementation Plan (LUCIP) by reference, it is understood and agreed by NASA KSC, EPA, and FDEP that the permanence each LUCIP’s proposed measures shall be dependent upon the Center’s substantial good faith compliance with the specific LUC maintenance commitments. Should such compliance not occur or should the MOA be terminated, it is understood that the protectiveness of the remedy may be reconsidered and that additional measures may need to be taken to adequately ensure necessary future protection of human health and the environment. LUCIPs are generally prepared for sites undergoing some type of corrective action and will remain in place until the site conditions requiring land use controls are eliminated (NASA, 2010a, 2015).

3.11.1.5 Land Use Permits

Special land use permits are considered during review of facility siting requests. Both duration of the permit and assignment of the permit vary. Three examples of current special land use permits are KARS Park, COE spoil site, and LC-39 press site. A permit has been obtained for a recreation area (KARS Park I and II) located on Center property. KSC personnel and their families use these parks. The Corps of Engineers has a permit for a spoil area located on the north bank of the Barge Canal at the southern boundary of KSC. Many of the news media lease areas in the Press Site for news gathering and broadcasting facilities. Major media leaseholders include Associated Press, American Broadcasting Company, Columbia Broadcasting System,
National Broadcasting Company, Cable News Network, Spaceflight Now, and Nikon. Several newspaper organizations including the Orlando Sentinel and Florida Today also use Press Site property.

The Center formed a partnership with the State of Florida to develop a 400-acre (161 ha), campus-like and ecologically friendly research park with a balanced mix of academic and commercial tenants. In order to take advantage of this established partnership, the Center constructed a 100,000 ft² (9,290 m²) facility, the Space Life Sciences Lab, containing state-of-the-art laboratories. Enhanced Use Leasing allows NASA to recover asset values, reduce operating costs, improved facility conditions, and therefore improve mission effectiveness. NASA encourages the use of its property and facilities by other agencies, industries, and universities.

NASA-KSC and Florida Power and Light (FPL) have entered into an Enhanced Use Lease (EUL) for the purpose of developing and operating a photovoltaic facility to generate renewable energy for use and distribution by both parties. Phase 1 is a 30-year lease of 60 acres (24 ha) for construction of a 10 MW facility. A second phase would be a lease option for an additional 48 acres (19 ha) contingent upon an FPL proposal being accepted by NASA-KSC. Space Florida plans to continue to develop Exploration Park on KSC property for space-related business, transportation and educational activities.

NASA and Space Florida have entered into an SLF Property Agreement, which addresses Space Florida’s activities at the SLF. As described in Section 2.1.3.2, horizontal launch and landing of vehicles by Space Florida would increase SLF operations in the following broad categories: commercial spaceflight program and mission support aviation, aviation test operations including UAS, airborne research and technology development and demonstration, parabolic flight missions, experimental spacecraft testing (e.g. Project Morpheus), and ground-based research and training. To take full advantage of the SLF’s capabilities, Space Florida would undertake new construction at both the south-field and mid-field sites.

3.11.1.6 Land Use Agreements

KSC has entered into agreements with the USFWS and NPS regarding property management concerning MINWR and CANA. KSC has an agreement with the USFWS and NPS to:

- Manage KSC property that is not used specifically for Space Program activities
- Manage KSC property that is not assigned to the NPS to manage as part of CANA

KSC has an agreement with the U.S. Department of the Interior for management of a part of the CANA by the NPS and a part by the FWS. The NPS administers a 6,655-acre area of CANA including a 24-mile long beachfront. The NPS has developed a General Management Plan (GMP) which summarizes the Service's immediate and long-term resource management objectives.
3.11.2 Environmental Consequences Including Cumulative Impacts

3.11.2.1 Proposed Action

The Proposed Action involves actions to be taken in conjunction with an updated CMP that proposes and describes Center-wide operations and activities for a 20-year planning horizon from 2012–2032. This includes a range of future scenarios from repurposing existing facilities and recapitalizing infrastructure, to reorganizing KSC management of its land resources with various types of commercial partnerships.

3.11.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

The goal of the future land use plan (Figure 2.1-1) is to promote the most efficient use of land area resources balanced with an understanding of development suitability and development capacity. An understanding of existing land use characteristics forms the basis of an overall development framework to support continuing NASA programs and encourage future non-NASA opportunities (NASA, 2013b). This includes promoting compatible relationships between adjacent land uses, encouraging infill development and preserving environmentally sensitive areas. The future land use plan also aims to support expansion of the site’s quint-modal capabilities to provide multi-use spaceport users increased support. The plan outlines where development can occur, how land can be used, and how strategic capabilities can be expanded to support KSC’s evolution to a multi-user spaceport. Through this approach, KSC aims to better separate potentially hazardous operations from less-hazardous operational areas and non-NASA operations from NASA operations.

Table 2.1-1 identifies existing and proposed future land uses at KSC and their proposed acreages under the 2013 KSC Master Plan. Proposed future land use at KSC is shown in Figure 2.1-1.

The consolidation of NASA operations into a smaller geographic footprint is a major component of the Future Land Use Plan. Applying the Central Campus concept, for example, would allow NASA to recapitalize, over time, functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint.

Future development and potential land use changes that may occur as a result of implementation of the proposed CMP Update are described below.

3.11.2.1.1 Utility Systems

Utility corridors will be established as needed, and are anticipated to increase by approximately two acres under the Proposed Action.

3.11.2.1.2 Administration

Facilities supporting Administration functions are planned to be recapitalized into the Central Campus area over the near, medium, long-term and beyond. Consolidation of non-hazardous facilities, such as administration facilities, is a necessary precursor to the consolidation of NASA operational areas to support a multi-user spaceport. Under the Proposed Action, land use supporting Administration would decrease by 64 acres.
3.11.2.1.1.3 Central Campus

The Central Campus area would be populated over the planning horizon and beyond to support any non-hazardous new NASA development in support of NASA programming and as part of the KSC’s recapitalization process. Facilities that are meant to be relocated to Central Campus through recapitalization efforts are NASA facilities being utilized for Administration, Research and Development, and non-hazardous Support Services functions that have aging-related operational inefficiencies and excessive maintenance requirements whose relocation would support decreased CRV and O&M costs. Underutilized and deteriorated vacated buildings would be demolished to reduce operation and maintenance costs. Under the Proposed Action, 138.75 acres of land would be assigned to the Central Campus. This represents an increase in land acreage in this category.

3.11.2.1.1.4 Support Services

Future development of non-hazardous support services facilities and recapitalization of inefficient existing facilities are intended to occur in the Central Campus area to support right-sizing efforts and the consolidation of NASA operational areas. Land associated with Support Services would increase by 252.5 acres under the Proposed Action.

3.11.2.1.1.5 Public Outreach

Existing public outreach areas are retained and designated in the Future Land Plan. Current venues would be renovated and new venues would be added. This includes public reception/welcome centers, tour facilities, display and education areas, museums, memorials, launch viewing areas, and recreation areas. An educational complex would be developed. The Press Site would be relocated from LC-39 due to impending safety concerns. Deteriorated maintenance support facilities would be renovated or replaced, a new administration building would be constructed, and infrastructure would be constructed to support new facilities.

3.11.2.1.1.6 Recreation

Additional recreational land use areas are not planned, so future development or expansion of recreational functions, if necessary, would occur within the already established recreational land areas. Existing acreage devoted to recreation would not change under the Proposed Action.

3.11.2.1.1.7 Research and Development

Additional R&D development would be directed to the Industrial Area with non-NASA development designated for west of C Avenue or within Exploration Park in order to provide separation from NASA operational areas. New NASA R&D facilities and recapitalization of existing NASA R&D facilities would be directed to Central Campus in the designated area east of C Avenue. The first phase proposed is 60 acres adjacent to the Space Life Sciences Laboratory (SLSL) to provide office, flex space and processing/light manufacturing facilities for industry, academia, and Government users. Additional phases would be developed as the need for facilities is identified. Land designated for Research and Development under the Proposed Action would increase by 779 acres.

3.11.2.1.1.8 Seaport

Additional land areas (for an increase of 286 acres under the Proposed Action) are designated as Seaport to support future development of the sea-based transportation capability to further leverage quini-modal functionality and to also capitalize on surrounding area water accessibility.
and linkage to Port Canaveral. A future seaport is designated to the west of the SLF to provide water access in support of horizontal launch and landing operations via the Indian River. An additional seaport is designated to the south of the Assembly, Integration and Processing Area on the east side of the Industrial Area. This seaport would provide water access to support all operations and functional areas within the Industrial Area.

3.11.2.1.1.9 Renewable Energy

Former citrus groves that have now become fallow are designated as future land areas to accommodate Renewable Energy uses. Additional land for renewable energy use is also designated in the Industrial Area and can be accommodated as secondary uses in parking lots. Land designated for Renewable Energy purposes would increase under the Proposed Action by 1,043.3 acres.

3.11.2.1.1.10 Operational Buffer

Development in Operational Buffer areas may include infrastructure, operations of low impact, or small footprint facilities that may be required for support of space launch or landing operations. Under the Proposed Action, land associated with the conservation component of the Operational Buffer would be decreased by 4,386.2 acres. Land associated with the public use component of the Operational Buffer would be decreased by 19.4 acres.

3.11.2.1.1.11 Open Space

As shown in Table 2.1-1, under the Proposed Action, open space would be decreased by approximately 1,874 acres. The Open Space land use classification includes undeveloped open land within developed activity centers identified as likely for future development. The criteria for open space include existing land that is primarily cleared of natural vegetation, level, and located in or immediately adjacent to developed activity centers where future expansion of existing facilities may be anticipated.

3.11.2.1.2 Launch, Landing, Operations and Support

3.11.2.1.2.1 Vertical Launch

In keeping with previous recommendations from the 1966, 1972 and 1977 KSC Master Plans, when the market demands an expansion of vertical launch capacity, this CMP Update recommends additional vertical launch pads to be sited to the north of existing 39B, as pads 39C and 39D respectively. In addition, a 2007 Vertical Launch Site Evaluation Study also concluded that a vertical pad could also be sited to the south of 39A and to the north of pad 41. Structures in poor condition or considered surplus would be eliminated. Land use associated with Vertical Launch purposes would increase by 176 acres under the Proposed Action.

3.11.2.1.2.2 Vertical Landing

Land use associated with Vertical Landing at KSC would increase by 76 acres under the Proposed Action.

3.11.2.1.2.3 Horizontal Launch and Landing

Apron areas supporting the SLF are intended to be expanded to accommodate future horizontal launch and landing activities and customers along with associated support facilities. Expansion of these capabilities is expected to be consistent with the recommendations outlined in the 21st Century Launch Complex ADP (April 2012). Initial development will be focused on the east
side of the runway and future development, if required, will be accommodated on the west side. Over the long term, as the market and emerging technology may demand, additional horizontal launch infrastructure may be constructed in an area identified just south of Beach Road that will support an east-west horizontal launch capability. Under the Proposed Action, land use associated with Horizontal Launch and Landing would increase by 2,337 acres.

3.11.2.1.2.4 Launch Operations and Support

Launch Operations and Support areas will be expanded, if needed, to accommodate future launch activities and the requirements of NASA and non-NASA operations. It is anticipated that, under the Proposed Action, land use associated with Launch Operations and Support would increase by 107.4 acres.

3.11.2.1.2.5 Assembly, Testing and Processing

Assembly, Testing and Processing areas may be expanded to the north of the existing developed areas in the VAB Area to accommodate future Assembly, Testing and Processing functions. Development in the expanded areas would require seawall construction to comply with sea level rise criteria. Land areas in the vicinity of Contractors Row previously designed as Support Services are designated as Assembly, Integration and Processing in support of future needs and requirements. In the Industrial Area, Assembly, Testing, and Processing payload functions may be expanded to the north and east of their current concentration to accommodate increased payload processing and testing. Under the Proposed Action, land use supporting Assembly, Testing, and Processing would be increased by approximately 1,419 acres.

3.11.2.1.3 Future Transportation Plan

3.11.2.1.3.1 Roads and Bridges

Over the next five years, repair and resurfacing of over 29 miles of Kennedy Parkway is anticipated. Repair and resurfacing is also planned for over three miles of NASA Parkway east of Kennedy Parkway. The two and four-lane sections east of the Industrial Area toward the Banana River Bridge will also be repaired.

In support of the Central Campus concept, the near term would see the elimination of D Avenue access between NASA Parkway and 2nd Street SE to clear the way for construction on Central Campus Phase 1. The north segment of this road would be used for access to parking to the new facility. Development of a new facility and supporting roadway and other infrastructure would require a separate NEPA analysis. As the Central Campus concept develops over the medium and long term, additional infrastructure changes may be required to support the consolidation and security of NASA operations in the area.

A road easement should be recognized that would make it possible, if future demand requires, having access to new development capabilities contributing to non-NASA vertical launch support operations. This easement would support access to new development and serve as a barrier to further development east.

To further promote KSC’s multi-user concept, a commercial entity may require the development of new vertical launch capabilities that meet their specific needs. Should the market necessitate this expansion, the development would be directed to areas north of LC39B along Beach Road.
To support this added capability, a road easement is proposed that will support access from Beach Road to the pad location with such a road expansion being funded by a Non-NASA entity.

3.11.2.1.3.2 Water

To support the expansion of this transportation capability, the Center Master Plan has identified areas with potential future rail spurs that would be ideal for the development of additional seaports to support future non-NASA spaceport operations: an area adjacent to the Industrial Area provides water access to future manufacturing and research and development areas on the east side of the Center; and an expansion of the Turn Basin capability could provide increased access from the Banana River Channel to the VAB area. There would be no change to the acreage of water bodies present at KSC under the Proposed Action.

3.11.2.1.4 Summary of Impacts

Under the Proposed Action, acreage at KSC currently used for administration, open space, an operational buffer (for both conservation and public use), and support services would decrease. There would be no change to acreage associated with water or recreation. Acreage currently used for Assembly, Testing, and Processing; Central Campus; Horizontal Launch and Landing; Launch Operations and Support; Public Outreach; Renewable Energy; Research and Development; Seaport; Utility Systems; Vertical Launch; and Vertical Landing would increase. Though Table 2.1-1 shows an increase in total area of approximately 76 acres, this is attributable to the addition of the Vertical Landing category, which lies within the same geographical footprint as the Horizontal Launch and Landing category.

The consolidation of NASA operations into a smaller geographic footprint is a major component of the Future Land Use Plan. Applying the Central Campus concept would, over time, allow NASA to recapitalize functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint. Ideal Land Uses for consolidation include: Administration, Research and Development, and non-hazardous Support Services. Underutilized parking facilities that are unable to be repurposed would, ideally, be demolished to increase permeable land on Center as a suitable alternative to being abandoned in place. Former citrus groves that have now become fallow are designated as future land areas to accommodate Renewable Energy uses. These possible land use and land cover changes would be minor to moderate in magnitude, of small extent, long-term, and beneficial.

However, road easements and expansions would also occur. Operational buffer areas would experience development that would include the construction of infrastructure, operations of low impact, or small footprint facilities that may be required for support of space launch or landing operations. Assembly, Testing and Processing areas may be expanded to the north of the existing developed areas in the VAB Area to accommodate future Assembly, Testing and Processing functions. Development in the expanded areas would require seawall construction to comply with sea level rise criteria. The near term would also see the elimination of D Avenue access between NASA Parkway and 2nd Street SE to clear the way for construction on Central Campus Phase 1.

Apron areas supporting the SLF are intended to be expanded to accommodate future horizontal launch and landing activities and customers along with associated support facilities. Initial
development would be focused on the east side of the runway and future development, if required, would be accommodated on the west side.

Over the long term, as the market and emerging technology may demand, additional horizontal launch infrastructure may be constructed in an area identified just south of Beach Road that will support an east-west horizontal launch capability.

NASA-KSC and FPL’s EUL, though it would bring about greater renewable energy use at the site, would entail construction of a 10 MW facility. The possibility of leasing land to commercial entities to develop and operate a Commercial Vertical Launch Complex (CVLC) on KSC property is under consideration. In addition, Space Florida will continue developing Exploration Park on KSC property for space-related business, transportation and educational activities.

As implementation of the CMP Update occurs, NASA would work closely with USFWS and NPS to determine the appropriate methods for, locations of, and mitigations pertaining to projects within KSC, MINWR, and CANA. Expansion of SLF-related capabilities is expected to be consistent with the recommendations outlined in the 21st Century Launch Complex ADP (April 2012). Environmental impacts related to land use would also be minimized or mitigated through consistency with the environmental stewardship objectives described in the CMP. Development in environmental remediation areas would be avoided in favor of unencumbered sites.

Due to the proposed changes, construction, and demolition activities that would occur, and BMPs that would be followed, in conjunction with the implementation of all projects, impacts to land use are anticipated to minor to moderate, depending on the acreage impacted, the land cover to be changed, and the number or type of projects to be carried out in that area. Impacts are anticipated to be of small to medium extent, long-term, and possible.

3.11.2.1.5 Cumulative Impacts

The proposed land use changes would occur within the existing KSC site, and would thus have a small cumulative impact on land use when viewed from a site-wide or local perspective. Any decisions regarding changes to land use would be made in conjunction, where relevant, with neighboring/partnering administrative entities.

Development at and near the site by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS may spur further land use change in the local or regional area. This could spur further development to support the housing and other needs of those that may relocate to the area as a result of that development. This subject is covered in greater detail in Section 3.15, Socioeconomics.

When considered in combination with all other reasonably foreseeable actions (including municipal development induced by the need to accommodate a larger workforce), overall cumulative impacts to land use over the coming several decades would likely be moderate in magnitude.
3.11.2.2 Alternative 1

The direct, indirect, and cumulative impacts of Alternative 1 on existing land use would be very similar to those of the Proposed Action, with three important exceptions. First, the proposed new seaports would not be built. Second, the horizontal launch and landing area north of Beach Road might not be built, and third, new vertical launch sites north of LC-39 become “notional” rather than definite.

3.11.2.3 No Action Alternative

Under the No Action Alternative, current land uses and their configuration at KSC would remain unchanged for the duration of the 20-year planning horizon (2012-2032). Existing land uses are shown in Figure 2-3. The same land use classifications are used to describe the primary activity of all existing facilities and associated land areas as are used in the Proposed Action above.

Under the No Action Alternative, the total land and water area under jurisdiction of KSC would remain at approximately 140,000 acres. Of this total area, about 85,000 acres would continue to be owned by NASA and the remaining 55,000 acres by the State of Florida and dedicated for the exclusive use of the U. S. Government under Deeds of Dedication. The entire 140,000-acre land total would remain under USFWS management. This entire area, in association with adjacent water bodies, would continue to serve as buffer zones. A portion of the seashore on the eastern edge of the Center would continue to be available for public recreation purposes on a non-interference basis. Under the No Action Alternative, the existing KSC transportation system would remain essentially unchanged except for routine maintenance.

The affected environment as described in this resource section would not be affected by construction or operations as described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions proposed from the Proposed Action impacting land use may proceed but would have to do so after environmental assessment under separate environmental documentation.

Because there would be no change to land use under the No Action Alternative, there would be no additional impacts on this resource.

3.12 Transportation

This section addresses existing regional transportation involving the roadway network, average daily traffic; KSC transportation systems involving the roadway network and traffic; as well and other transportation modes to include rail, water, aviation, and transit.

3.12.1 Affected Environment

Transportation near KSC is achieved mainly via road and street networks and pedestrian walkways. KSC is serviced by over 211 miles of roadways, with 163 miles of paved roads and 48 miles of unpaved roads. NASA Parkway West (Route 405) is the primary entrance and exit for cargo, tourists, and personnel. Regional access is provided by Interstate (I)-95. State routes that provide access to the area include South Washington Avenue (U.S. Route 1), Max Brewer
Memorial Parkway (Route 402), and NASA Parkway West, while Kennedy Parkway North provides direct access at the north side of KSC. The annual average daily traffic counts (AADT) for these roadways are compiled in Table 3.12-1.

Table 3.12-1. Annual average daily traffic counts for nearby off-Center roadways

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Number of Lanes</th>
<th>Posted Speed Limit</th>
<th>AADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-95</td>
<td>6</td>
<td>70</td>
<td>26,000</td>
</tr>
<tr>
<td>Max Brewer Memorial Parkway</td>
<td>2</td>
<td>55</td>
<td>450</td>
</tr>
<tr>
<td>NASA Parkway West</td>
<td>4</td>
<td>45</td>
<td>11,500</td>
</tr>
<tr>
<td>Kennedy Parkway North</td>
<td>2</td>
<td>45</td>
<td>900</td>
</tr>
<tr>
<td>South Washington Avenue</td>
<td>4</td>
<td>45</td>
<td>26,500</td>
</tr>
<tr>
<td>Space Commerce Way</td>
<td>2</td>
<td>35</td>
<td>2,800</td>
</tr>
</tbody>
</table>

Source: FDOT, 2014

NASA Parkway West is a four-lane road and originates in Titusville as Route 405 and crosses the Indian River Lagoon onto KSC. Once passing through the industrial area, the road crosses the Banana River and enters the Cape Canaveral Air Force Station (CCAFS). Design standards for primary roads and highways mandate 24-feet widths and for two-lane roads, a 40-feet wide median strip. All paved roads conform to the American Association of State Highway and Transportation specification H20-S16. This specification establishes a load bearing capacity of 20 tons for a tractor truck and a gross single axle weight of 16 tons (NASA, 2010a). All roads to KSC have access control points and are manned 24 hours per day, seven days per week. Entry from the south is Kennedy Parkway, which originates on north Merritt Island as State Road 3. This road is the major north-south artery for KSC and is a four-lane highway. The entry point from Titusville is along Beach Road, which connects to Kennedy Parkway. The final access point is south of Oak Hill at the intersection of South Washington Avenue and Kennedy Parkway (NASA, 2010a).

The average annual daily traffic (AADT) is the average number of vehicles traveling along a roadway each day. Level of Service (LOS) is a measure of the operational conditions on a roadway or at an intersection. LOS ranges from A to F, with “A” representing the best operating conditions (free flow, little delay) and “F” the worst (congestion, long delays). LOS A, B, or C are typically considered good operating conditions. Table 3.12-2 outlines the routes near the proposed sites and in the area, their AADT, and their estimated existing LOS. Notably, some of the nearby roadways are already congested during peak traffic periods (i.e., LOS D, E, or F).

Table 3.12-2. Traffic volumes and estimated LOS – existing

<table>
<thead>
<tr>
<th>Roadway</th>
<th>One-way peak hr. volume (V) [vph]</th>
<th>Volume to capacity ratio (V/C)</th>
<th>Estimated existing level of service (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-95</td>
<td>936</td>
<td>0.55</td>
<td>D</td>
</tr>
<tr>
<td>Max Brewer Memorial Parkway</td>
<td>49</td>
<td>0.03</td>
<td>A</td>
</tr>
<tr>
<td>NASA Parkway West</td>
<td>621</td>
<td>0.37</td>
<td>C</td>
</tr>
<tr>
<td>Kennedy Parkway</td>
<td>97</td>
<td>0.06</td>
<td>A</td>
</tr>
<tr>
<td>South Washington Avenue</td>
<td>1,431</td>
<td>0.84</td>
<td>E</td>
</tr>
<tr>
<td>Space Commerce Way</td>
<td>302</td>
<td>0.18</td>
<td>B</td>
</tr>
</tbody>
</table>

Source: FDOT, 2014 and Institute of Transportation Engineers (ITE), 2003
3.12.1.1 Rail

The closest Amtrak station is 45 miles away in Winter Park (Amtrak, 2014). A railroad spur runs from the Florida East Coast rail line to KSC. Construction of the KSC Railroad was completed in 1965. Approximately 40 miles of rail track provide heavy freight transport to KSC (NASA, 2010a). In 1983, NASA purchased the 7.5-mile spur west of Wilson’s Corner, and undertook the complete operation and maintenance of the railroad, including the tracks, the Jay Jay Bridge, and crossings. The NASA Railroad crosses the Indian River via the Jay Jay Bridge. The west branch of the railroad, with a length of 11 miles, extends from Wilson’s Corner to the KSC Industrial Area (NASA, 2013c).

![Figure 3.12-1. Railroad tracks at KSC and MINWR](image)

3.12.1.2 Public Transportation

Public transportation is provided by Space Coast Area Transit (SCAT). SCAT operates fixed route service Monday - Saturday from 7:45 a.m. to 6:00 p.m. The closest stop to KSC Visitor Center is in Merritt Island Route (SCAT, 2014).

3.12.1.3 Airports

The closest airport is NASA Shuttle Landing Facility (SLF) which has an average of 66 operations per week (AirNav, 2014). The closest international airport is Orlando Sanford International (SFB) which is 35 miles away and has 221 operations per day (AirNav, 2014). Other nearby airports include Arthur Dunn Airpark, Space Coast Regional Airport, Cape Canaveral Air Force Strip, Merritt Island Airport, and Patrick Air Force Base.
3.12.1.4 Launch Facilities

Facilities include space vehicle launch and landing facilities, numerous vehicle and payload processing facilities, fuel handling systems, and several industrial, laboratory, clean rooms, and office complexes. Through the 30 year flight history of the Space Shuttle Program there were 135 launches, 82 from Pad 39A and 53 from Pad 39B (NASA, 2014).

3.12.1.5 Waterways

Port Canaveral is the nearest navigable oceanic connection to KSC. Navigable access from Port Canaveral to KSC docking facilities at Hangar AF (CCAFS) and the Barge Turning Basin is provided by 19.3 miles of maintained channels. The docking facilities at Hangar AF Wharf are used primarily for the retrieval of the solid rocket booster motors following launches. The Turning Basin Wharf is used to unload the external fuel tanks of the space transportation system and other heavy equipment suited to waterway transport. A total of 1,578 feet of dockage is available at the existing wharf facilities (NASA, 2010a).

Port Canaveral provides water access to KSC facilities through a canal that links the port with the Intracoastal Waterway in the Indian River.

3.12.2 Environmental Consequences Including Cumulative Impacts

This section provides a discussion of the environmental impacts to transportation resources that would result from the Proposed Action, Alternative 1, and No Action Alternatives. Impacts were primarily assessed by reviewing existing conditions at KSC, and determining the potential effects the Proposed Action would have on traffic and other transportation resources. The extent of the impacts would depend on the size and nature of the project; however, in general impacts would be considered significant if the action alternatives were expected to have appreciable changes in the overall traffic volume or LOS on affected intersections or roadways.

3.12.2.1 Proposed Action

Short- and long-term minor adverse effects would be expected. The Proposed Action would result in the continuation of many of the modes of transportation presently occurring at KSC but potentially in greater amounts. Short-term increases in traffic would result from construction worker commutes during construction and demolition activities. Long-term effects would be primarily due to additional worker commutes and changes in traffic patterns near more centralized activities at KSC. Increased traffic volumes and changes in traffic patterns, and changes in both vertical and horizontal launch activities would have minor effects, and there would be some long-term beneficial effects from upgrades in transportation infrastructure. The Proposed Action is not expected to have appreciable changes in the overall traffic volume at KSC; however, some components could affect the LOS at intersections or roadways both on and off the facility.

3.12.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

The implementation of the land use plan, future development plan, and functional area plans would have short- and long-term minor adverse effects on traffic and transportation resources.
Short-term effects would be from worker commutes and some truck traffic during demolition of aging or outdated facilities and construction of new facilities. Long-term effects would be from worker commutes to and from the KSC and changes in launch activities. This section outlines effects from planning activities, and demolition and construction activities. Effects from proposed changes in launch, landing, operations, and support activities are addressed in Section 3.12.2.1.2. Effect from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.12.2.1.4.

3.12.2.1.1 Planning Activities

The planning activities associated with the updated land use plan, future development plan, and functional area plans in-and-of themselves would not generate any traffic or changes to transportation infrastructure. Therefore, planning activities and updating the land use designations would have no effect on traffic and transportation resources.

3.12.2.1.2 Construction and Demolition Activities

Any construction or demolition activities that occurred as result of the future activities at KSC would have short-term minor adverse effects on transportation and traffic. These effects would be primarily due to construction worker commutes and delivery of equipment and materials to and from the construction and demolition sites. The roadway infrastructure would be sufficient to support the increases from construction vehicle traffic. Congestion may increase in the immediate area of construction and demolition sites because of additional vehicles and traffic delays near sites. In addition, road closures or detours to accommodate utility system work may occur. Although effects would likely be minor, there is a wide range of possible demolition and construction scenarios. Future or tiered NEPA would require assessment of effects to traffic and transportation resources for actions that include more than 1,000,000 gsf/yr of demolition or construction, the addition of new roadways, or the closure of existing roadways.

Although the effects would be minor, during any construction or demolition activities, contractors would route and schedule vehicles to minimize conflicts with other traffic, and strategically locate staging areas to minimize traffic impacts. All on-and off-road trucks and heavy equipment would be equipped with backing alarms, two-way radios, and Slow Moving Vehicle signs when appropriate.

3.12.2.1.2 Launch, Landing, Operations and Support

Launch, landing, operations and support would have short- and long-term minor adverse effects on transportation resources. Short-term effects would be from worker commutes and delivery of heavy equipment and materials during construction and modification of launch and support facilities. Long-term effects would be from worker commutes to and from the KSC and increases in launch activities. This section outlines effects from:

- Site modifications and pre-launch preparations;
- Vertical launch activities; and
- Horizontal launch activities.

Traffic and transportation effects from planning activities and associated demolition and construction activities are addressed in Section 3.12.2.1.1. Effects from proposed changes in non-space-based transportation activities and infrastructure upgrades are addressed in Section 3.12.2.1.4.
3.12.2.1.2.1 Site Modifications and Pre-Launch Preparations

For most launch programs, site modifications would normally be minor and limited to launch pads and facilities directly related to individual launches and test programs. Modifications to existing facilities may include clearing, grading, and limited construction. Traffic from worker commutes during site modifications and pre-test preparations are expected to be minimal and temporary. Effects on traffic and transportation would be similar in nature and overall level as demolition and construction traffic in Section 3.12.2.1.1. Because these activities would take place on KSC, the public in the surrounding areas would not normally detect an increase in traffic; therefore, site modification and pre-launch preparations would not cause significant traffic impacts. However, as with other construction activities, future or tiered NEPA would require assessment of effects to traffic and transportation resources for actions that include more than 1,000,000 gsf/yr of demolition or construction, the addition of new roadways, or the permanent closure of existing roadways.

Prelaunch operations and assembly would likely introduce minor local roadway traffic and a small increase in aircraft operations for component delivery. These activities would be minute when compared to current KSC activities, and would not appreciably change the existing transportation environment. As a result, prelaunch processing and assembly of launch vehicle components would not cause significant impacts to transportation resources.

3.12.2.1.2.2 Vertical Launch and Landing

Under the Proposed Action, vertical launches and landings would be ongoing at KSC. In the hours before launches, remote sensors and helicopters may be used to verify that the hazard areas would be clear of non-mission-essential aircraft, vessels, and personnel. If helicopters were used to verify that beach areas and near shore waters are clear of non-participants, then they would generally limit their flights to the areas around the base, thus also limiting the effects on local communities. These individual helicopter overflights would be a small fraction of the overall air operations at KSC and would have insignificant effects to air traffic or transportation resources.

Although the exact nature of future vertical launch activities is unknown, the Proposed Action would result in the continuation of vertical launches comparable to that presently occurring at KSC. No appreciable changes in ground-based traffic or transportation would be expected with the launches. Visitation and launch viewing would be comparable to historical conditions. As a result, no significant impacts on traffic and transportation resources are expected from vertical launch activities.

In the hours and days following vertical launches, a general safety check and cleanup of the launch sites would occur. There would be some small amount of traffic from worker commuting, the removal of equipment from the launch site, and general refurbishment of the launch facilities. As with site modifications and pre-launch preparations, post-launch refurbishment activities would not cause significant transportation impacts.

3.12.2.1.2.3 Horizontal Launch and Landing

Under the Proposed Action, horizontal launches and landings could become commonplace at KSC. Launch vehicles would likely consist of traditional commercial aircraft comparable to a 747 and designed to carry an additional launch vehicle that would be released in the upper
atmosphere. Although the exact nature of future horizontal launch activities is unknown, the Proposed Action would result in the continuation of aircraft activities comparable to that presently occurring at KSC. As a result, no significant impacts on traffic and transportation resources are expected. Although effects would likely be minor, there are a wide range of possible horizontal launch and landing vehicle types and operating scenarios. Increases in horizontal launch and landing activities are not expected to have appreciable changes in the overall traffic volume at KSC. Because of these uncertainties, future or tiered NEPA would require a transportation assessment for the action that includes an appreciable change in the number of aircraft operations at KSC.

3.12.2.1.3 Climate Change
Implementation of the climate change and sea-level rise requirements would have short-term minor adverse effects on the transportation environment. Short-term effects due to increases in traffic would result from construction and demolition activities. Effects from the demolition and construction are addressed in Section 3.12.2.1.1.

Modifications of existing facilities to meet climate change and sea-level rise requirements may include everything from minor hardening efforts to complete on-site demolition and reconstruction. Any demolition or construction required to meet climate change and sea-level rise requirements would be similar in nature and overall level as that outlined in Section 3.12.2.1.1 with the implementation of the land use planning efforts. The roadway infrastructure would be sufficient to support the increase in construction vehicle traffic. Congestion may increase in the immediate area because of additional vehicles and traffic delays near sites. In addition, road closures or detours to accommodate utility system work might occur. Although effects would likely be minor, there is a wide range of possible demolition and construction scenarios. A detailed list of locations is not available at this time; therefore, future or tiered NEPA would require assessment of effects to traffic and transportation resources for actions that include more than 1,000,000 gsf/yr of demolition or construction, the addition of new roadways, or the permanent closure of existing roadways.

3.12.2.1.4 Future Transportation Plan
Implementing the transportation plan would have short-term minor and long-term beneficial effects. Short-term effects would be from traffic increases due to construction activities, where long-term effects would be from changes in roadway configurations, traffic patterns, and changes in other modes of transportation throughout KSC. Effects from the demolition and construction are addressed in Section 3.12.2.1.1. The change in ownership of transportation infrastructure associated with the transportation plan in-and-of itself would not generate any traffic or changes to transportation infrastructure; therefore, would have no direct effect on traffic and transportation resources.

3.12.2.1.4.1 Road, Bridges and Parking
Road, bridges and parking improvement and replacement projects would be specifically designed to relieve roadway congestion on and near KSC while accessing new commercial facilities, parking, and operational areas. There would be some construction and resurfacing of roadways with the implementation of the transportation plan; however, most of the activities would take place on KSC, the public in the surrounding areas would not normally detect an increase in traffic. Road, bridge and parking construction would not cause significant traffic impacts.
Long-term effects of the Proposed Action could be due to additional personnel and potentially increased traffic both on and off KSC. The additional vehicles would constitute an incremental change in traffic volumes along roadways near KSC; however, increases would only be a small fraction of the current traffic. Road and bridge divestiture would eliminate the vehicle traffic on and the maintenance of the divested infrastructure and any associated congestion. Rerouted vehicles may cause increases in traffic in centralized areas of KSC; however, these small changes in traffic patterns would have minor effects. Although effects would likely be less than significant, there is a wide range of possible roadway, bridge and parking configurations and potential personnel changes throughout KSC. Because of these uncertainties, future or tiered NEPA would require transportation assessment for actions that include the addition of new roadways, bridges or access control points, or permanent closure of existing roadways, bridges or access control points.

3.12.2.1.4.2 Rail and Water

Construction and operation of new rail spurs and seaports would have short-and long-term impacts. Short-term effects would be from traffic increases due to construction activities, where long-term effect would be from changes in rail and port configurations, traffic patterns, and changes in other modes of transportation throughout KSC. Although effects would likely be minor, there is a wide range of possible seaport operating scenarios. Future or tiered NEPA would require transportation assessment for the establishment, or closure of any seaports or rail spur at KSC.

3.12.2.1.4.3 Air

Modifications to SLF facilities, infrastructure, the runway, and other airfield systems would have short- and long-term effects. Short-term effects would be from traffic increases due to construction activities, where long-term effect would be from changes in airfield systems configurations, traffic patterns, and changes in other modes of transportation throughout KSC. Although effects would likely be minor, there is a wide range of possible airport operating scenarios. Future or tiered NEPA would require transportation assessment for the establishment, expansion or closure of any runway at KSC.

3.12.2.1.5 Programmatic Determinations

A programmatic approach to assess the effect of the Proposed Action on traffic and transportation was performed for this EIS. In general, the overall effects of the action and its components would be less than significant. Site-specific and project-level details are not available at this time; however, based on existing information no additional evaluation under future or tiered NEPA would be required for transportation unless the project:

- Included more than 1,000,000 gsf/yr of demolition or construction;
- Included the addition of new roadways, bridges, or access control points;
- Included the permanent closure of any existing roadways, bridges, or access control points;
- Included the closure of existing or the establishment of any new rail spurs or facilities at KSC;
- Included the closure of existing or the establishment of any new seaports at KSC;
- Included the establishment, expansion or closure of any runway at KSC.
Without these components, future or tiered NEPA could include this programmatic analysis by reference and eliminate transportation as a resource area carried forward for detailed evaluation.

3.12.2.1.6 Cumulative Impacts

Minor short- and long-term cumulative effects would be expected. Traffic and transportation effects would be primarily due to demolition and construction activities, the introduction of new launches, traffic patterns, and automotive traffic. These activities would constitute incremental increases in traffic and transportation. Increased traffic generated by activities would be concentrated on KSC and are expected to be less than significant. Implementation of the Proposed Action would not contribute appreciably to adverse cumulative effects to traffic and transportation. There are no projects identified that when combined with the Proposed Action that would have greater than significant effects.

3.12.2.2 Alternative 1

With one important exception, the direct, indirect, and cumulative impacts of Alternative 1 would be like those of the Proposed Action. The exception is that under Alternative 1, the two proposed new seaports that are part of the Proposed Action would not be constructed and operated. Thus, under Alternative 1, KSC would not develop these two new facilities to support additional development sea-based transportation capability and capitalize on surrounding area water accessibility and its linkage to Port Canaveral. In this respect, Alternative 1 would be like the No Action Alternative.

3.12.2.3 No Action Alternative

Selecting the No Action Alternative would result in no changes in the impact to traffic and transportation. KSC operations and the current levels of activities would continue without changes, and traffic and transportation would remain unchanged when compared to existing conditions as described in Section 3.12.1.

3.13 Utilities

3.13.1 Affected Environment

3.13.1.1 Major Energy Sources at KSC

KSC is a retail electricity, natural gas, and fuel oil customer. The Institutional Services Contractor (ISC) provides a monthly energy utilization/cost report that feeds NASA’s accounting process to “direct charge” facility energy costs to the appropriate KSC program or tenant according to facility use. Each major program has its own facility engineering and operations and maintenance (O&M) contractor. The ISC report also informs the NASA Environmental Tracking System for energy metrics reporting to Department of Energy, Office of Management and Budget, and Congress. Table 3.13-1 summarizes KSC’s main facility energy sources and their costs. Table 3.13-2 summarizes how KSC obtains electricity and natural gas.
Table 3.13-1. Major energy sources at KSC

<table>
<thead>
<tr>
<th>Contact</th>
<th>Electricity</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 45 Space Wing (SW) w/Florida Power & Light (FPL)</td>
<td>• Local Delivery: NASA with City Gas Company of Florida</td>
<td></td>
</tr>
<tr>
<td>• Commodity: Defense Energy Support Center with Interconn Resources, Inc. marketer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Ownership</td>
<td>• FPL: 115 kiloVolt (kV) transmission</td>
<td>• Florida City Gas owns distribution</td>
</tr>
<tr>
<td>• NASA: 13.8 & 13.2kV distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billing</td>
<td>• FPL bills KSC for 2 main substations & 9 small loads; rates by size</td>
<td>• City Gas bills KSC for 43 small and 4 large accounts</td>
</tr>
<tr>
<td>• NASA reimburses 45 SW for Cape Canaveral Air Force Station (CCAFS) facilities</td>
<td>• Interconn bills KSC for commodity; rate same for all buildings and fluctuates with monthly price index</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.13-2 summarizes FY 2013 energy consumption and cost for NASA-owned facilities at KSC and CCAFS and reimbursable NASA-leased facilities such as the KSC Visitor Complex, Air Force Facilities located at KSC, etc.

Table 3.13-2. FY 2013 consumption and cost

<p>| FY 2013 Consumption & Cost | Source | NASA Owned Facilities | | | NASA Leased Facilities | | | KSC Totals | | |
|---------------------------|--------|-----------------------|---|---|-----------------------|---|---|-----------------|---|</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(MMBtu)</th>
<th>(%)</th>
<th>Cost($M)</th>
<th>(MMBtu)</th>
<th>(%)</th>
<th>Cost($M)</th>
<th>(MMBtu)</th>
<th>Cost ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>539,313.01</td>
<td>58.82</td>
<td>12.22</td>
<td>146,108.89</td>
<td>15.94</td>
<td>3.31</td>
<td>685,421.91</td>
<td>15.52</td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td>181,005.90</td>
<td>19.74</td>
<td>4.10</td>
<td>50,472.90</td>
<td>5.50</td>
<td>1.14</td>
<td>231,478.80</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>#2 Fuel Oil</td>
<td>1,340.58</td>
<td>89.52</td>
<td>0.03</td>
<td>157.00</td>
<td>10.48</td>
<td>0.00</td>
<td>1,497.57</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>KSC Totals (Cost $M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.80</td>
<td></td>
</tr>
</tbody>
</table>

3.13.1.2 Regulatory Overview

The following regulations, policies, and statutes govern the management and utilization of energy systems at NASA-KSC.

Federal

- EO 13514, Federal Leadership in Environmental, Energy and Economic Performance
- 42 U.S.C. 8251, et seq., the National Energy Conservation Policy Act (NECPA), as amended
- EO 13423, Strengthening Federal Environmental, Energy and Transportation Management
- EO 13221, Energy Efficiency Standby Power Devices
- 10 CFR 433, Energy Efficiency Standards for the Design and Construction of New
- Federal Commercial and Multifamily High Rise Residential Buildings
• 10 CFR 435, Energy Conservation Voluntary Performance Standards for New Buildings; Mandatory for Federal Buildings
• 10 CFR 436, Federal Energy Management and Planning Programs (includes Life Cycle Costing)

NASA

• NPD 8500.1B, NASA Environmental Management
• NPR 8570.1, Energy Efficiency and Water Conservation
• NPR 8820.2F, Facility Project Requirements

KSC

• CD COMM #2005-08, Energy Conservation at Kennedy Space Center, September 8, 2005
• KNPD 8500.1, KSC Environmental Management
• KNPR 8500.1, KSC Environmental Requirements
• KSC-PLN-1906 Rev B, Energy Management Five-Year Plan

NASA Energy Efficiency Panel

Per EO 13123, Greening the Government through Efficient Energy Management, NASA established the NASA Energy Efficiency Panel to:

• Expedite and encourage use of appropriations and alternative financing to meet the President's energy efficiency requirements and goals
• Provide a forum to guide planning and implementation of energy efficiency activities, including energy and water conservation, greenhouse gas reduction, and use of renewable energy sources

KSC Energy Working Group (EWG)

The EWG was formed in July 1991 to ensure that KSC makes continual progress towards compliance with Federal energy efficiency mandates and reducing energy costs. Regarding energy matters, the EWG provides a forum to develop policies and plans, report progress and accomplishments, increase awareness, advocate/pursue initiatives and technology applications, forecast consumption/cost, and foster consistency across all Center elements.

The following regulations and policies govern the management and utilization of other utility systems at NASA-KSC:

Safe Drinking Water Act (SDWA)

The SDWA was established to protect the quality of drinking water and its sources (both surface and groundwater). The SDWA authorizes the Environmental Protection Agency (EPA) to establish standards and require all owners and operators of public water systems to comply with these health-related standards. In August 1996, amendments to the SDWA were passed to
tighten drinking water standards and provide funding to the states to improve water treatment systems. The objectives of the 1996 Amendments focused on:

- Identification, monitoring, and control of drinking water contaminants as identified by EPA and the SDWA
- Enforcement of the regulations
- Collection of treated water data and distribution to the public
- Providing consumer right-to-know information
- Providing funding to the states for necessary treatment system upgrades

The legislature of Florida has enacted the Florida Safe Drinking Water Act (Florida SDWA), sections 403.850-403.864, F.S. This chapter and chapters 62-550, 62-555, and 62-560, F.A.C., are promulgated to implement the requirements of the Florida Safe Drinking Water Act and to acquire and maintain primacy for Florida under the Federal Act. Under these laws, the State of Florida has delegated the Florida Department of Environmental Protection (FDEP) to promulgate regulations and administer programs for the enforcement of the State and Federal laws concerning our drinking water. FDEP has developed standards and operating practices to protect the health and safety of the public and is responsible for enforcing these regulations and permitting treatment and distribution systems.

The SDWA gives EPA the responsibility for setting national drinking water standards. Since 1974, EPA has set national safety standards for over 80 contaminants that may occur in drinking water. While EPA and state governments set and enforce standards, local governments and private water suppliers have direct responsibility for the quality of the water that is delivered to the tap. The KSC water distribution system is maintained, tested, and treated to ensure that the quality of water delivered measures up to federal and state standards. These actions are continuously documented due to permitting and reported to the regulatory agencies governing the KSC Potable Water System.

Domestic Wastewater

State regulatory authority over wastewater treatment facilities was established by the Florida Air and Water Pollution Control Act (FAWPCA) Chapter 403 F.S., of 1967. The directives of the FAWPCA were implemented through Chapter 62-3, 62-4, and 62-6 of the F.A.C. Chapters 62-3 F.A.C. and 62-4 F.A.C. deal with effluent quality standards and with permitting requirements, respectively. Chapter 62-600 F.A.C. addresses wastewater facility design and construction criteria. Under these laws, the State of Florida has delegated the FDEP to promulgate regulations and administer programs for the enforcement of the state and federal laws concerning the disposal of domestic wastewater. FDEP has developed the Domestic Wastewater Program to set treatment standards and operating practices to protect the health and safety of the public, to protect aquifers, lakes and rivers from harm, and to promote reuse of reclaimed water. FDEP and State Health Departments are responsible for enforcing these regulations and permitting treatment systems.

Industrial Wastewater

In an effort to restore and maintain the chemical, physical, and biological integrity of the nation’s waters, the Federal Government enacted the Federal Water Pollution Control Act (FWPCA),
commonly known as the Clean Water Act (CWA) amended in 1977. The CWA gives the EPA responsibility for regulating point source discharges of pollutants. The CWA also has provisions for states to administer the Federal legislation after approval from the EPA. Under these provisions, the State of Florida has enacted The Florida SDWA, Chapter 403, Florida Statute and Water Resources, Chapter 373, F.S., to promote the conservation, replenishment, recapture, enhancement, development, and proper utilization of the State’s water resources.

The FEDP promulgates regulations and administer programs for the enforcement of the State and Federal laws concerning the disposal of industrial wastewater. FDEP is responsible for issuing permits that authorize the discharge of properly treated wastewater to the land or to waters of the State. Due to the variability of waste streams, industrial waste treatment requirements must be developed on a case-by-case or industry-by-industry basis rather than under a uniform treatment standard. Most industrial wastewater discharges are regulated by specific federal requirements at a minimum. However, if additional treatment is necessary to protect Florida's water quality standards, the industries must provide it.

Stormwater

To manage the issues of flooding and water contamination, the State of Florida created a program that requires the construction of surface water management systems to control stormwater runoff. The Environmental Resource Permit (ERP) program was developed with two main goals. The first is to ensure that any type of new development or changes in land use will not cause flooding by adversely affecting the natural flow and storage of water. The second purpose is to prevent stormwater pollution in lakes and streams and to protect wetland environments. This program is administered by the St. Johns River Water Management District (SJRWMD), and by the FDEP. These two agencies are responsible for reviewing stormwater system designs and issuing permits for their construction and operation.

In October 2000, the EPA authorized the FDEP to implement the National Pollutant Discharge Elimination System (NPDES) stormwater permitting program in the State of Florida (in all areas except Indian country lands). FDEP's authority to assume delegation of the NPDES program is set forth in Section 403.0885, F.S. and is undertaken pursuant to a Memorandum of Agreement with EPA. The NPDES stormwater program regulates point source discharges of stormwater into surface waters of the U.S. and the State. Regulated sources must obtain an NPDES stormwater permit and implement a stormwater management plan that includes pollution prevention techniques to reduce contamination of stormwater runoff.

The NPDES stormwater permitting program is separate from the state's stormwater ERP programs and local stormwater/water quality programs, which have their own regulations and permitting requirements.

3.13.1.3 Utility Systems at KSC

The Utilities Systems land use classification at KSC includes land and facilities associated with KSC utilities infrastructure and systems (i.e., water, wastewater, gas, electrical, chilled water, medium temperature hot water, communications and sewer systems). Utility systems currently occupy 1,327.23 acres of land at KSC. Utility easements help to define patterns and impacts associated with the development of utility systems and the overall land use pattern.
Communications lines for line-of-sight are identified visual corridors associated with communications components (NASA, 2010a).

3.13.1.3.1 Drinking Water

KSC uses tap water for a wide variety of purposes such as lawn irrigation, fire fighting, air conditioning, and construction. Commercial and industrial operations also place heavy demands on the public water supply. These include launch operations such as sound suppression and deluge/wash operations, and shuttle and launch vehicle processing operations. KSC uses an average of 1.2 million gpd with a maximum daily average usage of 2.2 million gallons.

KSC is subject to regulation under the SDWA as a supplier since it operates a Non-Transient, Non-Community “Public Water System” as defined by State and Federal regulations. The source of KSC’s drinking water supply is surface water from the Taylor Creek Reservoir and groundwater from wells located in east Orange County. The City of Cocoa operates the Claude H. Dyal Water Treatment Plant that treats the raw water from these sources. Water from this plant is transmitted to KSC via a 24” water main to KSC’s south boundary. At this interface point, the flowrate of water is maintained by booster pumps at the Water Pump Station (N6-1007), while chlorine and a corrosion inhibitor are added to maintain the proper chlorine residual and to maintain the integrity of the distribution system. Water flows through a 24” primary distribution system from the South Gate to the Vehicle Assembly Building (VAB) area. At the intersection of Schwartz Road and S.R. 3, the water can be chlorinated again to maintain the residual concentration. Throughout KSC there are various storage systems and secondary pump systems to supply water needs for fire suppression, launch activities, and potable water.

3.13.1.3.2 Domestic Wastewater

Two domestic wastewater collection/transmission systems, one located in the Industrial Area and one in the VAB Area, provide service for approximately 80 percent of NASA and contractor personnel at KSC. These systems transport raw wastewater to the CCAFS Regional Plant located on the CCAFS. There are a number of septic tank systems throughout KSC that typically support small offices or temporary facilities. Of the existing septic tanks, only a few are permitted under Chapter 64E-6, F.A.C. The remaining septic tanks were constructed prior to the implementation of permitting regulations and are therefore either grandfathered in under these rules or it was determined that a permit was not required for use.

3.13.1.3.3 Industrial Wastewater

KSC currently maintains operating permits for one facility treating industrial wastewater:

- **Seawater Immersion Facility at Beach Corrosion Test Laboratory** - The Beach Corrosion Test Laboratory is located near Complex 40 along the Atlantic Ocean. The facility is used for testing the resistance of materials and coatings to the natural elements. The industrial wastewater is generated when seawater is withdrawn from the ocean and passed over test materials before being discharged back to the ocean.

Launch Complexes 39A and 39B utilize holding tanks to treat industrial wastewater waste streams generated by sound suppression water, Firex water, SRB exhaust and post-launch washdown. The industrial wastewater generated during launch is collected in deluge tanks and is neutralized with Sodium Hydroxide or Phosphoric Acid. The effluent is discharged to a percolation pond using supplementary sprayfield disposal. The system is operated on a "per
launch" basis. Diversion gates direct stormwater runoff to stormwater swales in non-launch configuration. The industrial wastewater permits for Launch Complexes 39A and 39B were surrendered in 2012 and are no longer carried by KSC. The permit for Pad 39B must be re-established prior to the occurrence of a launch.

3.13.1.3.4 Stormwater

KSC has over 100 surface water management systems to control stormwater runoff. The four largest stormwater systems at KSC are the Region I system that serves the Industrial Area, the Sub-basin 11 system that serves the western VAB Area, the VAB South system that serves the south VAB area, and the SLF system.

In addition to those stormwater management systems permitted by the SJRWMD, KSC manages an NPDES Stormwater permit for industrial activities. This permit covers six industrial operations at KSC, which include the Contractors Road Locomotive Yard, the SLF, the Ransom Road Reclamation Yard, the Transportation, Storage and Disposal Facility (TSDF), and the Fleet Maintenance Facility. KSC does not meet the criteria established by FDEP that would categorize it as an urban area and is therefore not required to obtain a permit as a MS4.

3.13.1.3.5 Easements and Rights-of-Way

Easements are provided to utility suppliers such as FPL for power lines, and the right-of-way for AT&T communication cables. Others include the easement used until 1983 by Florida East Coast Railroad and easements for high pressure and natural gas lines. KSC has also granted easements for cellular communication towers to improve cell phone service.

3.13.1.4 NASA KSC Energy Management Goals and Five-Year Plan

NASA energy goals are listed in NPR 8570.1, Energy Efficiency and Water Conservation Technologies and Practices. Since the effective date of the NPR 8570.1, Executive Order (EO) 13123 was superseded by EO 13423, *Strengthening Federal Environmental, Energy and Transportation Management*, and EO 13514, *Federal Leadership in Environmental, Energy, and Economic Performance*. In addition to EO 13423 and EO13514, two Federal Energy Laws were also passed by Congress; the Energy Policy Act of 2005 (EPAct) and the Energy Independence and Security Act (EISA) of 2007. KSC addresses the Center’s intent of meeting these requirements in Table 3.13-3.

Table 3.13-3. KSC energy management and efficiency goals

<table>
<thead>
<tr>
<th>Energy Issue</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Intensity or Energy Use Index</td>
<td>3% per year or 30% by the end of FY 2015 relative to a FY 2003 baseline</td>
</tr>
<tr>
<td>Products</td>
<td>Energy Star or Federal Energy Management Program (FEMP)-designated products that use less than 1 Watt of standby power</td>
</tr>
<tr>
<td>Energy Use Measurement & Accounting</td>
<td>Electric metering required in federal buildings by FY 2012, where practicable. Natural gas metering required by FY 2016 where practicable</td>
</tr>
<tr>
<td>Energy Issue</td>
<td>Goal</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Federal Building Standard</td>
<td>Buildings to be designed to consume 30% less energy than ASHRAE 90.1-2004 standard where life cycle cost effective (10CFR433)</td>
</tr>
<tr>
<td>Major building renovations & expansions</td>
<td>Employ the most energy efficient designs, systems, equipment and controls that are life cycle cost effective</td>
</tr>
<tr>
<td>Renewable energy use</td>
<td>3% in FY 2007-2009; 5% in FY 2010-2012; 7.5% in FY 2013 and beyond</td>
</tr>
<tr>
<td>Renewable energy sources</td>
<td>At least half of the statutorily required renewable energy consumed in a fiscal year comes from new sources</td>
</tr>
<tr>
<td>Solar hot water</td>
<td>Provide 30% of hot water demand with solar hot water heaters where life cycle cost effective</td>
</tr>
<tr>
<td>Electronic Products and Services</td>
<td>Ensure 95% of new contract actions, task orders, and delivery orders for products and services are energy efficient (ENERGY STAR® or FEMP-designated), water efficient, bio-based, and are environmentally preferable</td>
</tr>
<tr>
<td>Sustainable Facilities</td>
<td>Ensure at least 15% of existing agency buildings and leases (above 5,000 gross square feet) meet the Guiding Principles by FY 2015</td>
</tr>
<tr>
<td>Comprehensive Evaluations</td>
<td>Conduct comprehensive evaluations on 25% of covered facilities every year</td>
</tr>
<tr>
<td>Projects</td>
<td>Implement energy efficiency projects within two years after completing comprehensive evaluations / appropriated funds can be combined with Energy Savings Performance Contracts (ESPCs) and Utility Energy Service Contracts (UESCs)</td>
</tr>
<tr>
<td>Life-cycle cost analysis</td>
<td>Use in investment decisions for purchases, design, construction, and O&M</td>
</tr>
<tr>
<td>Utility costs</td>
<td>Reduce utility costs</td>
</tr>
<tr>
<td>Reduction in Water Consumption</td>
<td>Reducing potable water consumption intensity 2% annually through fiscal year 2020, or 26% by the end of fiscal year 2020, relative to a fiscal year 2007 baseline</td>
</tr>
<tr>
<td>Agricultural Water Reduction</td>
<td>Reducing agency industrial, landscaping, and agricultural water consumption 2% annually, or 20% by the end of fiscal year 2020, relative to a fiscal year 2010 baseline</td>
</tr>
<tr>
<td>Water Reuse Strategies</td>
<td>Identifying, promoting, and implementing water reuse strategies consistent with state law that reduce potable water consumption</td>
</tr>
</tbody>
</table>

The EWG updated the KSC Energy Management Five-Year Plan in 2009. The plan divides energy goals among the major programs at KSC, and contains sections where each program
identifies how it will meet its share of the goals. The plan serves as a framework for managing the Center's energy program by:

- Summarizing how KSC deploys an energy program that buys and uses energy wisely
- Defining Agency energy goals at the Center and Subdivided levels
- Documenting strategies to meet the goals
- Describing planned contributions of initiatives and projects required to meet the goals
- Identifying gaps where additional effort and resources are required to meet the goals

KSC tracks progress towards energy efficiency goals using energy metrics for all Goal Subject facilities. Previous energy reduction initiatives include lighting retrofits, heating, ventilation, and air conditioning (HVAC) control conversions from pneumatic to digital, conversion to variable speed motor drives, decentralization of an inefficient high temperature hot water distribution system, and minimal renewable energy technology applications as warranted by life cycle cost effectiveness (NASA, 2014).

![Image of solar photovoltaic panels]

Figure 3.13-1. Solar photovoltaic panels at the Kennedy Space Center

3.13.2 Environmental Consequences Including Cumulative Impacts

3.13.2.1 Proposed Action

Under the Proposed Action, KSC would continue to be a retail electricity, natural gas, and fuel oil customer. Energy would continue to be delivered as described in Table 3.13-1. Although one of the goals of the Proposed Action is the efficient spacing and right-sizing of buildings at KSC, changes to infrastructure, facilities, and operations would necessitate an increase in land acreage of utility corridors of approximately two acres (from 1,327.2 to 1,329.6). Though this is partly due to newly constructed buildings requiring hookups to power and water systems, the increase
in acreage would also be due in part to anticipated movements towards KSC’s goal of greater on-site generation of its power from renewable sources.

Utilization of energy sources and other utilities would be managed according to the federal, state, local, and private regulations and policies described under the Affected Environment section. The EWG would focus on the continual progress of KSC towards compliance with relevant mandates, reduction of energy and water costs, and meeting conservation goals. As the individual actions comprising the overall Proposed Action were implemented, utilization of energy and water sources should become more efficient as well, reducing demands on local and regional systems.

3.13.2.1.1 Summary of Impacts

The construction of new facilities or sites within KSC would require the construction of new utilities rights-of-way and installation of new utility lines or extensions for power, water, and telecommunications. Depending on the location and size of the systems to be installed or expanded, the land clearing, trenching, excavation, and other activities associated with the preparation of ROWs and installation of utility lines could have direct and indirect environmental impacts.

Wildlife and vegetation that exist at the KSC site could be impacted by land clearing, excavation of soils, changes to habitat, and the temporary generation of noise. Potential impacts to natural habitat are described further in Section 3.9, Biological Resources. Noise impacts are discussed in Section 3.8, Acoustic Environment (Noise).

Activities such as excavation and trenching associated with the addition and expansion of utility corridors and systems would degrade soil quality and require stockpiling of removed soils. Though most soils would be replaced on top of the buried utility lines, not all existing soils would be needed. Installation activities would increase the runoff of erosion and sedimentation at the site, which may contaminate ground and surface water at the perimeter of the site. Erosion and sedimentation may also be increased were the fallow citrus groves at KSC to be converted as anticipated to increase the land base for solar arrays and other renewable technologies. Soil resources are analyzed in depth in Section 3.3, Soils and Geology.

Because a large portion of the KSC site is already developed, impacts from new and utility systems would not be as substantial as they may be if the site were still pristine, undeveloped land. Additionally, over time, the site as a whole may actually consume less energy and water due to the achievement of greater efficiency and right-sizing under the proposed Central Center Master Plan. Therefore, it is not anticipated that the capacity of existing utility service providers linked to the KSC site would be exceeded. Any decisions pertaining to the expansion or creation of utility corridors would be made in accordance with the goals of KSC’s Energy Management Five-Year Plan.

With consideration of all temporary and permanent impacts described, impacts from the installation and expansion of utility systems at KSC under the Proposed Action are anticipated to be minor to moderate and of small to medium extent. The magnitude and extent of the impacts would depend on the specific land area chosen as a utility corridor, and the size of the pipeline or system extension required. Impacts would be short-term (those that would occur during
construction and installation) and long-term (those that would occur throughout the life of the proposed CMP activities), and probable.

3.13.2.1.2 Cumulative Impacts

The proposed utility changes would occur within the existing NASA KSC site, and would thus have a relatively small cumulative impact on land and utility service providers when viewed from a site-wide or local perspective (with an increase of two acres of land devoted to utility corridors of a total of 140,000 acres at KSC). Any decisions regarding changes to utilities would be made in conjunction, where relevant, with neighboring/partnering administrative entities, would prioritize already developed land, and would aim to further the comprehensive goals of the Energy Management Five-Year Plan and any other similar plans held by agencies or companies planning to develop facilities or operations in the area.

Development at and near the site by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS may spur further utility needs in the local or regional area. This could create further impacts to soils, water resources, biological resources, and to the local community as a result of noise or visual disturbances during installation of utility corridors/systems. The capacity of regional utility service providers could potentially be exceeded. Impacts could be moderate, of medium extent, possible, and long-term.

3.13.2.2 Alternative 1

Direct, indirect and cumulative impacts of Alternative 1 would be very similar to those of the Proposed Action, but on a somewhat smaller scale, because the two proposed new seaports associated with the Proposed Action would not be built and operated. Also, additional launching and landing facilities might not be built.

3.13.2.3 No Action Alternative

Under the No Action Alternative, utility systems would continue to age and would require upgrades or replacements as they become less efficient or fail. However, current utility systems and their configuration at KSC would remain relatively unchanged aside from regular maintenance for the duration of the 20-year planning horizon (2012-2032).

The affected environment as described in this resource section would not be affected by the construction or operations described under the Proposed Action. Any existing activities or operations would occur in accordance with existing laws and permits. Existing uses would continue at current levels. Individual actions conducted as part of the Proposed Action impacting utilities may proceed, but would have to do so after environmental assessment under separate environmental documentation.

3.14 Socioeconomics

3.14.1 Affected Environment

The analysis of socioeconomic resources identifies aspects of the social and economic environment that are sensitive to changes and that may be affected by the proposal for KSC to transition over a 20-year period (2012-2032) to a multi-user spaceport. The analysis specifically
considers how the proposed and alternative actions might affect the individuals, communities, and the larger social and economic systems of Brevard and Volusia counties; the surrounding region; and the State of Florida.

This section evaluates socioeconomic characteristics, including population, employment, housing, community services, and economic systems. Social impacts would be felt most by individuals, communities, residents, and workers in Brevard and Volusia counties. Businesses, community services, and economic systems in these counties would likely change the most in response to the implementation of the Proposed Action. Since potential impacts with the greatest magnitude, duration, extent, and likelihood would occur in Brevard and Volusia counties, they are therefore defined as the Region of Influence (ROI) for the analysis of socioeconomic impacts. Impacts that extend outside of the ROI are discussed where applicable throughout the section.

The data supporting this analysis are collected from standard sources, including the U.S. Census Bureau (Census), Bureau of Labor Statistics (BLS), other Federal, State, and local agencies, or other research institutes. Demographic and economic data are presented for Brevard and Volusia counties and compared to demographic and economic data for the State of Florida.

3.14.1.1 Population and Housing

3.14.1.1.1 Population

The 2013 estimated population of Brevard County is 550,823, representing a 15.7 percent increase from the 2000 estimated population. Volusia County’s population increased at a somewhat slower rate – 13.0 percent from 2000 to 2013. As shown in Table 3.14-1, the state population grew faster than both counties by about 22.3 percent from 2000-2013.

In general, children comprise a smaller portion of the population in Brevard and Volusia counties (respectively) than in the state overall. The percentage of children in the ROI, including those under five years of age, between 5 and 18 years, or all children under 18 years, is lower than percentages for those same age groups in the State of Florida. Table 3.14-2 shows population estimates and the percent of children by age group in Brevard and Volusia counties as well as for Florida.

<table>
<thead>
<tr>
<th>Location</th>
<th>2000</th>
<th>2013</th>
<th>Percent Change 2000-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>476,230</td>
<td>550,823</td>
<td>15.7</td>
</tr>
<tr>
<td>Volusia County</td>
<td>443,343</td>
<td>500,800</td>
<td>13.0</td>
</tr>
<tr>
<td>Florida</td>
<td>15,982,378</td>
<td>19,552,860</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, QuickFacts, 2000 and 2013
Table 3.14-2. Summary of children by age group (2013)

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Population</th>
<th>Children Under 5 Years</th>
<th>Children 5 to 18 Years</th>
<th>All Children Under 18 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
</tr>
<tr>
<td>Brevard County</td>
<td>550,823</td>
<td>25,769</td>
<td>4.7</td>
<td>77,666</td>
</tr>
<tr>
<td>Volusia County</td>
<td>500,800</td>
<td>23,563</td>
<td>4.7</td>
<td>67,608</td>
</tr>
<tr>
<td>Florida</td>
<td>19,552,860</td>
<td>1,074,049</td>
<td>5.5</td>
<td>295,248,186</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013 (USCB, 2013a; USCB, 2013b; USCB, 2013c)

Table 3.14-3 summarizes the distribution of population by age in the Brevard and Volusia counties compared to the State of Florida. The percent of the population 45 years and older is higher in the ROI is about two to three higher than in the state overall.

Table 3.14-3. Distribution of population by age (2013)

<table>
<thead>
<tr>
<th>Location</th>
<th>Percent Under 18 Years</th>
<th>Percent 18-44 Years</th>
<th>Percent 45-64 Years</th>
<th>Percent 65 and Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>18.8</td>
<td>29.0</td>
<td>30.1</td>
<td>22.1</td>
</tr>
<tr>
<td>Volusia County</td>
<td>18.2</td>
<td>30.2</td>
<td>28.7</td>
<td>22.9</td>
</tr>
<tr>
<td>Florida</td>
<td>20.6</td>
<td>33.9</td>
<td>26.9</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013 (USCB, 2013a; USCB, 2013b; USCB, 2013c)

Table 3.14-4 summarizes the components of population change between 2010 and 2013. Births and deaths are estimated using reports from the National Center for Health Statistics (NCHS) and the Federal-State Cooperative for Population Estimates (FSCPE). Between 2010 and 2013, the number of deaths exceeded the number of births in the ROI, and it experienced a natural decrease in population. However, with a net positive domestic and international migration into the ROI, the population increased overall. In Florida, births exceeded deaths during this period, but migration accounted for the majority of the total population increase. Given the age distribution of the population, decreases in population due to “natural events” can be expected to continue in the ROI. Generally speaking, the birth and death estimates are the most reliable parts of the population estimates program, as all states require birth and death certificates (USCB, 2013c).

Table 3.14-4. Components of population change, 2010-2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Births</th>
<th>Deaths</th>
<th>Domestic Migration</th>
<th>International Migration</th>
<th>Total Population Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>16,553</td>
<td>20,190</td>
<td>7,449</td>
<td>3,173</td>
<td>7,451</td>
</tr>
<tr>
<td>Volusia County</td>
<td>15,265</td>
<td>20,190</td>
<td>8,321</td>
<td>2,756</td>
<td>6,203</td>
</tr>
<tr>
<td>Florida</td>
<td>697,507</td>
<td>576,432</td>
<td>308,152</td>
<td>310,822</td>
<td>750,170</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 2013
Note: The total population change includes a residual, or the change in population that cannot be attributed to any specific demographic component.

Domestic in- and out-migration includes all changes of residence including moving into, out of, or within a given area (i.e., Brevard and Volusia counties) in the United States. International migration refers to movement of people across the borders of the United States. Domestic migration estimates are based on Internal Revenue Service (IRS) tax exemptions, change in Medicare enrollment, and change in the group quarters population and are therefore less reliable than birth and death estimates. The total population change includes a residual, or the change in population that cannot be attributed to any specific demographic component.

3.14.1.1.2 Housing

A housing unit refers to a house, an apartment, a mobile home or trailer, a group of rooms, or a single room occupied as separate living quarters, or if vacant, intended for occupancy as separate living quarters. An owner-occupied housing unit indicates that the owner or co-owner lives in the unit even if it is mortgaged or not fully paid for. The median value(s) of housing units reflects housing units with and without a mortgage. A household includes all the people who occupy a housing unit as their usual place of residence.

The housing units in Brevard County, Volusia County, and the State of Florida are all about 80 percent occupied (Table 3.14-5). About 70 percent of homeowners in the ROI occupy their housing unit, about 5 percent higher than for the state overall. The homeownership rate, which is computed by dividing the number of owner-occupied housing units by the number of occupied housing units, is highest in Volusia County. The median value of owner-occupied housing units in Florida is about $20,000-30,000 more expensive than in the ROI.

Housing is important to a state’s economy because the sale of every new single-family home supports more than four jobs, not just in construction and manufacturing, but also financial services and retail as new homeowners splurge on appliances and furnishings. During the housing bubble, housing was overvalued and many people borrowed money for homes they couldn’t afford. When housing prices fell, home building and home purchases likewise fell. Many people were stuck with mortgages they could no longer pay, forcing a wave of foreclosures. In 2013, Florida had the highest rate of foreclosures in the nation: 1 in every 328 properties (WP, 2013).

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Housing Units</th>
<th>Occupied Housing Units (%)</th>
<th>Owner-Occupied Housing Units (%)</th>
<th>Homeownership Rate (%)</th>
<th>Median Value of Owner-Occupied Housing Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>270,641</td>
<td>80.7%</td>
<td>68.8%</td>
<td>85.3%</td>
<td>$135,900</td>
</tr>
<tr>
<td>Volusia County</td>
<td>254,238</td>
<td>78.8%</td>
<td>71.6%</td>
<td>90.9%</td>
<td>$123,400</td>
</tr>
<tr>
<td>State of Florida</td>
<td>9,047,973</td>
<td>79.7%</td>
<td>64.8%</td>
<td>81.3%</td>
<td>$153,300</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013 (USCB, 2013a; USCB, 2013b; USCB, 2013c)
3.14.1.2 Labor

3.14.1.2.1 Civilian Labor Force

The size of a county’s civilian labor force is measured as the sum of those currently employed and unemployed. As shown in Table 3.14-6, from 2000 to 2013 Volusia County’s (and the State’s) labor force grew about six percent faster than Brevard’s. Notably, the labor forces of the ROI actually decreased from 2008 to 2013. The state labor force also decreased from 2008 to 2010; but increased from 2010 to 2013 (BLS, 2000; BLS, 2008; BLS, 2010; BLS, 2010).

Table 3.14-6. Civilian labor force, 2000-2010

<table>
<thead>
<tr>
<th>Location</th>
<th>Number in Labor Force</th>
<th>Percent Change 2000-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2008</td>
</tr>
<tr>
<td>Brevard County</td>
<td>232,007</td>
<td>268,551</td>
</tr>
<tr>
<td>Volusia County</td>
<td>209,694</td>
<td>254,290</td>
</tr>
<tr>
<td>Florida</td>
<td>7,869,695</td>
<td>9,216,383</td>
</tr>
</tbody>
</table>

3.14.1.2.2 Employment

Table 3.14-7 exhibits the annual employment levels in the ROI for the years 2000, 2008, 2010, and 2013. From 2000 to 2010, employment increased 8.7 percent in Brevard County and 9.7 percent in Volusia County. The number employed in Florida increased by over a million persons, or 15.6 percent, over the same 13-year period.

Table 3.14-7. Annual employment, 2000-2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Number in Employment</th>
<th>Percent Change 2000-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2008</td>
</tr>
<tr>
<td>Brevard County</td>
<td>223,587</td>
<td>251,053</td>
</tr>
<tr>
<td>Volusia County</td>
<td>202,623</td>
<td>237,596</td>
</tr>
<tr>
<td>Florida</td>
<td>7,569,406</td>
<td>8,637,206</td>
</tr>
</tbody>
</table>

The top 10 private employers in Brevard County provide health care and manufacturing jobs, and are included in Table 3.14-8 below (not including retail). Health First, Inc. and Harris Corporation, the top two employers, each employ about two to three percent of the labor force in Brevard County, assuming those employed also live in Brevard County.
The top 10 private employers in Volusia County provide healthcare and education jobs, and are included in Table 3.14-9 below. Boston Whaler and Cividien, two manufacturing firms, employ 450 and 500 (respectively). Volusia County, Schools, Embry-Riddle Aeronautical University, Daytona State College, Stetson University, and Bethune-Cookman University employ about 4.5 percent of the county’s workforce (assuming those employed also live in Volusia County).

Table 3.14-9. Top 10 private employers in Volusia County (2014)

<table>
<thead>
<tr>
<th>Organization</th>
<th>Industry</th>
<th># of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volusia County Schools</td>
<td>Education</td>
<td>7,503</td>
</tr>
<tr>
<td>Florida Hospital Volusia-Flagler Market</td>
<td>Healthcare</td>
<td>4,810</td>
</tr>
<tr>
<td>Halifax Health</td>
<td>Healthcare</td>
<td>3,197</td>
</tr>
<tr>
<td>Frontier Communications</td>
<td>Customer Service</td>
<td>1,200</td>
</tr>
<tr>
<td>Embry-Riddle Aeronautical University</td>
<td>Education</td>
<td>1,072</td>
</tr>
<tr>
<td>Daytona State College</td>
<td>Education</td>
<td>980</td>
</tr>
<tr>
<td>Florida Health Care Plans, Inc.</td>
<td>Healthcare</td>
<td>916</td>
</tr>
<tr>
<td>Stetson University</td>
<td>Education</td>
<td>886</td>
</tr>
<tr>
<td>Bethune-Cookman University</td>
<td>Education</td>
<td>654</td>
</tr>
<tr>
<td>SMA Behavioral Health Center</td>
<td>Healthcare</td>
<td>590</td>
</tr>
</tbody>
</table>

Source: Volusia-Flagler Business Report, 2014

*Combined total for Halifax Health Medical Centers in Daytona Beach and Port Orange

Table 3.14-10 shows the size of the workforce at KSC year by year from 2000 to 2013.
Table 3.14.10. Workforce at Kennedy Space Center

<table>
<thead>
<tr>
<th>Year</th>
<th>Number Employed</th>
<th>Year Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>14,716</td>
<td>1,593</td>
</tr>
<tr>
<td>2001</td>
<td>13,499</td>
<td>-1,217</td>
</tr>
<tr>
<td>2002</td>
<td>13,720</td>
<td>221</td>
</tr>
<tr>
<td>2003</td>
<td>13,259</td>
<td>-461</td>
</tr>
<tr>
<td>2004</td>
<td>13,816</td>
<td>557</td>
</tr>
<tr>
<td>2005</td>
<td>14,045</td>
<td>229</td>
</tr>
<tr>
<td>2006</td>
<td>14,678</td>
<td>633</td>
</tr>
<tr>
<td>2007</td>
<td>13,858</td>
<td>-820</td>
</tr>
<tr>
<td>2008</td>
<td>14,181</td>
<td>323</td>
</tr>
<tr>
<td>2009</td>
<td>15,248</td>
<td>1,067</td>
</tr>
<tr>
<td>2010</td>
<td>13,631</td>
<td>-1,617</td>
</tr>
<tr>
<td>2011</td>
<td>9,011</td>
<td>-4,620</td>
</tr>
<tr>
<td>2012</td>
<td>8,319</td>
<td>-692</td>
</tr>
<tr>
<td>2013</td>
<td>7,864</td>
<td>-455</td>
</tr>
</tbody>
</table>

Note: Does not include off-site workforce.

The highest employment levels at KSC were recorded during the Apollo Program. In 1968 a peak population of 25,895 was recorded and an estimated one in four workers in Brevard County was employed by operations at KSC. Employment levels dropped precipitously following the Apollo Program to a historic low in 1976 when a total of 8,441 personnel were employed. Employment levels rose sharply in 1979 when KSC was designated as the launch and operations support center for the STS. Employment levels gradually rose through 1985 following the increasing number of launch events. Another sharp drop in employment levels was seen in 1986 as a result of the loss of the Space Shuttle Challenger (NASA, 2010a, 2015).

The end of the Space Shuttle program in 2011 produced a significant downsizing of the KSC workforce similar to that experienced at the end of the Apollo program in 1972. As part of this downsizing, almost 6,000 contractors lost their jobs at KSC during 2010 and 2011. According to Brevard’s Workforce’s job placement and training services agency, slightly more than half of those 6,000 have found new jobs. Many in the fields of engineering, mechanics and security have relocated outside of Florida (e.g., South Carolina, Afghanistan). Many former space workers have high salary demands and have had trouble finding local jobs in the area (AP, 2012).

3.14.1.2.3 Unemployment Rates

The unemployment rate is defined as the number of unemployed persons divided by the labor force, where the labor force is the number of unemployed persons plus the number of employed persons. Brevard County’s 2013 unemployment rate was 7.9 percent, having decreased from an all-time high in 2010 (11.2 percent). Volusia County’s 7.3 percent decreased from an even higher 2010 unemployment rate of 11.6 percent. Both the county and state unemployment rates rose and fell with national trends, which experienced a sharp increase in 2008. The latter can be attributed to the 2008 economic crisis, which was part of the global financial downturn.
3.14.1.3 Earnings

Several measures are used to discuss earnings, including per capita personal income (PCPI), total industry income, and compensation by industry. Personal income data are measured and reported for the county of the place of residence. PCPI, then, is the personal income for county residents divided by the total county’s population. Compensation data, however, are measured and reported for the county of work location, and are typically reported on a per job basis. Compensation data indicate the wages and salaries for work done in a particular place (e.g., a county), but if the worker does not live in the county where the work occurred then a sizeable portion will be spent elsewhere. These expenditures will not remain in or flow back into that county’s economy. Total compensation includes wages and salaries as well as employer contribution for employee retirement funds, social security, health insurance, and life insurance.

3.14.1.3.1 Per Capita Personal Income

Personal income is the income received by all persons from all sources, or the sum of net earnings by a place of residence, property income, and personal current transfer receipts. This includes earnings from work received during the period. It also includes interest and dividends received, as well as government transfer payments, such as social security checks. It is measured before the deduction of personal income taxes and other personal taxes and is reported in current dollars.

Table 3.14-11 contains 2000, 2008, 2010, and 2013 annual PCPI for Brevard and Volusia counties as well as the State of Florida. All dollar estimates are in current dollars (not adjusted for inflation).
Table 3.14-11. Per capita personal income

<table>
<thead>
<tr>
<th>Location</th>
<th>Income</th>
<th>Percent Change, 2000-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2001</td>
<td>2008</td>
</tr>
<tr>
<td>Brevard County</td>
<td>$28,307</td>
<td>$38,046</td>
</tr>
<tr>
<td>Volusia County</td>
<td>$24,298</td>
<td>$33,219</td>
</tr>
<tr>
<td>Florida</td>
<td>$29,570</td>
<td>$39,709</td>
</tr>
</tbody>
</table>

Source: USDOC, 2013

In 2013, the PCPI in Brevard County was $39,420, representing a 39.2 percent increase since 2000. PCPI in the state increased one percent faster than Brevard County. While PCPI increased almost three percent faster in Volusia County, nominal PCPI is almost $5,000 lower than in Brevard County.

3.14.1.3.2 Industry Compensation

What is often termed in economic data as total industry compensation is somewhat of a misnomer, in that a portion of the “industry earnings” stems from government related activity. This is made clear when the composition of industry compensation is presented. Nevertheless, total industry compensation provides a good picture of the relative sizes of market related economic activity, or business activity, performed in a county (Table 3.14-12).

Income is generated by economic activity in Brevard and Volusia counties through a variety of sectors, including various types of business as well as government. This income is not always received by a person living in the county; for example, a person from neighboring counties may cross county lines to go to work. The employee compensation by industry, however, is a measure of economic activity generated in the counties, regardless of where the employee resides.

The Kennedy Space Center and Cape Canaveral Air Force Station continue to be the main economic drivers in the ROI, as well as recreation and tourism (see Section 3.15), health care, and manufacturing. The sources of economic activity in Brevard and Volusia counties are shown in Table 3.14-12. Government and government enterprises accounted for a total of $2.2 billion (about 20 percent) of the annual compensation of employees in 2013.

Port Canaveral is a vital import/export shipping center and is the first quadramodal port in the world, serving air, land, sea and space transportation (Brevard County, 2014). The port has the largest dockside refrigerated storage facility in the country. The foreign trade zone status lowers U.S. production costs and offers savings to export companies. The port is a major deep-water port of entry with nine cargo berths, 46,452 square meters (500,000 square feet) of warehouse and dry cargo storage, and commercial fishing fleets (NASA, 2010a, 2015).
Table 3.14-12. 2013 Compensation of employees by industry in ROI ($000)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Brevard County</th>
<th>Volusia County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm (Crops, livestock, and dairy)</td>
<td>4,826</td>
<td>27,707</td>
</tr>
<tr>
<td>Forestry, Fishing, Related Activities</td>
<td>2,724</td>
<td>6270</td>
</tr>
<tr>
<td>Mining</td>
<td>282</td>
<td>1,001</td>
</tr>
<tr>
<td>Utilities</td>
<td>37,656</td>
<td>32,010</td>
</tr>
<tr>
<td>Construction</td>
<td>445,259</td>
<td>393,346</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1,920,825</td>
<td>569,161</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>418,242</td>
<td>275,928</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>850,138</td>
<td>768,052</td>
</tr>
<tr>
<td>Transportation and Warehousing</td>
<td>294,552</td>
<td>76,881</td>
</tr>
<tr>
<td>Information</td>
<td>152,695</td>
<td>115,450</td>
</tr>
<tr>
<td>Finance & Insurance</td>
<td>382,091</td>
<td>274,762</td>
</tr>
<tr>
<td>Real Estate and Rental and Leasing</td>
<td>96,462</td>
<td>137,577</td>
</tr>
<tr>
<td>Professional, Scientific, and Technical Services</td>
<td>1,009,680</td>
<td>382,017</td>
</tr>
<tr>
<td>Management of Companies and Enterprises</td>
<td>137,357</td>
<td>116,016</td>
</tr>
<tr>
<td>Administrative and Waste Management Services</td>
<td>842,689</td>
<td>311,450</td>
</tr>
<tr>
<td>Educational Services</td>
<td>206,187</td>
<td>275,911</td>
</tr>
<tr>
<td>Health Care and Social Assistance</td>
<td>1,667,106</td>
<td>1,452,203</td>
</tr>
<tr>
<td>Arts, Entertainment, Recreation</td>
<td>102,791</td>
<td>127,379</td>
</tr>
<tr>
<td>Accommodation & Food Services</td>
<td>432,204</td>
<td>430,573</td>
</tr>
<tr>
<td>Other Services Except Public Administration</td>
<td>353,834</td>
<td>373,283</td>
</tr>
<tr>
<td>Government and Government Enterprises</td>
<td>2,227,756</td>
<td>1,315,566</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11,585,356</td>
<td>7,462,543</td>
</tr>
</tbody>
</table>

Source: USDOC, 2013

As discussed in the 2012 Canaveral Port Authority study, Port Canaveral generated nearly $2 billion in business revenue and 17,000 direct, induced and indirect jobs. Port Canaveral business activities were responsible for $808 million of personal income and $248 million of local purchases. Approximately $74 million of state and local taxes were generated by Port activities. Port Canaveral’s multi-day cruise passengers in 2014 increase by 4 percent to 3.86 million from 3.71 million in 2013 (PCA, 2012).

3.14.1.4 Public Finance

Property tax and assessment bills can differ for each citizen and vary based on where they live, property values, exemptions and the rates set by various taxing authorities. Using Brevard County as an example, for one dollar of property taxes and assessments for a residence with a taxable value of $100,000:

- Brevard County Board of County Commissioners – 28 cents
- School Board – 33 cents
- Municipality – 37 cents
- Water Management Districts – 1 cent
- Independent Special Districts – 1 cent.
The Brevard County Board of County Commissioners operates independently of the other agencies (Brevard County, 2013).

3.14.1.4.1 Property Values

The calculation of the assessed value of property and then how much of this value is subject to ad valorem taxes varies from state to state. In Florida, each county has an elected Property Appraiser whose office supervises the valuation process following the appropriate state laws and regulations; as well as professional guidelines.

As shown below in Table 3.14-13, total taxable values in Brevard County decreased from 2008 to 2012 by over 30 percent. The taxable value increased from 2012 to 2013 by over 4 percent. New construction in 2013 was about 15 percent compared to new construction in 2008. Similar trends are evident in Volusia County (Table 3.14-14).

Table 3.14-13. Taxable value in Brevard County, 2008-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Taxable Value</th>
<th>New Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>$37,872,867,597</td>
<td>$1,225,240,705</td>
</tr>
<tr>
<td>2009</td>
<td>$33,298,150,445</td>
<td>$444,401,981</td>
</tr>
<tr>
<td>2010</td>
<td>$29,089,009,692</td>
<td>$305,102,302</td>
</tr>
<tr>
<td>2011</td>
<td>$24,875,931,599</td>
<td>$210,398,625</td>
</tr>
<tr>
<td>2012</td>
<td>$24,626,876,502</td>
<td>$185,650,571</td>
</tr>
<tr>
<td>2013</td>
<td>$25,745,155,761</td>
<td>$201,639,416</td>
</tr>
</tbody>
</table>

*Source: Florida Department of Revenue (FDR), 2014
*Adjusted to 2014 dollars

Table 3.14-14. Total taxable value in Volusia County, 2008-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Taxable Values</th>
<th>New Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>$36,394,481,547</td>
<td>$1,009,197,414</td>
</tr>
<tr>
<td>2009</td>
<td>$30,080,905,468</td>
<td>$416,927,555</td>
</tr>
<tr>
<td>2010</td>
<td>$26,182,716,383</td>
<td>$212,192,435</td>
</tr>
<tr>
<td>2011</td>
<td>$24,030,945,998</td>
<td>$156,017,155</td>
</tr>
<tr>
<td>2012</td>
<td>$23,621,987,999</td>
<td>$149,669,240</td>
</tr>
<tr>
<td>2013</td>
<td>$24,218,417,004</td>
<td>$140,484,401</td>
</tr>
</tbody>
</table>

*Source: FDR, 2014

3.14.1.4.2 Real Estate Transfer Taxes

The state of Florida collects 0.7 percent of the property sales price in each real estate transaction, or a real estate transfer tax. A portion of those revenues go to a fund for state parks (and often other outdoor-related programs). In Florida, transfer tax revenues finance land acquisition for parks and capital projects but not park operations. The Florida Forever program is funded by bonds backed by a document stamp tax, an excise tax assessed on each real estate transaction. State parks receive five percent of Florida Forever funds; the program funds a wide array of other conservation programs and provides grants to local communities (RFF, 2013).
3.14.1.3 Tourist Development Tax (Resort Tax)

Tourist Development Tax (Resort Tax) is a 5 percent tax on the total rental amount collected from every person or other party who rents, leases, or lets for consideration living quarters or accommodation in any hotel, apartment hotel, motel, resort motel, apartment, apartment motel, rooming house, mobile home park, recreational vehicle park, or condominiums for a period of 6 months or less. This tax is collected by the Brevard County Tax Collector pursuant to Brevard County Code, Chapter 102, "Taxation," Article III, as authorized by Florida Statute 125.0104. The local Tourist Development Tax is in addition to the 6.5 percent State of Florida Sales and Use Tax remitted to the Florida Department of Revenue (BTC, 2013).

3.14.1.4 Payment in Lieu of Taxes

The Payment in Lieu of Taxes (PILT) program was developed by Congress to offset the loss to county governments from public lands that are not part of the tax base. Counties with federal land in their jurisdictions often provide vital services on those lands, such as solid waste management, search and rescue and emergency medical services. PILT payment to counties in Florida total approximately $5 million annually.

The Bureau of Land Management (BLM), USFWS, NPS, and the U.S. Army Corps of Engineers (USACE) pay approximately $2.41 dollar per acre to Brevard and $3.07 to Volusia counties each year (Table 3.14-15). PILT funds bridge and road maintenance, law enforcement, search and rescue, emergency medical, fire protection, solid waste disposal, and environmental compliance (USDOI, 2013).

Table 3.14-15. 2013 Payments and acreage in Brevard and Volusia counties

<table>
<thead>
<tr>
<th>Agency</th>
<th>Brevard County</th>
<th>Volusia County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td>Payment</td>
</tr>
<tr>
<td>Bureau of Land Management</td>
<td>600</td>
<td>$1,445</td>
</tr>
<tr>
<td>USFWS</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>National Park Service</td>
<td>25,600</td>
<td>$61,645</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>89</td>
<td>$214</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26,289</td>
<td>$63,310</td>
</tr>
</tbody>
</table>

3.14.1.5 Community Cohesion

Community cohesion is the degree to which residents have a sense of belonging to their neighborhood or community, including commitment to the community or a strong attachment to neighbors, institutions, or particular groups. What makes a community cohesive is subjective and cannot be solidly defined, though specific indicators include interaction among neighbors, use of community facilities and services, community leadership, participation in local organizations, desire to stay in the community and length of residency, satisfaction with the community, and the presence of families in communities.

Cohesive communities are associated with specific social characteristics which may include long average lengths of residency, frequent personal contact, ethnic homogeneity, high levels of community activity, and shared goals. Some studies indicate that single-family home ownership,
working class families, ethnic group clusters, mothers working at home, parks and other community facilities, and the elderly correlate with active community participation and high community cohesion. Residential stability and longevity can be a strong neighborhood link. The intensity of controversy may be an indicator of potential community disruption.

Based on 2013 data from the American Community Survey, scoping comments, and a literature review, Brevard and Volusia counties have a low to medium level of community cohesion. Around 30 percent of householders moved into their Brevard or Volusia County unit after 2010. Both counties have high homeownership rates – about 5 to 10 percent higher than the state. About 20 percent of the population in the ROI is over the age of 65, which is comparable to the percentage for the state overall (Table 3.14-16).

Since social classes lack clear boundaries and overlap, there are no definite income thresholds as for what is considered working class. Sociologist Leonard Beeghley identifies a combined household income of $66,000 as a typical working-class family (Beeghley, 2004). Sociologists William Thompson and Joseph Hickey estimate an income range of roughly $16,000 to 30,000 for the working class (Thompson and Hickey, 2005). The "working class" is typically associated with manual labor and high school education. The 2010 median household income in Brevard and Volusia counties were $46,472 and $40,919, respectively. By Beeghley’s definition, the ROI qualifies as a working class community; by Thompson and Hickey’s definition the ROI does not.

Ethnic homogeneity, or monoculturalism, is a term used to describe an area whose population has a similar ethnic background. In Brevard and Volusia counties, 83.5 and 82.9 percent of the population is identified as having “one race,” respectively; in this case, white. As such, the ROI is considered to be an area with ethnic homogeneity.

<table>
<thead>
<tr>
<th>Location</th>
<th>Householder Moved to Unit after 2010 (%)</th>
<th>Median Household Income</th>
<th>Ethnic Homogeneity</th>
<th>Homeowner-ship Rate</th>
<th>Persons 65 Years and Older (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>32.2</td>
<td>$46,472</td>
<td>83.5</td>
<td>85.3%</td>
<td>22.1</td>
</tr>
<tr>
<td>Volusia County</td>
<td>34.4</td>
<td>$40,919</td>
<td>82.9</td>
<td>90.9%</td>
<td>22.9</td>
</tr>
<tr>
<td>Florida</td>
<td>29.6</td>
<td>$46,036</td>
<td>76.2</td>
<td>81.3%</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013 (USCB, 2013a; USCB, 2013b; USCB, 2013c)

3.14.2 Environmental Consequences Including Cumulative Impacts

3.14.2.1 Proposed Action

The analysis for socioeconomics evaluates the social and economic effects, both adverse and beneficial, from changes in KSC’s Center Master Plan; actions to meet KSC’s mission and core competencies; and future development, transportation facilities, and activities. Components of the Proposed Action that would be funded by NASA - including recapitalization, redevelopment, and future expansion of spaceport capabilities – as stated in the purpose and need for this project,
will be analyzed qualitatively in this section. Those components that would not be funded by NASA – like the construction of a KSC Rail System – are also discussed qualitatively, given the scope and purpose of this Programmatic EIS. Applicable parts of this analysis might be tiered in future NEPA documents and site-specific actions would be analyzed separately and as details become known.

As noted earlier, the ROI for the socioeconomic analysis is defined as Brevard and Volusia counties, or the area most likely to be affected by the Proposed Action. The community could experience direct, indirect, or induced economic impacts as a result of changes in KSC’s land use plan, particularly as it relates to future development and the development program. The impacts could consist of changes in short-term employment, community cohesion for area residents, and decreased recreational revenue at MINWR and CANA.

The temporal bounds for analyzing socioeconomics will be guided in part by available data, an assessment of current conditions (without the proposed land use changes or associated activities), and the timing of activities associated with the Proposed Action. Though implementation of the Proposed Action would occur over a 20-year period, some components of the Development Program will change as the market and emerging technology may demand.

3.14.2.1.1 Land Use Plan

Changes in land use categories would not directly impact socioeconomic resources in the ROI in terms of employment or labor income. However, indirectly, changes in economic activity could occur in the future due to actions or development stemming from the change in land use. Future development associated with changes in land use categories would benefit socioeconomic resources in both the short- and long-term.

3.14.2.1.1.1 Recreation

Recreation areas include parks, outdoor fitness, athletic fields, recreation buildings, centers and clubs. Examples of recreation land uses include KARS Park North and KARS Park South complexes. Coastal beaches and supporting facilities are part of the CANA and are classified as Operational Buffer/Public Use. Camping, fishing, picnic and related outdoor activity areas associated with the MINWR are also classified as Operational Buffer/Public Use. No changes in recreation areas would occur and access to facilities would not be hindered. However, more than 4,000 acres of Operational Buffer/Conservation and Operational Buffer/Public Use lands would be impacted. While this would not represent direct changes in employment or economic activity, the overall recreational value(s) of MINWR and CANA could be affected. Additionally, MINWR and CANA could experience decreases in revenue with decreased visitation. See Section 3.15 (Recreation) for a detailed discussion of impacts to ecosystem services.

3.14.2.1.1.2 Launch, Landing, Operations and Support

While visitation expenditures would decrease due to beach closures at Playalinda Beach, the long-term economic impact would be negligible. These activities would generate intermittent minor to moderate adverse effects on the visitor experience during the short-term (i.e. during the launch). However, siting of new vertical launch pads would leverage future partnerships with private entities and help KSC remain competitive and attract new tenants.
3.14.2.1.1. **Seaport**

As mentioned earlier, Port Canaveral is a vital import/export shipping center and is the first quadramodal port in the world, serving air, land, sea and space transportation (Brevard County, 2014). Port Canaveral generated nearly $2 billion in business revenue and 17,000 direct, induced and indirect jobs. Three additional land areas are designated as Seaport to support future development of the sea-based transportation capability. Seaport construction would have beneficial short-term economic impacts in the ROI from construction dollars. In the long-term, seaport(s) would attract tenants, further leverage quinti-modal functionality, and capitalize on surrounding area water accessibility and linkage to Port Canaveral; generating additional business revenue and supporting additional indirect and induced jobs at Port Canaveral.

The seaport designated south of the Assembly, Integration and Processing Area on the east side of the Industrial Area would directly impact the recreational value of the area. Because of the longstanding closure to motorized vessels in an effort to protect manatees, this Manatee Sanctuary/NMZ/Designated Critical Habitat has an abundance of sea life including some of the largest schools of redfish and black drum the state has to offer. Mangroves provide protected nursery areas for fishes, crustaceans, and shellfish that are important to both commercial and sport fisheries. The most popular and direct launch spot for kayaks and canoes is Kennedy Athletic, Recreational and Social Park (KARS) Park – now open to the public with a $5.00 launch fee. Assuming this proposed seaport would be constructed for motorized boating and would require the removal of mangroves, this change in land use could be controversial as it would affect recreational activities such as fishing, boating, and wildlife viewing.

3.14.2.1.2 **Future Development Plan**

Direct effects would include spending for NASA development activities and consumption spending of new residents and construction workers; indirect effects would include local vendors providing goods and services to the primary firms; and induced impacts would include employees of these firms spending a portion of their earnings in the local economy. Economic activity is measured in terms of income and employment generated (or lost) due to the Proposed Action. With increased spending, many different sectors of the economy benefit, not only the directly impacted sector but also many sectors indirectly, via the multiplier effect. Other impacts could include costs to the local community and surrounding area as well as benefits future development would bring.

Much of the equipment and materials would be procured locally, given the presence of manufacturing firms that specialize in equipment, parts, and materials required for launch activities. In FY 2013, 85 percent of the KSC’s $1.8 billion-dollar budget was spent on the purchase of goods and services from commercial providers. From 2010 to 2013, KSC spent about $788 million on procurement in the State of Florida, or about 16 percent of annual

A “multiplier” is a number used by economists to determine the impact of a project on the economy. It is the ratio of total change in output or employment to initial change (or direct change). For example, if an industry were to create 100 new jobs, it would require materials and services from its supplying industries. If this increase in demand created 30 new jobs in the supplying industries, the employment multiplier would be 1.3 [i.e. 100 (direct) + 30 (indirect and induced)].
procurement dollars spent. Table 3.14-17 compares the procurement dollars spent in Florida and overall for the period from 2010 to 2013.

Table 3.14-17. KSC procurement dollars spent in Florida, 2010-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Florida Dollars</th>
<th>Percent</th>
<th>Total Dollars</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$237,735,099</td>
<td>22.9</td>
<td>$1,035,932,601</td>
<td>100.0</td>
</tr>
<tr>
<td>2011</td>
<td>$210,844,264</td>
<td>14.5</td>
<td>$1,454,014,400</td>
<td>100.0</td>
</tr>
<tr>
<td>2012</td>
<td>$194,078,927</td>
<td>13.0</td>
<td>$1,488,638,875</td>
<td>100.0</td>
</tr>
<tr>
<td>2013</td>
<td>$145,451,742</td>
<td>13.5</td>
<td>$1,073,541,624</td>
<td>100.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$788,110,032</td>
<td>15.9</td>
<td>$5,052,127,500</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: NASA KSC Annual Reports, 2010-2013.

NASA does not report, forecast, or set goals for hiring from local communities, but the vast majority of KSC employees live in Brevard, Orange, and Volusia counties (Busacca, 2015). The portion of labor hired locally would be highly dependent on the skill levels of the local labor force at the time. Given the history and presence of KSC in the local economies, the unemployment rate, and the availability of workers specialized in the space industry, it is anticipated that many of the directly created jobs would be filled locally.

Implementation of the action alternatives would have direct and indirect impacts to the local (Brevard and Volusia counties) and State economies in terms of employment, government revenues, personal income, business sales, and quality of life.

3.14.2.1.2.1 Development Program

The Development Program incorporates future projects that may affect the KSC facility inventory. These projects include prospective new facilities, modifications to existing assets, and unfunded future projects identified by the master planning process. The Development Program describes continuing NASA programs and missions in the context of the 20-year master planning horizon. These timeframes correspond to a phased approach including a baseline (2010) near-term (2012 – 2017), medium-term (2018 – 2022), and long-term (2023 – 2032) timeframe. These planning milestones correlate to the operating model stages associated with the evolution of KSC from a single-user to a multi-user spaceport. However, the transition from one operating model stage to the next is not time-specific, and depends on external factors such as interest and financial commitment from non-NASA entities as well as the level of federal funding allocated to KSC.

New construction and modifications to the existing asset inventory will be required to allow KSC to support continuing programs and remain competitive to attract new tenants. Modifications include the renewal and replacement of existing facilities. The individual projects are categorized into sub-groups of first, second, and third priority using funding source and anticipated construction dates as the main criteria.

First priority projects are funded by NASA and are anticipated to commence in the near future, are already underway, or have just been completed. Project costs are relatively low for NASA-funded projects and would not represent another NASA “boom” (though indirect, long-term
impacts from partnerships and new tenants may very well). With the exception of 2016 - where estimated project costs are $14 million - annual project costs would not exceed $2.2 million.

In addition to the value of development projects at KSC, direct impacts would include employment and payroll, especially in 2016. Labor income captures all forms of employment income, including wages and benefits. The increase in economic activity in the local economy, or the value added to the local economy, represents the wealth created by the industry activity (i.e. aerospace). Indirect impacts would occur due to local vendors from whom NASA would make purchases and local establishments where construction workers and contractors would shop. These local vendors and their employees in turn would make additional local purchases. Induced impacts would occur when employees of the directly and indirectly affected industries spend the wages they receive. The indirect and induced jobs created during development projects are often relatively low-wage jobs such as restaurant workers or convenience store clerks.

The 2016 payroll of construction workers would contribute to the total wages and salaries in the ROI. Approximately 80 percent of annual payroll is actually “take home” pay, and the other 20 percent goes toward workers’ compensation, health insurance, unemployment, and Social Security. Thus, not all of the “take home” pay would flow into local economies where employees reside.

As noted above, NASA does not report, forecast, or set goals for hiring from local communities, but the vast majority of KSC employees live in Brevard, Orange, and Volusia counties (Busacca, 2015). Given the history and presence of KSC in the local economies, the unemployment rate, and the availability of workers specialized in the space industry, it is anticipated that many of the directly created jobs would be filled locally, though some construction workers would commute from counties adjacent Brevard and Volusia. With a total population of over 1.5 million in the ROI, a labor force of over 440,000, and an unemployment rate of 7.9 in Brevard and 7.3 percent in 2013, most construction jobs would likely be filled by the ROI. Construction workers are expected to commute to the project area from their residences rather than relocate, and typically commute up to two hours one way for a job, or an average of 73 miles and maximum of 115 miles one way. Given the vacancy rates in Brevard (19.3 percent) and in Volusia (21.2 percent), any population increase would not impact housing during 2016 Development Program first-priority projects. Current plans do not exist to develop nearby temporary housing.

Neither the Proposed Action nor future non-NASA projects at KSC would have direct impacts on tax revenue. PILT payments would not change as land ownership would not be transferred; rather non-NASA launch and landing operations would occur at KSC with NASA as the beneficiary. Indirect business taxes (IBT), or the taxes on production and imports, are distributed among the various tax types (e.g., property) based on the State's distributions as defined by the Annual Census of Government Finances. However, regardless of the project proponent, with NASA as the landowner no direct tax impacts would occur.

As discussed in the Development Program, second priority projects are anticipated in the more distant future and might be funded by NASA or by other commercial or government entities. Second-priority projects are not analyzed as part of this Proposed Action. Third priority projects
have been identified by either the KSC planning team or the master plan and will likely be funded by non-NASA entities. Third priority projects are not yet scheduled or are anticipated in the indeterminate future. NASA funding is not expected for third priority projects and are not analyzed as part of this Proposed Action. Generally, second and third priority projects would augment the NASA facilities budget by transferring CRV and/or maintenance costs for existing facilities to others through Divestitures and Out-Grants. Non-NASA entities located at KSC might also fund larger-scale renovation and construction projects as a result of the commercialization strategy.

Many of the potential social impacts associated with the development and transportation plan (discussed below) are closely tied to boom and bust economies. The introduction of a transient workforce population into an established community often changes the social functioning or fabric of that community. In the past, communities that have become specialized in one industry go through cycles of economic expansion followed by economic collapse. These cycles can stress families and tend to tear the social fabric of communities as workers have to commute out of the area to work or they and their families have to relocate.

Several scoping commenters were concerned with the potential impact to the local area’s social fabric – that with uncontrolled development, small coastal towns would lose their sense of community and identity. One commenter added that the simultaneous growth of industry and population is already exacerbating the water quality, air quality, and basic quality of life in Florida.

3.14.2.1.3 Future Transportation Plan

Repair and resurfacing of over 29 miles of Kennedy Parkway could delay visitors at Playalinda Beach in the short-term. A commercial entity may require the development of new vertical launch capabilities that meet their specific needs. Should the market necessitate this expansion, the development would be directed to areas north of Launch Pad 39B along Beach Road. The proposed road easement to support access from Beach Road to the pad location (road expansion would be funded by a non-NASA entity) could further delay visitors at Playalinda Beach; affecting visitation revenue. However, these impacts would be intermittent and create negligible economic impacts overall.

Road repair and resurfacing, road easements, and bridge replacement could also benefit socioeconomic resources by further right-sizing NASA and positioning it as a multi-user spaceport. Road divestiture would decrease the funding allocated to infrastructure that is used by KSC and the community as a whole.

During the replacement of the Indian River Bridge, Haulover Canal and Banana River bridges, traffic would be re-directed using an alternative route. MINWR visitation could be affected during these periods, however impacts would be intermittent and create negligible economic impacts overall.

A rail connection between the Florida East Coast railway and Port Canaveral via the KSC railroad would impact the visitor experience at MINWR and could decrease recreational revenue. Increased noise levels would adversely affect the recreational experience of birders and outdoor activities at the KARS South Complex (e.g., RV camping, tenting) as well as anglers and boaters.
in the Manatee Sanctuary/NMZ (discussed above under 3.14.2.1.3 Seaports). A detailed analysis of impacts to recreational revenues from this divestiture and the construction and operation of a rail connection between Port Canaveral and KSC will be the subject of a separate environmental study.

3.14.2.1.4 Conclusion

Overall, the direct, economic impacts as a result of the Proposed Action would be beneficial but not significant. The Proposed Action would potentially create beneficial impacts of minor to moderate magnitude due to the creation of jobs and labor income, most of which would occur during 2016 as part of the Development Program. The extent of impacts would be medium (localized), since most of the jobs would be filled by area residents. These impacts are probable, since the relationship between an infusion of capital in the local aerospace industry and the resulting economic impact is well-established. Due to ongoing presence of NASA at KSC and historical data with which to compare or base projected impacts, there is moderate confidence in the accuracy of the predictions as to the types, extent, and likelihood of impacts. However, indirect and long-term impacts from non-NASA (second and third priority) projects on the local economy depend on external factors such as interest and financial commitment from non-NASA entities. The precedence and uniqueness of the impact would be minor due to historical and ongoing NASA activities at KSC.

In the long-term, however, with KSC having leveraged its position as a multi-user spaceport and positioned itself to attract new tenants, indirect economic impacts would be beneficial and significant. Future employees from non-NASA projects at KSC (e.g., Space X) would represent new purchasing power that would support additional jobs and payroll at local retail and service establishments in the ROI. There is a larger multiplier effect associated with the consumer spending of employees directly supported by KSC (though these future employees would not directly be employed by NASA). Through this spending, the Proposed Action could indirectly support thousands of indirect and induced jobs.

3.14.2.1.5 Cumulative Effects

With the potential number of combined additional launches proposed for KSC and the Shiloh Launch Complex, and other regional developments, total annual visitation at CANA could decrease considerably. Increases in water runoff, sedimentation, and potential spills would cumulatively impact recreational water-based activities in and around Mosquito Lagoon. Additionally, the increase in non-point source runoff from spin-off development as a result of these two proposed projects could affect water quality in the Indian River Lagoon over the long-term. The development of launch facilities would degrade the high aesthetic or amenity value (i.e., cultural services) associated with CANA and MINWR, contradicting and offsetting the natural attributes that contribute to their natural beauty and aesthetic quality.

3.14.2.2 Alternative 1

The direct, indirect, and cumulative socioeconomic impacts associated with Alternative 1 would be broadly similar to those of the Proposed Action, though on a somewhat smaller scale, because facilities such as two proposed new seaports would not be built, and others might not be built.
3.14.2.3 No Action Alternative

Assuming that the proposed project is not implemented, no socioeconomic changes would occur to Brevard or Volusia counties. Since ongoing activities would be substantially the same as those already occurring, no significant additional change in community character and setting would be anticipated. Existing conditions would remain substantially unchanged and have no effect on the populations of concern.

There would be no change to population, housing, employment, income characteristics, economic activity, taxes and revenues, or quality of life conditions. Fluctuations or changes would occur at rates consistent with historical trends.

3.15 Recreation

3.15.1 Affected Environment

The analysis of recreational resources identifies aspects of the proposed activities as they relate to expenditures, revenue, and ecosystem services that are sensitive to changes and that may be affected by the proposal for KSC to transition over a 20-year period (2012-2032) to a multi-user spaceport. The analysis specifically considers how the proposed and alternative actions might affect the recreational resources and its economic value to individuals and communities within Brevard and Volusia counties as well as the State of Florida.

Brevard and Volusia counties, located on Florida’s Space Coast, provide a myriad of recreational activities. The 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation revealed that 4.7 million Florida residents and nonresidents 16 years or older fished, hunted, or observed wildlife in Florida, and wildlife-related recreation expenditures totaled nine billion in 2011. Of the total number of participants, two million fished or hunted and 3.6 million participated in wildlife-watching activities, which include observing, feeding, and photographing wildlife. The most popular activity was wildlife watching, followed by fishing and then hunting (USFWS, 2011). Swimming, picnicking, boating, hiking, camping, and photography are other popular activities in the area.

The Merritt Island National Wildlife Refuge (MINWR) was established by agreement as an overlay of the NASA’s Kennedy Space Center (KSC) in 1963. The National Park Service (NPS) and the U.S. Fish and Wildlife Service (USFWS) co-manage about 34,345 acres of the refuge. Spanning the beach and dune system, estuarine waters, forested and non-forested wetlands, impounded wetlands, and upland shrublands and forests and supporting habitat for a variety of federally-listed species, State-listed species, and species of management concern, the MINWR manages >140,000 acres, including areas separate from KSC in the Turnbull Creek area (Figure 1.2-1). These diverse habitats of MINWR support more than 1,000 species of plants and more than 500 species of fish and wildlife, including a variety of waterfowl, shorebirds, and neotropical migratory birds. Canaveral National Seashore (CANA) includes 58,000 acres of barrier island, open lagoon, coastal hammock, pine flat woods and 24 miles of undeveloped beach. Biologists have documented more than 310 species of birds, including the bald eagle, wood stork, the Florida scrub jay, and roseate spoonbills. CANA logs more than 4,000 sea turtle nests each season, and in 2014 the USFWS designated critical habitat for the loggerhead turtle to
include KSC, CANA and the shoreline south of Patrick Air Force Base (AFB), extending into northern Indian River County (USFWS, 2013).

![Figure 3.15-1. Canaveral National Seashore showing beach, ocean, and Mosquito Lagoon](image)

Recreational visits, access, expenditures, and economic value of both the MINWR and CANA are described below. In addition, MINWR and CANA and their resources provide economic benefits to Brevard and Volusia counties through a multitude of ecosystem services, or the products and services produced by the environment. Ecosystem services provided by natural processes, aesthetic values, and non-consumptive resource use can affect the fiscal health of a community through reducing costs. A literature review is used to describe certain economic values to Brevard and Volusia counties, as well as to the state of Florida. The nonmarket value of birds and their roles in these fragile ecosystems are also described qualitatively.

Potential impacts would be felt most by individuals, communities, and residents in Brevard and Volusia counties. Businesses and recreational outfits in these counties would likely change the most in response to the implementation of the Proposed Action, and are therefore defined as the ROI for the analysis of recreational impacts. Impacts that extend outside of the ROI are discussed where applicable throughout the section.

Federal and state recreational areas, wildlife management areas, rivers, and water access points are identified using data from KSC, USFWS, NPS, and Florida Department of Environmental Protection (FDEP). This section describes the recreational resources on federal and state lands as they relate to the KSC.

3.15.1.1 Merritt Island National Wildlife Refuge

MINWR is located along Florida’s east central coast about 40 miles east of the city of Orlando, and was established by agreement as an overlay of the NASA’s KSC in 1963. The refuge covers more than 140,000 acres and lies within one of the most productive estuaries in the country, the Indian River Lagoon, which has more species of plants and animals than any other estuary in North America. The NPS and USFWS co-manage about 34,345 acres of the refuge, located on one of the last extensive undeveloped barrier islands on the eastern coast of Florida.
A wide array of habitats exist on the refuge, including the beach and dune system, estuarine waters, forested and non-forested wetlands, impounded wetlands and coastal scrub and forests. These diverse habitats support more than 1,000 species of plants and more than 500 species of fish and wildlife, including a variety of waterfowl, shorebirds, and neotropical migratory birds, as well as nine federally-listed species that are common to MINWR and six species that occur infrequently. In addition, there are numerous State-listed species. More than 300 species of birds (resident and migratory) have been identified using the refuge (USFWS, 2013).

3.15.1.1.1 Recreation Visits and Access

Popular with anglers, kayakers, birders, wildlife enthusiasts, and photographers, MINWR has the distinction of being one of the most visited refuges in the entire National Wildlife Refuge System, with almost 1.2 million visitors in 2011 (Figure 3.15-2). The partnership between space technology and exploration and abundant natural resources is unique to MINWR.

![Figure 3.15-2. Visitor center at MINWR](image)

Table 3.15-1 shows that in 2011, MINWR had nearly 1.2 million recreation visits. Non-consumptive recreation accounted for 1.0 million visits with residents comprising 42 percent of total visitation. In general, more non-residents (than residents) participated in non-consumptive activities at the MINWR, including walking (i.e. pedestrian), auto tours, photography, and other recreation. In contrast, more residents (than non-residents) participated in consumptive activities (i.e., fishing and hunting), though residents and non-residents participated equally in saltwater fishing.
Table 3.15-1. 2011 Recreation visits at MINWR

<table>
<thead>
<tr>
<th>Activity</th>
<th>Residents</th>
<th>Non-Residents</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Consumptive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian</td>
<td>110,517</td>
<td>165,776</td>
<td>276,293</td>
</tr>
<tr>
<td>Auto Tour</td>
<td>79,242</td>
<td>118,863</td>
<td>198,105</td>
</tr>
<tr>
<td>Boat Trail/Launch</td>
<td>7,000</td>
<td>7,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Bicycle</td>
<td>1,120</td>
<td>480</td>
<td>1,600</td>
</tr>
<tr>
<td>Interpretation</td>
<td>7,200</td>
<td>4,800</td>
<td>12,000</td>
</tr>
<tr>
<td>Photography</td>
<td>21,149</td>
<td>31,724</td>
<td>52,873</td>
</tr>
<tr>
<td>Other Recreation</td>
<td>180,673</td>
<td>271,010</td>
<td>451,683</td>
</tr>
<tr>
<td>Hunting – Migratory Birds</td>
<td>1,525</td>
<td>269</td>
<td>1,794</td>
</tr>
<tr>
<td>Fishing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater</td>
<td>11,670</td>
<td>5,002</td>
<td>16,672</td>
</tr>
<tr>
<td>Saltwater</td>
<td>83,361</td>
<td>83,361</td>
<td>166,721</td>
</tr>
<tr>
<td>Total Visitation</td>
<td>503,457</td>
<td>688,284</td>
<td>1,191,741</td>
</tr>
</tbody>
</table>

Note that the estimates for fishing are considered low for Mosquito Lagoons, as access from Parrish Park, Titusville Marina, Jones Landing, Scottsmoor Landing, and River Breeze boat ramps is not captured. These estimates also do not include fishing visitation in the Banana River. In FY 2014, a total of 341,486 recreation visits on the MINWR were for fishing, with some overlap with other uses (USFWS, 2015).

Fishing, crabbing, clamming, oystering, and shrimping are permitted in the Indian River Lagoon, Mosquito Lagoon, Banana River Lagoon, Mosquito Control Impoundments and Interior Freshwater Lakes except for the restricted areas of KSC (Figure 3.15-3). Fishing at night is permitted from a boat in the waters of the Haulover Canal, Mosquito Lagoon, Indian River Lagoon and Banana River Lagoon. Permitted anglers are allowed 24-hour access at the Haulover Canal and the Bairs Cove and Beacon 42 boat ramps. In advance of launches, the normal restricted area is expanded to temporarily close certain waters that are normally open to sports fishing (USFWS, 2015).

Waterfowl hunting is permitted on 36,000 acres of the refuge’s 140,000 acres. Waterfowl Hunt Area 1 is generally the area west of Peacock’s Pocket Road and south of State Route 402, excluding the area surrounding the refuge visitor center. Watercraft access for waterfowl hunters exist at Catfish/E. Gator Creek and Peacock’s Pocket. Waterfowl Hunt Area 4 generally includes the area west of State Route 3 in between Mosquito Lagoon and the Indian River Lagoon. Several watercraft access points for waterfowl hunters are located west of State Route 3 on the Indian River Lagoon, at at L Pond and M Pond. Hunters may not access hunt areas from Scrub Ridge Trail or Playalinda Beach Road (USFWS, 2015). The remainder of the refuge is closed to hunting to protect non-game birds and endangered species and to permit other recreational activities. Common species on the refuge include scaup, mottled ducks, blue-winged teal, and pintail.
Figure 3.15-3. MINWR fishing map

Source: MINWR, 2015
On hunt days, permitted hunters are allowed access to the refuge before sunrise (at 4:00 AM); all hunting stops at 1:00 PM. Hunting is allowed on Saturday, Sunday, Wednesday, Christmas, Thanksgiving, and New Year’s Day within the framework of the State hunt season (USFWS, 2016). The first phase of the 2014-2015 state hunting season for waterfowl and coot occurred from November 22-30, 2014; and the second phase from December 6, 2014 to January 25, 2015 (FFWCC, 2014).

Refuge roads, trails, and boat ramps are open daily from sunrise to sunset. From the north, access is available from US 1 on the Kennedy Parkway (SR 3) about two miles south of the community of Oak Hill. Access is not available from the south on SR 3 because of the restricted area surrounding the Kennedy Space Center. From the south, visitors must use the Titusville entrance. Historically, the MINWR closes south of the Haulover Canal prior to launch activities (USFWS, 2015; USFWS, 2016).

3.15.1.1.2 Visitor Expenditures

Tourists usually buy a wide range of goods and services while visiting an area. Major expenditure categories include lodging, food, supplies, and gasoline. Spending associated with refuge visitation can generate considerable economic benefits for the local communities near a refuge (USFWS, 2013). Visitor expenditures for the MINWR are assumed to occur primarily in Brevard, Orange, and Volusia counties and are therefore the dollar values reported in Table 3.15-2. As such, visitor expenditures may be overestimated for the purposes of this analysis.

In FY 2011, total expenditures were $39.1 million with non-residents accounting for $32.1 million or 82 percent of total expenditures. Expenditures on non-consumptive activities accounted for 79 percent of all expenditures.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Residents</th>
<th>Non-Residents</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Consumptive</td>
<td>$2,997.8</td>
<td>$28,027.8</td>
<td>$31,025.6</td>
</tr>
<tr>
<td>Hunting</td>
<td>$44.0</td>
<td>$19.1</td>
<td>$63.1</td>
</tr>
<tr>
<td>Fishing</td>
<td>$4,026.0</td>
<td>$4,021.7</td>
<td>$8,047.8</td>
</tr>
<tr>
<td>Total Expenditures</td>
<td>$7,067.8</td>
<td>$32,068.7</td>
<td>$39,136.5</td>
</tr>
</tbody>
</table>

For an individual, net economic value is that person's total willingness to pay (WTP) for a particular recreation activity minus his or her actual expenditures for that activity. The economic value for MINWR is $24,522. The economic value is derived by multiplying net economic values for hunting, fishing, and non-consumptive recreation use (on a per-day basis) by estimated visitor days for that activity. This figure is combined with the estimate of total expenditures and divided by the refuge’s budget for 2011, or $3,614,500. Said otherwise, for every $1 of budget expenditures, $17.61 of total economic effects are associated with these budget expenditures (USFWS, 2013).

Table 3.15-3 summarizes the local economic effects associated with recreation visits. The output, or value of production, totaled $60.4 million with associated employment of 466 jobs;
$18.1 million in labor income (i.e. wages and salaries); and almost $7.5 million in total tax revenue.

Table 3.15-3. 2011 Economic impact of MINWR

<table>
<thead>
<tr>
<th>Contribution of all Visitor Spending</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Income</td>
<td>$18,077,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Revenue</td>
<td>$7,471,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>$60,441,800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.15.1.2 Canaveral National Seashore

Congress created Canaveral National Seashore (CANA) in 1975. The park straddles the border of Brevard and Volusia counties and includes 58,000 acres of barrier islands, open lagoons, coastal hammocks, pine flat woods and 24 miles of undeveloped beaches. Semitropical climate merges with the temperate climate zone, creating a diversity of plants and animals found few other places in the world. Biologists have documented more than 310 species of birds, including the bald eagle, wood stork, the Florida scrub-jay, and roseate spoonbills (USFWS, 2013).

CANA logs more than 4,000 sea turtle nests each season. CANA logs 4,000 - 8,000 sea turtle nests annually and has the highest recorded density of turtle nesting in the NPS. In 2014, the USFWS designated critical habitat for the loggerhead turtle to include KSC, CANA and shoreline south of Patrick AFB, extending into northern Indian River County. Cape Canaveral Air Force Station (CCAFS), Patrick AFB and several other military bases are not included because those already have natural resource-management plans in place to conserve loggerhead sea turtles. Because sea turtles are already protected, the critical habitat designations will not further restrict non-federal lands, unless federal funds, permits or activities are involved, such as those for beach renourishment (USFWS, 2014).

3.15.1.2.1 Recreation Visits and Access

Year-round recreation includes fishing, boating, canoeing, surfing, sunbathing, swimming, hiking, camping, enjoying nature and historic trails, and exploring cultural resources. Additional opportunities for activities have recently become available at sites such as Seminole Rest archeological and historic site and the rehabilitated Eldora State House (NPS, 2014).
Recreation visits are defined here as one person entering a park system unit for any part of a day for recreation purposes, and overnight stays are one person spending the night in a backcountry campsite. Since 2010, the national seashore hosted between about 970,000 and 1.4 million recreation visits annually (Table 3.15-4). Visitation has fluctuated by as much as about 300,000 visitors from year to year.

Table 3.15-4. Recreation visits at CANA (2010-2014)

<table>
<thead>
<tr>
<th>Year</th>
<th>Recreation Visits</th>
<th>Recreation Overnight Stays (Backcountry campers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>966,099</td>
<td>2,702</td>
</tr>
<tr>
<td>2011</td>
<td>1,005,001</td>
<td>3,146</td>
</tr>
<tr>
<td>2012</td>
<td>994,430</td>
<td>2,769</td>
</tr>
<tr>
<td>2013</td>
<td>1,133,688</td>
<td>2,128</td>
</tr>
<tr>
<td>2014</td>
<td>1,451,225</td>
<td>3,161</td>
</tr>
</tbody>
</table>

Source: National Park Service, 2013

The eastern shore of CANA is a series of three beaches – Playalinda Beach, Klondike Beach, and Apollo Beach (from south to north). While Playalinda and Apollo beaches have entrance stations, Klondike Beach is a remote 12-mile-long beach reached on foot, horseback (seasonally), or boat with access by permit only.

Traffic counts to Playalinda Beach and Apollo Beach and are displayed in Figures 3.15-5 and 3.15-6. On average, the highest traffic counts at Apollo Beach occurred from March-July. Traffic counts at Apollo beach were highest in 2010 with a total of 168,949 and lowest in 2012 with 122,054 (NPS 2010-2014).

On average, the highest traffic counts at Playalinda Beach also occurred from March-July. Traffic counts were highest in 2010 and have decreased each year since; in 2014 the traffic count was 165,936 (NPS 2010-2014).

Table 3.15-5 shows annual visitation data for Gomez Grant, Mosquito Lagoon, North District (Apollo Beach), and South District (Playalinda Beach) from 2010 to 2014. An inductive loop traffic counter is located on the entrance lane to Apollo Beach. The traffic count is multiplied by the PPV multiplier of 3.2 for December, January, February, and March and 3.0 for April through November. As shown in Table 3.15-5 below, visitation to Apollo Beach decreased in 2011 and 2012 compared to 2010, but rebounded in 2013 and 2014.

A pneumatic tube traffic counter is located on the entrance lane to Playalinda Beach. The traffic count is multiplied by the persons-per-vehicle (PPV) multiplier of 3.0. Annual visitation at Playalinda has increased from 2010 to 2014. Access to the Southern District of CANA – which includes all lands east of State Route 3 south of the Gomez Grant Line and north of the Kennedy Space Center – closes three days prior to some rocket launches at KSC/Cape Canaveral; access reopens the day after a successful launch. Playalinda Beach closed a total of 40 days from 2010 to 2014. No closures occurred in 2012, 2013, or 2014 (NPS, 2010-2014).
Figure 3.15-5. Traffic count at Apollo Beach (2010-2014)

Source: National Park Service, 2010-2014

Figure 3.15-6. Traffic count at Playalinda Beach (2010-2014)

Source: National Park Service, 2010-2014
Gomez Grant is estimated as having five vehicles per day, and the monthly vehicle count is multiplied by the PPV multiplier of 3.0. Gomez Grant has about 5,475 visitors annually. Mosquito Lagoon is estimated as having 20 boats per day, or about 18,250 per year (NPS, 2010-2014). The monthly boat count is multiplied by the persons-per-boat (PPB) multiplier of 2.5 (CANA, 2015). Since boats can access water via several boat ramps outside of Mosquito Lagoon, visitation is not counted by the number of boats on the water (Palfrey, 2015).

<table>
<thead>
<tr>
<th>Special Use Area</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gomez Grant</td>
<td>5,475</td>
<td>5,475</td>
<td>5,475</td>
<td>5,475</td>
<td>5,475</td>
</tr>
<tr>
<td>Mosquito Lagoon</td>
<td>18,250</td>
<td>18,250</td>
<td>18,250</td>
<td>18,250</td>
<td>18,250</td>
</tr>
<tr>
<td>North District (Apollo Beach)</td>
<td>410,815</td>
<td>402,691</td>
<td>374,466</td>
<td>444,767</td>
<td>517,132</td>
</tr>
<tr>
<td>South District (Playalinda Beach)</td>
<td>497,808</td>
<td>544,833</td>
<td>562,488</td>
<td>631,446</td>
<td>876,615</td>
</tr>
<tr>
<td># Days Playalinda Beach was closed</td>
<td>21</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The Kennedy Parkway (S.R. 3) borders the western boundary of the southern two-thirds of CANA and bisects the KSC. It provides visitor access to two designated but undeveloped public boat launch areas accessing Mosquito Lagoon, a manatee viewing area adjacent to Haulover Canal, and a developed public launch facility at Haulover Canal. NASA uses Gate 6TT on the Kennedy Parkway, just south of the boat launch, to restrict public access during launch and landing operations.

Titusville Road (S.R. 406) provides access to Beach Road (S.R. 402) and MINWR’s Black Point Wildlife Drive. KSC’s gate 4TT, which is used to restrict public access during NASA launch and landing operations, is just east of the Max E. Brewer Causeway over the Indian River on S.R. 402.

Beach Road provides access to Playalinda Beach and the northern section of the space center complex; overnight public use in this area of CANA is prohibited. Bio Lab Road connects Beach Road with the Kennedy Parkway. It traverses the southwestern shoreline of Mosquito Lagoon (NPS, 2014). Note that Bio Lab Road is a public use road managed and maintained by the USFWS as part of the MINWR; it is not managed and maintained by the NPS and it is not part of the CANA.

3.15.1.2.2 Visitor Expenditures

Local economic significance and economic impacts of visitor spending were estimated by the NPS using multipliers for local areas around each park. Multipliers capture both the direct and secondary effects around the parks in terms of jobs, labor income, and output (i.e. value added, in this case). Table 3.15-6 displays the economic impacts from spending by non-local visitors, or those who do not reside in Brevard or Volusia counties. Economic impact measures estimate the likely losses in economic activity to Brevard and Volusia counties in the absence of CANA. Should the park opportunities not be available, it is assumed that local residents would spend the money on other local activities, while visitors from outside the ROI would not have made a trip.
to the area. Spending by local residents on visits to CANA would not represent “new money” to the ROI and therefore NPS generally excludes this spending when estimating impacts (NPS 2011).

Table 3.15-6. 2013 2014 Economic impact of CANA on Brevard and Volusia counties

<table>
<thead>
<tr>
<th>Non-Local Visitor Spending</th>
<th>Contribution of Non-Local Visitor Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jobs</td>
</tr>
<tr>
<td>$67,887,400</td>
<td>897</td>
</tr>
<tr>
<td>$88,428,900</td>
<td>1,334</td>
</tr>
</tbody>
</table>

3.15.1.3 Ecosystem Services Valuation

The Ecosystem Services concept was formally defined by the United Nations' 2003 Millennium Ecosystem Assessment (MEA, 2003), a four-year study involving more than 1,300 scientists worldwide. Ecosystem services are grouped into four broad categories:

1. **Provisioning services** – The supply of goods of direct benefit to people, and often with clear monetary value, such as timber from forests, medicinal plants, and fish from the oceans, rivers, and lakes. The regulation of water for drinking and irrigation is directly or indirectly moderated by the diverse roles played by different ecosystems.

2. **Regulating Services** – The range of functions carried out by ecosystems which are often of great value but generally not given a monetary value in conventional markets. They include regulation of climate through the storing of carbon and control of local rainfall, the removal of pollutants by filtering the air and water, protection from disasters such as coastal storms, and control of disease.

3. **Supporting Services** – Not of direct benefit to people but essential to the functioning of ecosystems and therefore indirectly responsible for all other services. Examples such as pollination, seed dispersal, water purification, and nutrient cycling.

4. **Cultural Services** – Not providing direct material benefits, but contributing to wider needs and desires of society, and therefore to people’s willingness to pay (WTP) for conservation. Cultural services provide recreational opportunities, inspiration for art and music, and spiritual value. They include the spiritual value attached to particular ecosystems such as sacred groves and the aesthetic beauty of landscapes or coastal formations that attract tourists and recreationists.

Both MINWR and CANA provide all four of these ecosystem services to refuge/park visitors and more generally, to residents of Florida and citizens of the United States.

3.15.2 Environmental Consequences Including Cumulative Impacts

3.15.2.1 Proposed Action

The effects analysis considers how visitor experiences would change with implementation of the Proposed Action and what contributes or detracts from desirable visitor opportunities. Desirable
visitor opportunities can be described as the ability to experience the fundamental resources and values within their natural and cultural settings. Hindering or facilitating access to various recreational resources is controversial – and is considered as it relates to traffic in the area, recreational revenue, and cultural services (one of the four categories of ecosystem service). The impact to provisioning, supporting, regulating, and cultural services is discussed throughout, considering the nonmarket good or service to Brevard and Volusia counties.

3.15.2.1.1 Land Use Plan, Future Development Plan, and Functional Area Plans

Changes in KSC’s land use plan, actions to meet KSC’s mission and core competencies, and future development, transportation facilities, and activities could in combination have both adverse and beneficial impacts on recreational resources and ecosystem services. The magnitude, extent, duration, and probability of impacts on recreational resources would depend on the activity itself and its location as it relates to ecosystem services.

The long-term consolidation of NASA support services and administrative buildings into a smaller geographic footprint, a major component of the Future Land Use Plan, would generally benefit recreational resources if developed land is re-vegetated and allowed to return to its natural state. The expansion of existing facilities would create impacts of lesser magnitude compared to construction of new facilities on pristine land, since infrastructure such as access roads and utilities have already been constructed.

Recreation areas include parks, outdoor fitness, athletic fields, recreation buildings, centers and clubs. Examples of recreation land uses include KARS Park North and South complexes. Additional Recreational land use areas are not planned, so future development and/or expansion of recreational functions, if necessary, would occur within the already established recreational land areas.

Buffer land area is submerged, vulnerable to inundation by rising water whether the result of storm event or climate change, or is a high-value uplands habitat for species of critical concern, such as the Florida scrub jay. Two sub-categories of Operational Buffer are designated: Conservation and Public Use. Operational Buffers represent the largest type of land use at KSC – 44,583 acres for Conservation and 34,844 acres of Public Use – together representing more than half of the total acreage. Development in Operational Buffer areas may include infrastructure, operations of low impact, or small footprint facilities that may be required for support of space launch or landing operations.

The Operational Buffer/Public Use category, northern Indian River Lagoon, southern Mosquito Lagoon, and much of the Banana River are publically accessible areas of KSC that are under the management of MINWR and CANA as a conditional use subject to the operational activities associated with KSC’s mission and in accord with 16 USC § 459(j) that established CANA. Coastal beaches and supporting facilities at CANA and areas and facilities to support hunting, fishing, observing and photographing wildlife, environmental education and interpretation at MINWR are classified as Operational Buffer/Public Use. Approximately 20 acres of Operational Buffer/Public Use would be removed as part of the Proposed Action.

Operational Buffer/Conservation areas correspond to land areas in the southern portion of KSC that may never have been developed, or sites that may have reverted to a natural environment.
over the years. The Proposed Action would remove approximately 4,386 acres of land designated for Operational Buffer/Conservation. The difference in total acreage (as shown in Table 2.1-1) is due to the addition of Vertical Landing category (approximately 76 acres), which lies within the same geographical footprint as the Horizontal Launch and Landing Category.

3.15.2.1.1 Vertical Launch Sites and Launch Operations and Support

Approximately 176 additional acres are designated for Vertical Launches and 107 acres for Launch Operations and Support. The development of launch complex (LC) 49 as well as LC-48 would directly impact opportunities for recreational activities; the visitor experience; and ecosystem services. The magnitude and type of impact to ecosystem services would depend on the extent of the project, site topography, type of habitat, and impervious surfaces.

As discussed in Section 3.3 Soils and Geology and 3.4 Water Resources, ground-disturbing construction activities could cause increased runoff; accelerated soil erosion; sedimentation; create habitat for colonization by invasive species; decrease soil porosity, decreasing the transfer of air and water through the soil and causing decreased vegetative productivity due to root restriction (i.e. regulating services). Impacts to soils and water from the development of LC 49 would especially affect cultural services; increased noise and murky waters would affect water-based recreational activities or passive use of Playalinda Beach. Best Management Practices (BMPs) would be implemented during project activities to prevent or reduce soil erosion into water surfaces and minimize adverse soil impacts.

A 2007 Vertical Launch Site Evaluation Study concluded that a vertical pad could also be sited to the south of 39A and to the north of pad 41. This proposed Vertical Launch Pad would occur in isolated coastal wetlands at Pintail Creek targeted for reconnection by the SJRWMD. In the past, reconnection of impounded rivers or wetlands was considered by NASA to mitigate environmental impacts caused by its future development activities. As shown in Figure 3.9-8 (Distribution of oak scrub habitat and major Florida scrub-jay populations), this Vertical Launch Pad would also occur in potential oak scrub habitat.

Colonization of invasive species from disturbing soils could adversely impact resident birds which provide regulating services in the form of pest control and carcass removal (Wenny et al., 2011). The threatened Florida scrub-jay is restricted to shrublands that have many scrub oaks and few trees – like the land cover of the proposed launch complexes. Florida scrub-jays are omnivorous and eat a wide variety of acorns, seeds, peanuts, insects, tree frogs, turtles, snakes, lizards, and young mice. Insectivory, pollination, seed dispersal, and nutrient cycling benefit plants that then produce oxygen, food, flood and erosion control, aesthetics, recreation and other benefits for human society.

3.15.2.1.2 Horizontal Launch and Landing and Vertical Landing

Over the long term, as the market and emerging technology may demand, additional horizontal launch infrastructure can be constructed in an area identified just south of Beach Road that would support an east-west horizontal launch capability. This area – adjacent Playalinda Beach and just south of Mosquito Lagoon – is managed by both NASA and NPS. As mentioned above, the difference in total acreage between the existing and future land use (approximately 76 acres) is due to the addition of the Vertical Landing category, which lies within the same geographical footprint as Horizontal Launch and Landing category.
Construction activities could result in substantial ground disturbance and movement of earth with relatively large areas of exposed soils, increasing the likelihood of soil erosion and sediment delivery to nearby surface waters and wetlands, resulting in localized turbidity increases and mobilization of fine sediments. Siltation and runoff can degrade water quality. Increased turbidity could cause an increase in water temperature as turbid water heats more readily when exposed to sunlight. Elevated levels of turbidity could also lead to decreases in primary production and dissolved oxygen levels. There could also be increased short-term fine sediment and loss of benthic food resources – impacting the supply of goods of direct benefit to people (provisioning services) or in this case, fish from the ocean. In addition, Playalinda Beach has a high aesthetic or amenity value related to the passive benefit (visual enjoyment) and wellbeing that people receive when experiencing nature. Increased noise and impacts to air and water quality associated with construction activities would contradict the natural attributes of Playalinda Beach that contribute to its beauty and aesthetic lucidity, or the cultural services it provides. Insulation and other noise reducing equipment and dust abatement would help reduce the potential impacts to visitor experience.

Increased traffic on Beach Road and Bio Lab road could hinder or delay access to Playalinda Beach during construction, though avoiding construction activities during peak visitation months (March-July) could reduce the magnitude of this impact.

3.15.2.1.1.3 Seaport

Future development of the sea-based transportation capability west of the SLF at Cedar Hammock Creek (Banana Creek) could impact ecosystem provisioning and supporting services. Accidental fuel spills in the Banana Creek could affect water quality. The removal or impact to tidal wetlands could hinder natural flood control, reducing barriers for sea level rise and storm surge. Increased sedimentation due to construction activities could degrade anadromous fish spawning grounds. Note that a separate NEPA analysis would be required for the proposed seaport west of the SLF at Cedar Hammock Creek (Banana Creek). The pursuant analysis could be referenced or tiered in the future analysis.

As displayed in Figure 3.4-4, the State of Florida classifies Banana Creek as Class III (Recreation-Propagation and Management of Fire and Wildlife) Waters. Class III water standards are intended to maintain water quality suitable for body contact sports and recreation and the production of diverse fish and wildlife communities (NASA, 2010a, 2015). Most of the shoreline on KSC/MINWR is impounded with no direct runoff into the Indian River Lagoon. While surface water quality impacts would be minimal, increased traffic with the expansion of water access areas could hinder the quiescent waters and increase turbidity in the long-term. Increased traffic from the proposed seaport to Canaveral could impact cultural services such as recreational boating and fishing around Brock’s Point and Peacock’s Pocket, though Banana Creek itself is closed to the public. The FDEP has also designated this area as a Manatee Protection Zone.

Because of the various man-made modifications related to the space program and mosquito control, circulation between Mosquito Lagoon and the Banana River was blocked in the earlier 1960s. In the MINWR, over 14,100 acres of impoundments have been reconnected or fully restored (i.e., impoundment dikes completely removed). Restored wetlands provide greater...
ecological benefits than reconnected wetlands. Designation and future development of this Seaport would occur in intertidal saltwater marsh herbaceous wetlands that were reconnected via underground culverts by the SJRWMD (SJRWMD, 2002). The beneficial role of birds in consuming arthropods, and especially their responses to and influence on insect outbreaks is well documented (Whelan et al., 2008), and provides supporting services.

Tidal wetlands can play an important role in flood control, acting much like a sponge, absorbing rainfall and therefore reducing the speed and volume of runoff entering streams and rivers. Thus, downstream water levels rise more slowly, reducing the potential for destructive flooding. In terms of flood control per unit of area, wetlands are generally assessed to provide a more valuable service than other land classifications. In the event of extreme flooding, the loss of tidal wetlands could translate to infrastructure damage and the cost to rebuild in Brevard and Volusia counties. As discussed in Section 3.9 (Biological Resources), mitigation would be needed to compensate for unavoidable wetland loss. This could include purchase of credits from a wetland mitigation bank, a monetary compensation for wetland loss, or wetland restoration or preservation.

Future development of an additional seaport south of the Assembly, Integration and Processing Area on the east side of the Industrial Area is designated in Buck Creek on the Banana River. Note that a separate NEPA analysis would be required for this proposed seaport; the pursuant analysis could be referenced or tiered in the future analysis. This proposed seaport would occur in mangroves that were reconnected via underground culverts (SJRWMD, 2002). Mangroves play an important role in the biogeochemical cycles of the coastal environment. Mangrove litter fall and root biomass have been implicated as the ultimate source of carbon and nutrients. When ecosystem nutrient pools increase in size through nutrient addition, process rates increase as nutrients cycle at a higher speed. The nutrients such as inorganic phosphorus, nitrogen, potassium, and organic carbon are provided to adjacent coastal and marine, as well as terrestrial ecosystems through active and passive transport (Hussain and Badola, 2008).

Birds provide supporting and regulating services such as insect pest control, seed dispersal, and nutrient cycling. Through their foraging (i.e., consuming and processing resources), birds act as mobile links that transfer energy both within and among ecosystems, and thus contribute to ecosystem function and resilience. Aquatic birds nesting colonially in coastal areas particularly contribute to nutrient cycling since they process large amounts of food in small areas. In this manner, seabirds transport nutrients from the aquatic zone to the terrestrial zone. Such large inputs of phosphate-rich guano can influence the structure and composition of plant communities (Ellis, 2005). Conversely, removal of nesting birds after introduction of a predator fundamentally alters the plant community (Croll et al., 2005; Bellingham et al., 2010).

In the Indian River Lagoon, mangrove communities support the continued existence of barrier islands against tidal and wave forces. Mangroves serve as storm buffers by functioning as wind breaks and through prop root baffling of wave action. Their roots stabilize shorelines and fine substrates, reducing turbidity, and enhancing water clarity. Mangroves improve water quality and clarity by filtering upland runoff and trapping waterborne sediments and debris (USFWS, 2014).
In 1990, the USFWS designated critical habitat for the endangered Florida manatee, including the location of the Seaport on the Banana River. By consuming huge quantities of aquatic vegetation they help spread plant seeds and control plant overgrowth. Manatees are good indicators of the health of the ecosystem because they can be highly susceptible or highly resistant to certain environmental stressors – aiding in early disease detection and tracking epidemiologic patterns (Sulzner et al., 2012).

Because of the longstanding closure to motorized vessels in an effort to protect manatees, this Manatee Sanctuary/NMZ has an abundance of sea life including some of the largest schools of redfish and black drum the state has to offer. Mangroves provide protected nursery areas for fishes, crustaceans, and shellfish that are important to both commercial and sport fisheries. The most popular and direct launch spot for kayaks and canoes is KARS Park – now open to the public with a $5.00 launch fee. With the development of this seaport, the introduction of motorized boating, and removal of mangroves, the increased disturbance of fish spawning areas and nesting and roosting bird and impacts to water quality and habitat are likely to lower the refuge’s biological integrity.

Assuming this proposed seaport would be constructed for motorized boating and would require the removal of mangroves, this single change in land use would create the most adverse impacts to provisioning (i.e., fishing), supporting (i.e., nutrient cycling), regulating (i.e., water quality) and cultural (i.e., manatees, boating, passive benefit) ecosystem services.

3.15.2.1.2 Launch, Landing, Operations and Support

3.15.2.1.2.1 Vertical Launch and Landing

The Proposed Action includes five to seven launches annually over the next 20 years. In the past, closures have generally been short-lived, although some continue for several days or longer and can have a profound impact on the visitation and public use programs at CANA and MINWR. The southern portion of the national seashore including Playalinda Beach, Klondike Beach, and the southern end of Apollo Beach, would close to the public during the countdown period before Space Shuttle launches/landings at KSC. The area north of old Haulover Canal would always remain open to the public. MINWR facilities, trails, and programs would also close for KSC launches and landings. In the past, closures have generally included the area south of Haulover Canal and east of the Max Brewer Bridge, including the Visitor Information Center, refuge headquarters, Oak and Palm Hammock trails, Scrub Ridge Trail, Cruickshank Trail, Dummit Cove, and the Sendler Education Outpost Pavilion. Access or impoundment road closures have included Bio Lab Road, Black Point Wildlife Drive, L Pond Road, Pump House Road, impoundment roads south of SR 406 and SR 402 (including East and West Gator Creek roads and Peacock Pocket's Road).

Hunting Areas 1 and 4 could both close during vertical launches and landings. Avoiding launches between the hours of 4 AM and 1 PM on the 25 hunt days from November through January would eliminate or avoid direct impacts to waterfowl hunting at the MINWR. Closing the Bairs Cove, Eddy Creek (at Playalinda Beach), and BioLab boat ramps would create adverse impacts to saltwater fishing at CANA and MINWR in the Indian River, Indian River North, Mosquito Lagoon, and Eddy Creek.
Visitation to MINWR and associated expenditures on the refuge and in the local community would be adversely impacted by launch and landing activities due to closures of facilities, trails, boat ramps, roads, and fishing and hunting areas. While visitation expenditures would decrease due to beach closures at Playalinda Beach, the long-term economic impact would be negligible. Therefore, these activities would generate intermittent minor to moderate adverse effects on the visitor experience during the short-term (i.e., during the launch).

3.15.2.1.2.2 Horizontal Launch and Landing

Erosion caused by site runoff and contamination by chemical spills (e.g., fueling) can impact surface water quality. Additionally, non-point sources can potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table. Healthy, well-functioning ecosystems can play a vital role in purifying water through pollutant capture provided by vegetation, soils, and sediments. High levels of nutrients like phosphorus, for instance, can be considerably reduced by wetlands. The effects to local water quality and hydrology during construction would be adverse and short-term; the degree of effect would depend on the extent of the disturbance and proximity to water. The direct economic impact to Brevard and Volusia counties would occur in the additional cost associated with processing the water when it enters the municipal water supply.

Similar potential impacts would occur from closures during horizontal launch and landing as those discussed under vertical launches and landings. Potential impacts to visitation, associated expenditures, and recreational activities at MINWR and CANA and in the local community would be adverse due to launch and landing activities with the closures of facilities, trails, boat ramps, roads, and fishing and hunting areas. However, the long-term economic impact would be negligible. Therefore, these activities would generate intermittent minor to moderate adverse effects on the visitor experience during the short-term (i.e., during the launch).

3.15.2.1.3 Future Transportation Plan

A rail connection between the Florida East Coast railway and Port Canaveral via the KSC railroad would impact ecosystem services provided by flora and fauna in Florida scrub jay habitats. The rail connection would transect potential Florida scrub jay upland habitat in the MINWR, or further fragment Florida scrub jay habitat and adversely impact their movement and dispersal, since the rail easement would utilize the existing rail line at KSC. A detailed analysis of ecosystem services and recreational impacts of this divestiture and the construction and operation of a rail connection between Port Canaveral and KSC is the subject of a separate environmental study.

3.15.2.1.4 Conclusion

Changes in KSC’s land use, actions to meet KSC’s mission and core competencies, and future development, transportation facilities, and activities would have both adverse and beneficial impacts on recreational resources and ecosystem services. The long-term consolidation of support services and expansion of existing facilities would create impacts of lesser magnitude compared to the construction of new facilities on pristine land, since infrastructure such as access roads and utilities have already been constructed.
The development of vertical launch sites and launch operations and support would affect regulating services due to increased runoff, soil erosion, and sedimentation and create negligible to minor impacts in the short-term with BMPs. Construction activities in MINWR uplands could prevent the Florida scrub-jay from performing key functions such as insectivory, pollination, seed dispersal, and nutrient cycling that then produce several benefits for human society. The development of horizontal launch infrastructure could hinder or delay access to Playalinda Beach; construction activities would contradict its natural attributes that contribute to its beauty and aesthetic quality, or the cultural services it provides. Short-term adverse impacts would likely be minor with the use of BMPs, and depend on the extent of the project; site topography; whether impervious surfaces would be installed; timing of construction activities, and access roads. Launch and landing activities would likely generate intermittent, adverse effects on the visitor experience (i.e., during the launch) at CANA and MINWR due to beach, boat ramp, facility, road, and trail closures, and would not exceed the threshold of significance.

Future development of two seaports could include the removal of saltwater marsh wetlands or mangroves, which would hinder natural flood control, degrade finfish and shellfish spawning grounds and nurseries, impact boating and fishing experiences, and further impact the Florida manatee with the introduction of motorized boating. Adverse impacts to provisioning (i.e., fishing), supporting (i.e., nutrient cycling, seed dispersal), regulating (i.e., water quality, regulation of climate, flood control) and cultural (i.e., manatees, boating, angling, passive benefit) ecosystem services would occur in both the short- and long-term and could be significant.

The extent of impacts would be medium (localized), occurring mostly at and around the proposed seaport(s). The impacts to ecosystem services are possible: while the ecosystem services that wetlands provide are well-established – as is the causal relationship of turbidity and sedimentation on fish and shellfish in coastal wetlands and mangroves, and motorized boating on manatee populations – development of either seaport would necessitate a further, site-specific environmental review. While KSC does not currently operate a seaport, and the land use surrounding KSC includes an active seaport, the precedence and uniqueness of developing either of the proposed seaports could be moderate given the exact locations of the proposed seaports. While other seaports exist nearby that would have required dredging and the removal of mangroves or tidal wetlands, none were constructed in critical habitat for the endangered Florida manatee; a FDEP Manatee Protection Zone; or a Manatee Sanctuary/NMZ after having been designated as such.

3.15.2.1.5 Cumulative Impacts

With the potential number of combined additional launches proposed for KSC and the Shiloh Launch Complex, as well as other regional developments, total annual visitation at CANA could decrease considerably. Increases in water runoff, sedimentation, and potential spills would cumulatively impact recreational water-based activities in and around Mosquito Lagoon. Additionally, the increase in non-point source runoff from spin-off development as a result of these two proposed projects could affect water quality in the Indian River Lagoon over the long-term. The development of launch facilities would degrade the high aesthetic or amenity value (i.e., cultural services) associated with CANA and MINWR, contradicting and offsetting the natural attributes that contribute to their natural beauty and aesthetic quality.
As mentioned elsewhere in this chapter (e.g., Section 3.2.1), by 2040, Brevard County is projected to have 677,451 residents (an increase of more than 100,000 from the population at present), and Volusia County 595,077, an increase of nearly 100,000. This will put added pressure on existing recreational resources and facilities, such as those at CANA and MINWR. Furthermore, a larger population and levels of development and higher amounts of non-source pollution within the watershed of the IRL will make it more difficult to maintain and improve the water quality of the IRL that is indispensable for ecosystem health, including healthy and abundant bird, fish, and aquatic/marine invertebrate populations, upon which both consumptive and non-consumptive outdoor recreation depend.

Over a still longer time frame, climate change and sea level rise are likely to have pronounced, and likely adverse, effects on local ecosystems and dependent outdoor recreation.

3.15.2.2 Alternative 1

Direct, indirect and cumulative impacts on recreation from Alternative 1 would be substantially less than those of the Proposed Action because the two proposed new seaports would not be constructed and operated and because development of launch and landing facilities north of Beach Road might not occur. This would avoid impacts from the Proposed Action on outstanding recreational opportunities in and around Merritt Island, Banana Creek, Mosquito Lagoon, Playalinda Beach, CANA and MINWR. Some cumulative adverse impacts on recreation at CANA and Playalinda Beach may still occur because of the Shiloh proposal.

3.15.2.3 No Action Alternative

Under the No Action Alternative, land use would not change on Operational Buffer and Public Use areas. Without future development of horizontal launch and vertical landing facilities, vertical launch pads, and seaports, the value of ecosystem services at CANA and MINWR would not change (or would fluctuate with market forces). The continued increase in visitor numbers, as well as urban development of the area surrounding the national seashore, will likely degrade visitor experience and the uncrowded beach and lagoon experience at CANA. With more users, noise levels and the demand for services and facilities will likely increase, as well as the likelihood of resource damage.

Sea level rise and erosion from climate change, or the need to protect certain areas or species, may alter visitor access to certain parts of CANA and MINWR. Visitation for birding and fishing may change if new species shift northward, or extant species move northward or have dramatic declines in population, as might occur with the temperature-sensitive manatee.

3.16 Environmental Justice and Protection of Children

3.16.1 Affected Environment

Executive Order (EO) 12898 “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations” requires that federal agencies consider as a part of their action any disproportionately high and adverse human health or environmental effects to minority and low-income populations. Agencies are required to ensure that these potential effects are identified and addressed.
The U.S Environmental Protection Agency (EPA) defines environmental justice as: “the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.” The goal of “fair treatment” is not to shift risks among populations, but to identify potential disproportionately high adverse impacts on minority and low-income communities and identify alternatives to mitigate any adverse impacts. For purposes of assessing environmental justice under NEPA, the Council on Environmental Quality (CEQ) defines a minority population as one in which the percentage of minorities exceeds 50 percent, or is substantially higher than the percentage of minorities in the general population or other appropriate unit of geographic analysis (CEQ, 1997).

EO 13045 “Protection of Children from Environmental Health Risks and Safety Risks” places a high priority on the identification and assessment of environmental health and safety risks that may disproportionately affect children. The EO requires that each agency “shall ensure that its policies, programs, activities, and standards address disproportionate risks to children.” It considers that children’s physiological and social development makes them more sensitive than adults to adverse health and safety risks, and recognizes that children in minority, low-income, and indigenous populations are more likely to be exposed to, and have increased health and safety risks from, environmental contamination than the general population.

KSC is situated in Central Florida west of Cape Canaveral on Merritt Island. KSC encompasses all northeast areas of Brevard County and extends north to include the southern edge of Volusia County. Therefore, Brevard County and Volusia County, Florida are the regions of influence (ROI) for any direct and indirect impacts that may be associated with the implementation of the Proposed Action. For purposes of comparison, the state of Florida is defined as the region of comparison (ROC), or the “general population” as it corresponds to the CEQ definition. Demographic and income data for Brevard County and Volusia County (the ROI), are compared to demographic and income data for the state of Florida (the ROC) throughout the section.

3.16.1.1 Minority Populations

The CEQ defines “minority” as including the following population groups: American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic Origin; or Hispanic (CEQ, 1997). All figures and calculations are based on Demographic Profile Data from the 2010 United States Census.

The CEQ defines a minority population in the following ways:

1. “…If the percentage of minorities exceeds 50 percent... (CEQ, 1997).” As this definition applies to the PEIS Proposed Action, if more than 50 percent of either Brevard County or Volusia County populations consist of minorities, they would qualify as constituting an environmental justice population.

2. “… [If the percentage of minorities] is substantially higher than the percentage of minorities in the general population or other appropriate unit of geographic analysis (CEQ, 1997).” For purposes of this analysis, a discrepancy of ten percent or more between minorities (the sum of all minority groups) in Brevard County or Volusia...
County compared to the state of Florida would be considered “substantially” higher, and would categorize either Brevard County or Volusia County as constituting an environmental justice population. This approach also applies to individual minority groups. A discrepancy of ten percent or more between individual minority groups (American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic Origin; or Hispanic) in Brevard or Volusia County and the percentage of individual minority groups in the state of Florida would be considered “substantially” higher, and would categorize Brevard or Volusia County as constituting an environmental justice population.

Table 3.16-1 summarizes the representation of all minorities in Brevard County, Volusia County, and the state of Florida.

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Population</th>
<th>Minority (%)</th>
<th>American Indian & Alaska Native (%)</th>
<th>Black or African American (%)</th>
<th>Asian (%)</th>
<th>Native Hawaiian & Other Pacific Islander (%)</th>
<th>Hispanic or Latino (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>543,376</td>
<td>20.8</td>
<td>0.4</td>
<td>10.1</td>
<td>2.1</td>
<td>0.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Volusia County</td>
<td>494,593</td>
<td>23.6</td>
<td>0.4</td>
<td>10.5</td>
<td>1.5</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Florida</td>
<td>18,801,310</td>
<td>41.4</td>
<td>0.4</td>
<td>16.0</td>
<td>2.4</td>
<td>0.1</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 2010

As the table indicates, neither Brevard County nor Volusia County meets the regulatory definition of consisting a minority population or minority group(s). All minorities in Brevard County, Volusia County, and the state of Florida represent less than 50 percent of the total population. The percentage of each minority population group in both Brevard County and Volusia County is lower than the percentage of minority population groups in the state of Florida. By both CEQ definitions of a minority population, the ROI does not constitute an environmental justice population.

3.16.1.2 Low-Income Populations

Low-income populations are defined as those with a preponderance of households with incomes below the Federal poverty level. There are two slightly different versions of the Federal poverty measure: poverty thresholds and poverty guidelines. The poverty thresholds are the original version of the Federal poverty measure, and are updated each year by the U.S. Census Bureau. The thresholds are used mainly for statistical purposes, for instance, preparing estimates of the number of Americans in poverty each year. All official poverty population figures are calculated using the poverty thresholds, not the guidelines.

Environmental Justice Guidance Under NEPA suggests that Census poverty thresholds should be used to identify low-income populations (CEQ, 1997). Census uses a set of income thresholds that vary by family size and composition to determine who is in poverty. If a family's total
income is less than the family threshold, that family and every individual in it is considered to be in poverty. The official poverty thresholds do not vary geographically, but are updated for inflation. The official poverty definition considers pre-tax income and does not include capital gains or non-cash benefits such as public housing, Medicaid, and food stamps (CEQ, 1998).

The U.S. Department of Health and Human Services (DHHS) guidelines represent the basis for many state and regional guidelines, including Head Start, the Food Stamp Program, the National School Lunch Program, the Low-Income Home Energy Assistant Program, and the Children’s Health Insurance Program. The DHHS poverty guidelines are simplifications of the Census’s detailed matrix of poverty thresholds. Like the Census poverty thresholds, the DHHS poverty thresholds are updated annually, vary based on family size and age, and do not vary geographically.

The DHHS poverty guidelines define low-income populations as those whose median household income is at or below the maximum annual income of $14,570 for a family of two and $18,310 for a family of three (USDHHS, 2010).

<table>
<thead>
<tr>
<th>Location</th>
<th>Percentage of All People Below the Poverty Level</th>
<th>Percentage of Families Below the Poverty Level</th>
<th>Median Household Income*</th>
<th>Median Family Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard County</td>
<td>10.5%</td>
<td>7.2%</td>
<td>$49,523*</td>
<td>$60,842</td>
</tr>
<tr>
<td>Volusia County</td>
<td>13.8%</td>
<td>9.4%</td>
<td>$44,400*</td>
<td>$55,569</td>
</tr>
<tr>
<td>Florida</td>
<td>13.8%</td>
<td>9.9%</td>
<td>$47,661*</td>
<td>$57,204</td>
</tr>
</tbody>
</table>

*In 2010 inflation-adjusted dollars

As displayed in Table 3.16-2, the percentage of all people below poverty in Brevard County is 3.3 percent lower than in the state of Florida while Volusia County has the same percentage of all people below poverty as the state of Florida. The percentage of families in Brevard County below poverty is 2.7 percent lower than in the state of Florida. In Volusia County, the percentage of families below poverty is 0.5 percent lower than the percentages in the state. The median household income in Volusia County is $3,261 lower than the state of Florida, or approximately 6.8 percent lower, while the median household income in Brevard County is $1,862 more than in the state, or approximately 3.9 percent higher. Although Volusia County has a median household income 6.8 percent less than the state of Florida and a median family income 2.9 percent less than the ROC, the population is still significantly above designated poverty levels by the DHHS definition. In addition, since the percentage of all people and families below the poverty level is either below or equal to the state of Florida, the ROI does not constitute an environmental justice population.

3.16.1.3 Protection of Children

EO 13045 *Protection of Children From Environmental Health Risks and Safety Risks* was prompted by the recognition that children are more sensitive than adults to adverse
environmental health and safety risks because they are still undergoing physiological growth and development. It is the responsibility of each federal agency to:

1. Identify and assess environmental health risks and safety risks that may disproportionately affect children; and

2. Ensure that its policies, programs, activities, and standards address disproportionate risks to children that result from environmental health risks or safety risks.

EO 13045 “defines environmental health risks and safety risks [to] mean risks to health or to safety that are attributable to products or substances that the child is likely to come in contact with or ingest (such as the air we breathe, the food we eat, the water we drink or use for recreation, the soil we live on, and the products we use or are exposed to).” Children may have a higher exposure level to contaminants, because they generally have higher inhalation rates relative to their size. Children also exhibit behaviors, such as spending extensive amounts of time in contact with the ground and frequently putting their hands and objects in their mouths, which can lead to much higher exposure levels to environmental contaminants. It is well documented that children are more susceptible to things like exposure to mobile source air pollution, particulate matter from construction, or diesel emissions.

The Memorandum Addressing Children’s Health Through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act recommends that EISs “describe the relevant demographics of affected neighborhoods, populations, and/or communities and focus exposure assessments on children who are likely to be present at schools, recreation areas, childcare centers, parks, and residential areas in close proximity to the proposed project, and other areas of apparent frequent and/or prolonged exposure” (EPA, 2012).

EO 13045 requires assessment of readily available information regarding demographic data on the local, regional, and national populations, and, in particular, children less than 18 years old to evaluate the number and distribution of children in the region and whether these children are exposed to environmental health and safety risks from the Proposed Action. Information to support this analysis is derived from the 2010 Census and locations with potentially high concentrations of children, such as schools, recreational areas for children, and residential areas identified.

In general, the Brevard County and Volusia County population is slightly older than that of the state as a whole. The percentage of children under 5 years in Brevard County and Volusia County is lower than the percentage in the state (Table 3.16-3). Similarly, the percentage of children between the ages of 5 and 18 in Brevard County and Volusia County is lower than the percentage in the state. The percentage of children in the ROI – whether under 5 years, between 5 and 18 years, or all children under 18 years – is lower than the percentages in the state of Florida and as such does not constitute an unduly sensitive population on this basis.
Table 3.16-3. Summary of children by age group

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Population</th>
<th>Children Under 5 Years</th>
<th>Children 5 to 18 Years</th>
<th>All Children Under 18 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
</tr>
<tr>
<td>Brevard County</td>
<td>543,376</td>
<td>26,809</td>
<td>4.9</td>
<td>80,877</td>
</tr>
<tr>
<td>Volusia County</td>
<td>494,593</td>
<td>24,337</td>
<td>4.9</td>
<td>68,936</td>
</tr>
<tr>
<td>Florida</td>
<td>18,801,310</td>
<td>1,073,506</td>
<td>5.7</td>
<td>2,928,585</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 2010

3.16.2 Environmental Consequences Including Cumulative Impacts

Consideration of the potential consequences of the Proposed Action for environmental justice and protection of children requires three main components:

1. A demographic assessment of the affected community to identify the presence of minority, low-income, or youth populations that may be potentially affected.
2. An assessment of all potential impacts identified to determine if any result in significant adverse impact to the affected environment.
3. An integrated assessment to determine whether any disproportionately high and adverse impacts exist for minority, low-income, or youth groups present in the study area.

For an environmental justice impact to occur, the human health or environmental consequences must be adverse, high, and disproportionate. CEQ guidance for establishing disproportionately high and adverse impacts includes the following criteria (CEQ, 1997):

- **For human health impacts,** assessing whether:
 - The impacts, including bodily impairment, infirmity, illness, or death, are significant or above generally accepted norms;
 - The risk or rate of hazard exposure by a minority population, low-income population, or Native American Tribe to an environmental hazard is significant and appreciably exceeds, or is likely to appreciably exceed, the risk or rate to the general population or another appropriate comparison group; and
 - The impacts occur in a minority population, low-income population, or Native American Tribe affected by cumulative or multiple adverse exposures to environmental hazards.

- **For environmental impacts,** assessing whether:
 - There is or will be an impact on the natural or physical environment—ecological, cultural, human health, economic, or social—that significantly and adversely affects a minority population, low-income population, or Native American Tribe when that impact worsens the impacts on the natural or physical environment;
The environmental impacts are significant and are, or may be, having an adverse impact on minority populations, low-income populations, or Native American Tribes that appreciably exceed, or is likely to appreciably exceed, those on the general population or another appropriate comparison group; and

- The environmental impacts occur, or would occur, in a minority population, low-income population, or Native American Tribe affected by cumulative or multiple adverse exposures to environmental hazards.

This analysis does not attempt to predict environmental justice impacts for a given KSC activity or for the program as a whole. Rather, it addresses the types of impacts that the Proposed Action could produce on minority and low-income communities. It addresses the potential severity of these impacts in the context of site-specific circumstances, where possible. Environmental justice analysis for actions included here is necessarily site-specific; that is, the direct impacts of these actions affect resident populations at the specific locations where the actions occur and not at the larger regional or national level. As a result, evaluating individual actions on a site-specific basis through tiered EIS and Environmental Assessment (EA) processes proves more effective.

Where minority, low-income, or youth populations are found to represent a high percentage of the total affected population, the potential for these populations to be displaced, suffer a loss of employment or income, or otherwise experience adverse effects to general mental and physical health and well-being is assessed for posing an environmental justice concern.

As discussed above, Brevard County and Volusia County represent the primary focus and ROI for any direct and indirect impacts that may be associated with implementation of the Proposed Action. For purposes of comparison, the state of Florida was defined as the ROC.

3.16.2.1 Proposed Action

3.16.2.1.1 Minority Populations

Neither Brevard County nor Volusia County constitutes an environmental justice population because in both counties, neither the percentage of minorities exceeds 50 percent nor is substantially higher than the percentage of minorities in the state. Disproportionate impacts to minorities in both Brevard and Volusia Counties would therefore be negligible.

3.16.2.1.2 Low-Income Populations

As previously established in Table 3.16-2, Brevard County and Volusia County do not constitute an environmental justice population since poverty levels coupled with median household income levels are lower or comparable with the rest of Florida, the ROC, and the majority of the population in the ROI is living well above the HHS poverty guidelines definition of poverty.

3.16.2.1.3 Protection of Children

As previously established and summarized in Table 3.16-3, children do not represent more than 50 percent of the population in the ROI. The percentage of children, whether under the age of 5 or between the ages of 5 and 18, does not represent a substantially higher percentage in the ROI compared to the state. Disproportionate impacts to the health and safety of children in Brevard
and Volusia counties would not occur. Potential impacts to community services, including schools, are discussed in Section 3.15, Socioeconomics.

3.16.2.1.4 Employment
Since there are no environmental justice populations existing in the ROI there would be no impacts to air quality, water quality, noise, recreation, or traffic and transportation that would disproportionately affect an environmental justice population. However, the Proposed Action would produce a number of skilled jobs on an incremental basis, which would be filled by the local labor force to the extent possible. KSC has been one of the leading employers of both Brevard and Volusia counties (KSC, 2010). After the shutdown of the 30-year Shuttle program in 2011 almost 8,000 employees were laid off (Alvarez, 2012).

According to the Federal Reserve Economic Data in August 2011 Brevard County had an unemployment rate of 11.2% (FRED, 2014). The end of the Shuttle program had a direct impact on the local economy. Unemployment in Brevard County consistently dropped every year since the end of the shuttle program, and has rested at a rate of 6.4% since October 2014 (FRED, 2014). With the implementation of the Proposed Action it can be expected that additional jobs will be created in the local communities. Beneficial impacts would be felt most by those in search of highly skilled technical jobs, but the Proposed Action would also create a number of indirect or induced jobs from project-related spending and the spending decisions of workers (see Section 3.15, Socioeconomics, for a detailed discussion of jobs and economic activity).

3.16.2.1.5 Air Quality
As described in Section 3.6, Air Quality, the air quality at KSC is influenced by operations, land management practices, vehicle traffic, and other emission sources. Most KSC operations such as space launches, training fires, and fuel load reduction burns (prescribed fire on MINWR) influence air quality as episodic events (KSC, 2010). KSC has obtained all the required permits to date and is in total compliance with all the permit condition requirements, thus ensuring no adverse impact on human health or the environment, and no consequent impact on minority or low-income populations in the surrounding area (KSC, 2010). In the future, when implementing the Proposed Action, KSC would require any additional mandated permits.

3.16.2.1.6 Water Quality
As discussed in Section 3.4, Water Resources, impacts to water quality are anticipated to be generally minor, to a small extent, and unlikely adverse. KSC maintains operating permits for four domestic wastewater treatment facilities (KSC, 2010). The nearest domestic water treatment facility is located approximately 3.7 miles from the nearest community, thus ensuring no adverse impact on human health or the environment, and no consequent impact on minority or low-income populations in the surrounding area. KSC operates several facilities that treat Industrial Wastewater. However, the nearest facility is located approximately 2.7 miles from the nearest community, thus ensuring no adverse impact on human health or the environment, and no consequent impact on minority or low-income populations in the surrounding area (Google Earth, 2014).

Potential pollution could be caused by stormwater interacting with disturbed areas during construction activities such as haul roads, parking areas, and equipment staging areas. The required multi-sector general permit for stormwater discharges associated with industrial activity
will require preparation of a Storm Water Pollution Prevention Plan (SWPPP). Additional recommendations include the installation and use of BMPs for prevention of non-point source pollution and the routine inspection, maintenance, and recordkeeping for all stormwater pollution control facilities. Because the construction activities are limited to the KSC boundaries, no adverse impact on human health or the environment, and no consequent impact on minority or low-income populations in the surrounding area is expected.

Acoustic Environment

As discussed in Section 3.8, Acoustic Environment (Noise), impacts caused by future KSC operations implemented by the Proposed Action would be minor and will mainly be contained to the KSC property boundaries. Noise generated at KSC can be attributed to six general sources: a) Sonic booms, b) launches, c) aircraft movements, d) industrial operations, e) construction, and f) traffic noise. According to the KSC Environmental Justice Plan, areas surrounding KSC and MINWR are far enough away from operational areas that they are exposed to relatively low ambient noise levels, in the range of 35 to 40 dBA (KSC, 2010). Therefore, it is not expected that the Proposed Action would have an adverse impact on human health or the environment, and no consequent impact on minority or low-income populations in the surrounding area is expected.

Recreation

As discussed in Section 2.1.1.2.12, Recreation, recreational activities that may occur within the area are numerous due to the diverse habitats and ecosystems of the region. NASA manages approximately 1,500 acres of citrus groves on the MINWR, as well as commercial fishing for oysters, shrimp, and other river fish species (KSC, 2010). KSC’s Visitor Center Complex is a popular tourist attraction giving the public a chance to learn about the latest space technology and KSC programs firsthand. MINWR and CANA are additional attractions as popular parks for recreational activities such as bird and wildlife observation, manatee observation, fishing, hunting, boating, and paddling (Recreation, 2014). As discussed above, potential impacts to water and air quality would be local in extent. Any potential risks to recreationists would be mitigated by safety measures mandated by KSC, including exclusion zones during flight operations at launch facilities.

Community Services and Traffic

Minor impacts would occur to the local transportation network due to a net increase of vehicles in the area during construction phases over the course of implementation of the Proposed Action. The closest residential areas are nine miles to the south on Merritt Island and seven miles to the west in Titusville; the distances of these areas from the Proposed Action preclude any direct impacts from construction or operations. The Merritt Island community to the south includes the Merritt Island High School, Jefferson Junior High School and three elementary schools. Titusville includes the Astronaut and Titusville High Schools, two middle schools, and seven elementary schools. The surrounding communities also include the Parish Medical Center and Riverside Medical Hospital in Titusville, as well as the Cape Canaveral Hospital, just east of Merritt Island (Google Earth, 2014). Increases in traffic are expected to have minimal to no impact to community services in the area. Any potential impacts to community services, including schools, are discussed further in section 3.15, Socioeconomics.
3.16.2.10 Conclusion

The Proposed Action is not expected to produce any adverse consequences related to environmental justice. The proposed construction and future government and commercial operations at KSC are also not expected to generate air pollutants at a level that would adversely affect the human health and the environment of the surrounding area. Noise levels are also not expected to adversely affect populations living near KSC except for sporadic operations. All future construction activities under the Proposed Action would be implemented within the boundaries of KSC. The distance between existing and zoned residential areas of Merritt Island, 9 miles to the south, and Titusville, seven miles to the west, and the construction and operation activity prevent direct impact to populations (KSC, 2010). In addition, launch pads are located in remote areas and launch trajectories are aimed over the open ocean, away from populated areas of the ROI. Therefore, launch activities would not be expected to adversely impact human health in either Brevard or Volusia Counties.

Launch accidents are possible but pose no significant risk to the surrounding populations. Toxic or hazardous material as discussed in section 3.5, Hazardous Materials and Waste, could be released into the environment during an accident but would not extend beyond the immediate vicinity of the launch operation pads. It is NASA policy to keep members of the public off KSC land from areas that may be at risk during launch operations. NASA would continue to consider Environmental Justice issues during the implementation of the Proposed Action consistent with the agency-wide strategy pertaining to environmental justice (KSC, 2010). Because of the small, incremental nature of planned KSC activities and the relative absence of impacted populations, adverse effects to minority and low-income populations, and children in the KSC area as a whole would not be significant. Therefore, negligible-to-minor direct or indirect adverse impacts would be expected from the Proposed Action under consideration. Likewise, because of the modest incremental changes involved in the Proposed Action, no significant cumulative impacts would be expected. However, if in the future any disproportionately high or adverse human health or environmental effects of the Proposed Action at KSC on low-income or minority populations appear, they would be identified and action would be taken to resolve any public concerns.

3.16.2.2 Alternative 1

The direct, indirect, and cumulative impacts of Alternative 1 on environmental justice and protection of children would be virtually identical to those of the Proposed Action.

3.16.2.3 No Action Alternative

The No Action Alternative would continue KSC’s ongoing program at the current level of operations. No new potential for environmental justice effects or increased risk to children would be anticipated under this alternative. In general, all members of the affected communities would experience both the potential beneficial and adverse effects of the No Action Alternative equally. Minority or low-income individuals would unlikely experience high or disproportionate effects from the actions to be taken under this alternative.
3.16.2.4 Mitigation

NASA has also already undertaken measures to ensure that their actions do not have disproportionately high adverse human health or environmental effects on minority or low-income populations in the surrounding Kennedy community by developing the KSC Environmental Justice Plan (KSC-PLN-1917) in 1997 which was updated in 2010 (NASA, 2010a, 2015). The Plan outlines numerous programs that have been put in place to show KSC’s commitment to its surrounding community and is updated periodically to ensure relevance (KSC, 2010). Such programs described in the Environmental Justice Plan include:

- Interdisciplinary National Science Project Incorporating Research and Education Experience (INSPIRE) – This program is designed to provide grade-appropriate NASA related resources and experiences to encourage and reinforce student’s aspirations to pursue science, technology, engineering, and mathematics.

- KSC Intern Program (KIP) – The objective of this program is to provide students valuable work experience related to their academic studies and knowledge of KSC’s mission.

- Motivating Undergraduates in Science and Technology (MUST) – This scholarship program is designed to attract and retain students in science, technology, engineering, or mathematics disciplines, and is led by the Hispanic College Fund with the support of the Society of Hispanic Professional Engineers and the United Negro College Fund Special Programs Corporation.

- Undergraduate Student Research Program (USRP) – This program offers undergraduates in science, math, and engineering mentored internship experiences at KSC.

- Exploration Systems Mission Directorate Student Project (ESMD) - This is a higher education student program with the goal to train and develop the highly skilled scientific, engineering, and technical workforce of the future needed to implement the Vision for Space Exploration.

- Annual Day of Caring Program - This program allows KSC employees four hours off to help and provide assistance in the community work.

- Combined Federal Campaign (CFC).

- A teacher-resource center that provides extensive information about NASA and KSC on the Internet and enables users to obtain material on science, math, and related topics.

- Annual Earth Day.

- Family Day.

- African-American Heritage Month.

- Hispanic Heritage Month.

- Asian Pacific Islanders Heritage Month.

- Native American Heritage Month.

- National Disability Employment Awareness Month.
3.17 Unavoidable Adverse Impacts

Sec. 102(C)(ii) of NEPA [42 USC § 4332] requires an EIS to list “any adverse environmental effects which cannot be avoided should the proposal be implemented.” Table 3.17-1 lists, by resource topic, unavoidable adverse impacts that would result from the Proposed Action, i.e., full implementation of the CMP Update, and Alternative 1, which is similar to the Proposed Action but lacks several of its facilities and land use features. As noted throughout this chapter, some of these adverse effects can be mitigated to some extent, and many of these adverse effects are not considered significant adverse effects even without mitigation.

Table 3.17-1. Unavoidable adverse impacts

<table>
<thead>
<tr>
<th>Resource topic</th>
<th>Unavoidable adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proposed Action</td>
</tr>
</tbody>
</table>
| Soils and Geology| • Impacts on upland and wetland soils and geology from clearing, grubbing, grading, excavating, and filling.
 • Vertical and horizontal launches may result in local adverse impacts on soils and geology from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances); elevated metal concentrations and changes in soil pH would be expected from such deposition within a small radius of the launch pad. |
| Water Resources | • Non-point sources can potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table.
 • Impervious or semi-impervious surfaces would likely contribute to more surface drainage than at present.
 • Vertical & horizontal launches may result in local adverse impacts on freshwater and marine systems, from deposition associated with rocket engine emissions, the deposition of spent launch vehicle equipment, or landing of a reentry vehicle or its associated equipment.
 • Impacts from HCl (formed during...)

| | **Alternative 1** |
| | • Impacts on upland and wetland soils and geology from clearing, grubbing, grading, excavating, and filling.
 • Vertical and horizontal launches may result in local adverse impacts on soils and geology from the deposition of rocket engine emissions (e.g., acids, various metals, and other substances); elevated metal concentrations and changes in soil pH would be expected from such deposition within a small radius of the launch pad. |
| | • Non-point sources can potentially impact surface and groundwater quality, such as oil and grease from paved street and road surfaces that wash into a water body or are absorbed into the water table.
 • Impervious or semi-impervious surfaces would likely contribute to more surface drainage than at present.
 • Vertical & horizontal launches may result in local adverse impacts on freshwater and marine systems, from deposition associated with rocket engine emissions, the deposition of spent launch vehicle equipment, or landing of a reentry vehicle or its associated equipment.
 • Impacts from HCl (formed during...)}
<table>
<thead>
<tr>
<th>Resource topic</th>
<th>Unavoidable adverse effects</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
</tr>
</thead>
</table>
| **Water Resources** (continued) | rocket launches) on surface waters would be restricted to the area immediately adjacent to the launch pad. No substantial impacts on surface waters of nearby oceans, lagoons, or large inland water bodies should occur due to the buffering capacities of these bodies. A normal launch would have no substantial impacts on local water quality.
• Impacts to waters of the U.S. including wetlands from constructing two new seaports and a new launch facility. | associated equipment.
• Impacts from HCl (formed during rocket launches) on surface waters would be restricted to the area immediately adjacent to the launch pad. No substantial impacts on surface waters of nearby oceans, lagoons, or large inland water bodies should occur due to the buffering capacities of these bodies. A normal launch would have no substantial impacts on local water quality.
• Potential impacts to waters of the U.S. including wetlands from constructing a new launch facility. |
| **Air Quality** | • Could affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic.
• Short-term effects from demolition of aging or obsolete facilities would be from airborne dust and other pollutants.
• Long-term effects would be from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic. | • Could affect air quality in several ways: through airborne dust and other pollutants generated during construction; by the introduction of new stationary sources of pollutants, such as heating boilers and backup generators; and through increases in transportation-based emissions such as launches and automotive traffic.
• Short-term effects from demolition of aging or obsolete facilities would be from airborne dust and other pollutants.
• Long-term effects would be from introduction of new stationary sources such as boilers and generators, as well as increases in transportation-based emissions such as launches and automotive traffic. |
| **Climate** | • Sea level rise will affect KSC habitats and facilities.
• KSC GHG emissions will contribute measurably through negligibly to the global, cumulative increase in atmospheric GHG concentrations. | • Sea level rise will affect KSC habitats and facilities.
• KSC GHG emissions will contribute measurably through negligibly to the global, cumulative increase in atmospheric GHG concentrations. |
<table>
<thead>
<tr>
<th>Resource topic</th>
<th>Unavoidable adverse effects</th>
</tr>
</thead>
</table>
| **Acoustic Environment (Noise)** | • Would result in the continuation of many of the types of noise presently occurring at KSC but potentially in greater amounts.
• Short-term increases in noise would result from the use of heavy equipment during construction and demolition activities.
• Long-term effects would be from the addition of stationary sources of noise such as standby generators, and changes in both vertical and horizontal launch activities. |
| **Biological Resources** | • Reduction of 4,406 acres of operational buffer, both public use and conservation components, meaning that 4,406 acres of native vegetation communities (both upland and wetland) would be lost to development.
• Vertical and horizontal launches may result in local adverse impacts on native upland and wetland vegetation.
• Impacts of two new seaports on 286 acres of wetlands vegetation and manatee critical habitat, Essential Fish Habitat, seagrasses, water quality, hydrology and flow.
• Loss of wildlife habitat would result from conversion of up to 4,386 acres of operational buffer/conservation to other more developed land uses. This would constitute about 5% of the non-water land area at KSC.
• Launches at KSC would likely continue to have recurring, short-term, localized to medium, minor to moderate adverse impacts to aquatic habitats and fish for the duration of the Center Master Plan.
• Potential exists for adverse cumulative impacts from climate change and (climate
Resource topic

<table>
<thead>
<tr>
<th>Resource topic</th>
<th>Proposed Action</th>
<th>Alternative 1</th>
</tr>
</thead>
</table>
| **Biological Resources** | cumulative impacts to the Florida scrub-jay.
• Overall cumulative impacts from climate change and (climate change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, and widespread. | change related) sea level rise on existing native wildlife at KSC, both terrestrial and aquatic, will likely be substantial, adverse, and widespread. |
| **Transportation** | • Short-term increases in traffic would result from construction worker commutes during construction and demolition activities.
• Would be traffic peaks caused by spectators of launching and landing. | • Short-term increases in traffic would result from construction worker commutes during construction and demolition activities.
• Would be traffic peaks caused by spectators of launching and landing. |
| **Recreation** | • Impacts on public use of MINWR, CANA, and Playalinda Beach.
• Increased loss of visitor access to and use of CANA and MINWR.
• Impacts from seaports on recreational assets in IRL.
• Loss of 1,874 acres now designated as Open Space and 19 acres of Operational Buffer/Public Use.
• Impacts of 2 seaports on visitor experience in the Banana River. | • Loss of 1,874 acres now designated as Open Space and 19 acres of Operational Buffer/Public Use. |

3.18 Relationship Between Short-Term Uses of the Environment and Maintenance and Enhancement of Long-term Productivity

Sec. 102(C)(iv) of NEPA [42 USC § 4332] and 40 CFR 1502.16 require an EIS to address: “the relationship between local short-term uses of man’s environment and the maintenance and enhancement of long-term productivity.” This involves the consideration of whether a Proposed Action is sacrificing a resource value that might benefit the environment in the long term, for some short-term value to the project proponent or the public.

The purpose and need of the Proposed Action and Alternative 1 – implementing the CMP Update or implementing a modified version of the Update (Alternative) – is to repurpose the Kennedy Space Center over the coming two decades and guide its transition to a multi-user spaceport. One of the primary aims of the CMP Update is to pursue environmental stewardship.
and sustainability both at KSC and globally. Many facilities would be consolidated and more renewable energy would be produced.

NASA acknowledges that there are tradeoffs inherent in any allocation of land and natural resources. In the present instance, implementation of the Proposed Action would involve the long-term conversion of approximately 1,874 acres of KSC’s designated Open Space, 3,245 acres of Operational Buffer/Conservation, and 35 acres of Operational Buffer/Public Use to more developed uses. Implementation of Alternative 1 would entail the long-term conversion of approximately 1,874 acres of KSC’s designated Open Space, 3,941 acres of Operational Buffer/Conservation, and 19 acres of Operational Buffer/Public Use to more developed uses.

Implementation of the Proposed Action, but not Alternative 1, would also involve construction and operation of two new seaports, which would affect natural habitats including wetlands. Effects on wetlands, in any case, as mandated by Section 404 of the Clean Water Act, would require a permit from the U.S. Army Corps of Engineers. Before such a permit could be issued, any seaport proposal involving dredging or fill in waters of the United States would need to be evaluated using the Section 404(b)(1) Guidelines developed by EPA in conjunction with the Department of the Army. These guidelines are heavily weighted towards preventing environmental degradation of waters of the United States (including wetlands) and so place additional constraints on Section 404 discharges.

Efforts on the part of NASA and KSC both to adapt to climate change and sea level rise, as well as to control and reduce KSC’s own greenhouse gas emissions (thereby limiting NASA’s contribution to this long-term, cumulative environmental challenge), can be interpreted as pursuing maintenance and enhancement of long-term productivity.

3.19 Irreversible and Irretrievable Commitment of Resources

Sec. 102(C)(v) of NEPA [42 USC § 4332] requires an EIS to address “any irreversible and irretrievable commitments of resources which would be involved in the Proposed Action should it be implemented.” Irreversible and irretrievable commitments of resources mean losses to or impacts on natural resources that cannot be recovered or reversed.

More specifically, “irreversible” implies the loss of future options. Irreversible commitments of resources are those that cannot be regained, such as the extinction of a species, removal of mined ore or pumped oil and gas, permanent conversion of wetlands, loss of cultural resources, soils, wildlife, agricultural, and socioeconomic conditions. The losses are permanent, incapable of being reversed. “Irreversible” applies mainly to the effects from use or depletion of nonrenewable resources, such as minerals or cultural resources, or to those factors, such as soil productivity, that are renewable only over long periods of time.

“Irretrievable” commitments are those that are lost for a period of time, such as the temporary loss of timber productivity in forested areas that are kept clear for use as a right-of-way, road, or winter sports site. The lost forest production is irretrievable, but the action is not irreversible. If the use changes back again, it is possible to resume timber production.
3.19.1 Irreversible Commitments of Resources

Under the Proposed Action and Alternative 1 – implementing the CMP Update or a modified version of it – the following would constitute essentially irreversible commitments of resources:

- Consumption of the fossil fuels (primarily diesel) and lubricants by the heavy construction equipment (bulldozers and Caterpillars, graders, scrapers, excavators, loaders, trucks, etc.) used both for demolition of existing obsolete facilities and the excavation and construction of proposed facilities.

- Materials used to construct all proposed facilities, including cement/concrete, soil cement, steel, slurry material, clay, sand, gravel, iron, and other metallic alloys, copper wiring, PVC piping, and so forth.

- Energy, supplied by fossil fuels or some other source of electricity, used over the operational life of the existing and proposed facilities at KSC.

- Chemical propellants used to launch rockets and payloads, which require fossil fuels and energy in their synthesis and manufacture.

- Wetlands eliminated to construct two seaports (Proposed Action only).

- Existing wildlife habitat that would be eliminated by newly developed areas.

- Possible undiscovered archeological, cultural or other heritage resources within the footprint of newly developed sites.

3.19.2 Irretrievable Commitments of Resources

As noted above, “irretrievable” commitments of resources are those that are lost for a period of time, but not permanently. The Proposed Action would entail certain irretrievable commitments. The following two items represent such irretrievable commitments:

- Short-term impacts on water quality and aquatic biota during periods of construction.

- Sites containing natural habitats that are developed with facilities but later decommissioned and abandoned or allowed to return natural habitat either passively through natural succession or actively through restoration efforts.
4.0 SUMMARY OF MITIGATION MEASURES

This chapter summarizes not only mitigation measures under the different sections or resource topics in Chapter 3 but also planning considerations and NEPA compliance issues that may arise as the Kennedy Space Center is evaluating future projects as the Center Master Plan is implemented and KSC transitions to a multi-user spaceport in the coming decades.

4.1 Soils and Geology

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1:

- Best Management Practices (BMPs) will be implemented during all construction activities involving ground surface disturbance, excavation, and earth movement to prevent or reduce soil erosion into water surfaces and minimize adverse soil impacts.

- During construction and preparation activities, topsoil should be removed and stockpiled wherever possible and reused in the area where it was salvaged. After construction is complete, the establishment of a native vegetative cover in disturbed areas would aid in reestablishing biological activity in the soil.

- Mitigation measures to reduce impacts on surrounding soils from vertical and horizontal launches could include sediment blocks in areas with outfalls outside the launch perimeter fence to prevent off-site migration of soils containing elevated metal concentrations.

- Certain actions which would impact soils and geology would require additional site-specific NEPA analysis (EIS or EA) that should tier off this Programmatic EIS. These actions include development of railroads and seaports.

4.2 Water Resources

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1:

- BMPs to control erosion, sediment release, and stormwater surface runoff will be utilized during all project activities to minimize adverse impacts on water resources. All disturbed areas should be planted with native vegetation once a project is complete, thus stabilizing soils, reducing long-term effects such as erosion, sedimentation, and runoff, and improving water quality in nearby receiving waters. Identifying and staking the limits of clearing and earth work, installing silt fences, establishing a controlled area for construction material and equipment, and preparing a sediment and erosion control plan would minimize the potential for adverse impacts to water quality, hydrology, floodplains and wetlands. Vigorous application of appropriate BMPs will minimize erosion and sediment runoff to surface waters and wetlands at the project site and in the surrounding vicinity.

- To prevent accidental fuel or chemical spills, no refueling would occur near surface water. The fueling operation would be closely monitored, and an emergency spill kit
containing absorption pads, absorbent material, a shovel or rake, and other cleanup items should be readily available on-site in the event of an accidental spill.

- BMPs limiting the amount of disturbance to just the project footprint will be implemented to reduce adverse impact to wetlands, floodplains, and riparian areas.
- Upon ignition of the main engines and Solid Rocket Boosters, deluge waters are discharged to the flame trench for sound attenuation. As the launch proceeds, more water is discharged to the fixed service structure and moveable launch platform to dissipate launch heat energy. Within 10 minutes of a launch, pad facilities are washed down with up to 326,000 gallons of water. The high concentrations of hydrogen chloride (HCl) gas produced by ignition of the SRBs significantly lower the pH of the collected wash water. Operational procedures require that the contained launch waters be neutralized with 50 percent sodium hydroxide (NaOH) to a pH of 8.5 +/- 0.5 within 72 hours following launch. Future practices will continue to follow the industrial wastewater permit.

4.3 Hazardous Materials and Waste

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1:

- Due to the regulatory and safety requirements inherent in the industry and the nature of expected operations it is considered likely that sufficient engineering and administrative controls would mitigate the risks associated with the presence of these materials to the lowest possible level. The severity of an unplanned event is unlikely to increase.
- The probability of an accidental release would increase due to the increased activities and quantity of materials, but best practices would ensure this increase in risk is small, with the probability of a major spill kept at a minimum.

4.4 Air Quality

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

Future or tiered NEPA will require air quality assessment for:

- Actions that include more than 1,000,000 gsf/yr of demolition or construction.
- Actions that included stationary sources that exceed the PSD major source threshold.
- Increases in vertical launch and landing activities at KSC.
- Increases in horizontal launch and landing activities at KSC.
- Establishment of any new seaports at KSC.
- Establishment of any new runways at KSC.

4.5 Climate Change

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1:
• Consistent with NASA land management practices and the Office of Strategic Infrastructure addressing a climate adaptation strategy, KSC will implement elevation-based zoning and development controls to insure that any future development is constructed at an elevation of six feet above mean sea level. Land areas that do not naturally offer this condition should be avoided or incur the cost of fill and drainage improvements, potentially making them economically less attractive.

• Areas of existing facilities or structures that are in 0-3 foot above mean sea level zones must be hardened or raised to accommodate future climate and weather or relocated to ground six feet or above.

• Critical facilities are to be moved outside the 500-year flood plain or, if not practicable, hardened to withstand a hurricane event.

• As part of its climate adaptation strategy, KSC created a Dune Vulnerability Team to address beach and sand dune erosion as the sand dunes are the physical protection barrier for NASA’s Launch Pads 39A and 39B from the sea. The Dune Vulnerability Team consists of CASI scientists, the U.S. Geological Survey, the University of Florida, and the U.S. Fish and Wildlife Service. The team will be activated as necessary in the future to manage and protect dunes and the KSC facilities and infrastructure that they in turn help to protect.

4.6 Acoustic Environment (Noise)

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

Future or tiered NEPA will require noise assessment for:

• Actions that include construction or demolition activities within 800 feet of the KSC boundary for more than 1 year or have blasting activities for which a blast management plan addressing noise and vibration has not been prepared.

• Increases in vertical launch and landing activities at KSC.

• Actions that increased the total number of annual operations above 90,000 of propeller or small jet aircraft, or 700 annual operations of medium and large jets.

• Actions that include the addition of any permanent source of noise that would operate regularly or ongoing basis.

• Actions that added new roadways or had lane additions to access controlled highways.

• Establishment of any new seaports at KSC.

• Establishment of any new runways at KSC.

4.7 Biological Resources

• Heavy equipment may cause temporary disturbance and damage to plants in adjacent areas beyond the footprint of a project site; impacts to surrounding vegetation could be minimized by plainly demarcating site boundaries. The overall impact on vegetation
would be reduced by concentrating the area of disturbance to the smallest area necessary to complete the project.

- In order to minimize soil erosion, inhibit the establishment and propagation of invasive exotic plant species, and reestablish the natural vegetation community, disturbed project areas should be revegetated or reseeded with native plant species once construction is complete.

- Other actions in this plan that would impact upland vegetation would need separate NEPA analysis and would not be covered under this Programmatic EIS. These actions include development of railroads and seaports.

- Construction of two new seaports under the Proposed Action – one on Banana Creek (a tributary of the Indian River Lagoon) and one on the Banana River just south of the Exploration Park and Industrial Functional Areas (see Figure 2.1-3 for a more detailed map) – would take place in wetlands and waters of the U.S. (see Figure 2.1-1 and Figure 3.9-2), occupying 286 additional acres, much or most of which is wetlands. Unless mitigated, this would constitute a permanent, adverse, medium-scale, moderate to major, potentially significant impact on wetlands and waters of the U.S. However, under its Section 404 Clean Water Act permitting authority, the U.S. Army Corps of Engineers would require avoidance or compensatory mitigation for construction (dredging and filling) in wetlands on this scale.

- Impacts to wetlands and wetland vegetation will be mitigated by the use of BMPs to reduce erosion and sedimentation during construction activities. These practices include minimizing the length of time bare soil is exposed, along with timely reseeding and mulching. In addition, construction and maintenance of portable and long-term sediment and surface-water retention features would further reduce the potential for erosion and sedimentation. Landscaping within and near wetlands will include the planting of native species.

- NASA will try to keep unavoidable wetland impacts within the threshold of the USACE and state-issued required permits. Mitigation will be needed to compensate for unavoidable wetland loss. This could include purchase of credits from a wetland mitigation bank, a monetary compensation for wetland loss, or wetland restoration or preservation.

- Applying the Central Campus concept will allow NASA to recapitalize, over time, functions and capabilities into more efficient facilities on a smaller footprint and combine once spread-out non-hazardous functions into a smaller, more efficiently secured geographic footprint.

- To ensure that impacts of invasive species do not surpass the threshold of significance, BMPs and mitigation measures should be followed during project activities, and an exotic plant management program should be implemented over the long-term, including regular monitoring and control measures.

- In the FAA’s regular review of licenses for launch and reentry as well as its review of applications for an experimental permit that proposes to launch from the Shuttle Landing Facility at KSC, the FAA would coordinate with NASA in determining if there is a need...
to further consult with either the Fish and Wildlife Service and/or the National Marine Fisheries Service based on any new activities proposed by the applicant. In the FAA’s review of licenses for launch and reentry or review of applications for an experimental permit at KSC, the FAA would coordinate with NASA to determine whether there is a need to further consult with either USFWS or NMFS, based on any new activities proposed by the applicant. The FAA would similarly coordinate with NASA regarding any need to further consult with the appropriate state agency regarding any applicable requirements for State listed protected species and habitat. If potential impacts are identified, the FAA would consult with the appropriate agencies to develop any mitigation measures that may be warranted.

4.8 Cultural Resources

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

- All activities that may have adverse effects on cultural resources at KSC would be managed in accordance with the KSC Cultural Resources Management Plan. The CRMP provides an inventory of significant cultural resources and a plan of action to identify, assess, manage, preserve and protect these resources. It also includes a guide for impact analysis review and a set of SOPs for ongoing cultural resource management activities.

- Although specific project locations are not currently known, it is possible that some project locations may occur in or adjacent to areas with a high potential for the presence of archaeological sites. As the project locations are defined, the NHPA Section 106 process would be initiated and determinations would be made for the APE and potentially impacted cultural resources. Appropriate surveys and studies would be conducted so that the effect of the undertaking upon the cultural resources can be determined.

- Consultations would be undertaken on a project-by-project basis with the respective SHPO or THPO and interested or affected Native American tribes. Should previously undiscovered artifacts or features be unearthed during any of the proposed projects, work would be stopped in the immediate vicinity of the find, a determination of significance made, and a mitigation plan formulated (in consultation with the respective THPO or SHPO and with American Indian entities that may have interests in the project area).

- When implementing the Proposed Action or Alternative 1, NASA will continue to follow stipulations identified in the CRMP, existing Memoranda of Agreements (MOAs), and an existing Programmatic Agreement (PA). If a specific project of detailed dimensions and scale is proposed at a specific location, this PEIS will serve as a master NEPA document to which future NEPA compliance documents may be “tiered”.

- If the need arises, NASA will develop new MOAs or modify the existing PA to address proposed activities that are not currently addressed in the existing agreements.

- KSC will conform to the consultation, identification and documentation standards set forth in 36 CFR Part 800.8(c), and will notify in advance, the SHPO and ACHP where it intends to use the NEPA process to comply with Section 106.
4.9 Land Use

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

- By separate Memorandum of Agreement (MOA), effective February 23, 2001, with the EPA and Florida Department of Environmental Protection (FDEP), KSC, on behalf of NASA, agreed to implement Center-wide, certain periodic site inspection, condition certification and agency notification procedures designed to ensure the maintenance by Center personnel of any site-specific land use controls (LUCs) deemed necessary for future protection of human health and the environment.

- Although the terms and conditions of the MOA are not specifically incorporated or made enforceable within each LUC Implementation Plan (LUCIP) by reference, it is understood and agreed by NASA KSC, EPA, and FDEP that the permanence each LUCIP’s proposed measures shall be dependent upon the Center’s substantial good faith compliance with the specific LUC maintenance commitments. Should such compliance not occur or should the MOA be terminated, it is understood that the protectiveness of the remedy may be reconsidered and that additional measures may need to be taken to adequately ensure necessary future protection of human health and the environment. LUCIPs are generally prepared for sites undergoing some type of corrective action and will remain in place until the site conditions requiring land use controls are eliminated.

- Special land use permits will be considered during review of facility siting requests. Both duration of the permit and assignment of the permit vary.

- The future land use plan aims to support expansion of the site’s quint-modal capabilities to provide multi-use spaceport users increased support. The plan outlines where development can occur, how land can be used, and how strategic capabilities can be expanded to support KSC’s evolution to a multi-user spaceport. Through this approach, KSC aims to better separate potentially hazardous operations from less-hazardous operational areas and non-NASA operations from NASA operations.

4.10 Transportation

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

Future or tiered NEPA would require assessment of effects to traffic and/or transportation resources for:

- Actions that include a substantial amount of demolition or construction, the addition of new roadways, or the closure of existing roadways, any or all of which would be considered likely to induce an appreciable change (especially an increase) in traffic volume.

- Action that includes an appreciable change in the number of aircraft operations at KSC.

- Actions that include the addition of new roadways, bridges or access control points, or permanent closure of existing roadways, bridges or access control points.
• Establishment or closure of any seaports or rail spur at KSC.
• Establishment, expansion or closure of any runway at KSC.

4.11 Recreation

The measures listed here would apply both to the Proposed Action (Center Master Plan Update) and Alternative 1.

• Increased noise and impacts to air and water quality associated with construction activities would contradict the natural attributes of Playalinda Beach that contribute to its beauty and aesthetic lucidity, or the cultural services it provides. Insulation and other noise reducing equipment and dust abatement would help reduce the potential impacts to visitor experience.

• Increased traffic on Beach Road and Bio Lab road could hinder or delay access to Playalinda Beach during construction, though avoiding construction activities during peak visitation months (March-July) could reduce the magnitude of this impact.

4.12 Environmental Justice

NASA has also already undertaken measures to ensure that their actions do not have disproportionately high adverse human health or environmental effects on minority or low-income populations in the surrounding Kennedy community by developing the KSC Environmental Justice Plan (KSC-PLN-1917) in 1997 which was updated in 2010. The Plan outlines numerous programs that have been put in place to show KSC’s commitment to its surrounding community and is updated periodically to ensure relevance (KSC, 2010). Such programs described in the Environmental Justice Plan include:

• Interdisciplinary National Science Project Incorporating Research and Education Experience (INSPIRE) – This program is designed to provide grade-appropriate NASA related resources and experiences to encourage and reinforce student’s aspirations to pursue science, technology, engineering, and mathematics.

• KSC Intern Program (KIP) – The objective of this program is to provide students valuable work experience related to their academic studies and knowledge of KSC’s mission.

• Motivating Undergraduates in Science and Technology (MUST) – This scholarship program is designed to attract and retain students in science, technology, engineering, or mathematics disciplines, and is led by the Hispanic College Fund with the support of the Society of Hispanic Professional Engineers and the United Negro College Fund Special Programs Corporation.

• Undergraduate Student Research Program (USRP) – This program offers undergraduates in science, math, and engineering mentored internship experiences at KSC.

• Exploration Systems Mission Directorate Student Project (ESMD) - This is a higher education student program with the goal to train and develop the highly skilled scientific, engineering, and technical workforce of the future needed to implement the Vision for Space Exploration.
• Annual Day of Caring Program - This program allows KSC employees four hours off to help and provide assistance in the community work.

• Combined Federal Campaign (CFC).

• A teacher-resource center that provides extensive information about NASA and KSC on the Internet and enables users to obtain material on science, math, and related topics.

• Annual Earth Day.

• Family Day.

• African-American Heritage Month.

• Hispanic Heritage Month.

• Asian Pacific Islanders Heritage Month.

• Native American Heritage Month.

• National Disability Employment Awareness Month.
5.0 REFERENCES CITED

(Austin, 2016). Austin, Stan. 2016. Letter from Stan Austin, Regional Director, National Park Service, Southeast Regional Office, Atlanta, to Robert Cabana, Director, Kennedy Space Center, containing NPS comments on Draft PEIS for Center-wide operations at KSC. April 21.

http://www.fws.gov/southeast/planning/PDFdocuments/MerrittIslandFinal/Final_Merritt_Island_Final_CCP.pdf.

6.0 LIST OF PREPARERS

SOLV LLC

Nathalie Jacque Socioeconomics, recreation, and cultural resources
Brue Kaplan Climate, general analysis, and editing
Leon Kolankiewicz Project manager and principal document editor
Eveline Martin Biological resources, soils and geology, water resources
Miguel Pelaez Water resources
Daniel Perkins Environmental justice and protection of children
Chelsie Romulo Maps and GIS
Philip Sczerzenie Biological resources
Julie Sepanik Maps and GIS
Marissa Staples Utilities

LPDES, INC.

Tim Lavallee, P.E. Air Quality, Noise, and Transportation

EL DORADO ENGINEERING, INC.

Morgan Frampton Hazardous materials and waste
Rick Frandsen, P.E. Hazardous materials and waste
Bob Hayes Hazardous materials and waste
Ralph Hayes Hazardous materials and waste
7.0 LIST OF PERSONS AND AGENCIES CONSULTED

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gisele Altman</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Mike Blaylock</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>Mario Busacca</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Trey Carlson</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Edwin Correa</td>
<td>National Park Service, Canaveral National Seashore</td>
</tr>
<tr>
<td>Kay Craig</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Donald Dankert</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Annie Dziergowski</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>Peter Eggert</td>
<td>Space Florida</td>
</tr>
<tr>
<td>Cheri M. Ehrhardt</td>
<td>U.S. Fish and Wildlife Service, Merritt Island National Wildlife Refuge</td>
</tr>
<tr>
<td>Nancy English</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Garland Grey</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Layne Hamilton</td>
<td>U.S. Fish and Wildlife Service, Merritt Island National Wildlife Refuge</td>
</tr>
<tr>
<td>Shawn Harris</td>
<td>National Park Service, Canaveral National Seashore</td>
</tr>
<tr>
<td>Kylie Johnson</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Dale Ketcham</td>
<td>Space Florida</td>
</tr>
<tr>
<td>Jim Kuzma</td>
<td>Space Florida</td>
</tr>
<tr>
<td>Tim Leech</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>Mike Legare</td>
<td>U.S. Fish and Wildlife Service, Merritt Island National Wildlife Refuge</td>
</tr>
<tr>
<td>Ted Martin</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Barbara Naylor</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Tina Norwood</td>
<td>National Aeronautics and Space Administration Headquarters</td>
</tr>
<tr>
<td>Myrna Palfrey</td>
<td>National Park Service, Canaveral National Seashore</td>
</tr>
<tr>
<td>David Pierce</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Taylor Pitcock</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Nancy Potts</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Heath Rauschenberger</td>
<td>National Park Service, Canaveral National Seashore</td>
</tr>
<tr>
<td>John Schafer</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Name</td>
<td>Organization/Role</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Pam Schanel</td>
<td>ICF International for the Federal Aviation Administration</td>
</tr>
<tr>
<td>Glenn Semmel</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Alex Vinson</td>
<td>National Aeronautics and Space Administration, Kennedy Space Center</td>
</tr>
<tr>
<td>Dorn Whitmore</td>
<td>U.S. Fish and Wildlife Service, Merritt Island National Wildlife Refuge</td>
</tr>
<tr>
<td>Tracy Young</td>
<td>NASA, Kennedy Space Center</td>
</tr>
</tbody>
</table>
8.0 INDEX OF TERMS

A

Advisory Council on Historic Preservation · 3-179
aluminum oxide · ES-8, 2-43, 3-20, 3-46, 3-47, 3-48, 3-65, 3-70, 3-72, 3-73
Archaeological Resources Protection Act · 3-177, 3-179
Area Development Plan · 1-8, 3-189
Area of Potential Effect
APE · ES-10, 2-57, 3-178, 3-182, 3-184, 4-5

B

Best Management Practices
BMPs · ES-6, ES-11, 2-36, 2-38, 2-58, 3-19, 3-28, 3-37, 3-44, 3-45, 3-63, 3-74, 3-98, 3-149, 3-151, 3-152, 3-155, 3-156, 3-157, 3-158, 3-200, 3-250, 3-255, 3-264, 4-1, 4-2, 4-4

C

Canaveral National Seashore
CNS · ES-2, ES-3, 1-3, 2-13, 2-15, 2-26, 2-29, 2-32, 2-34, 3-7, 3-95, 3-162, 3-169, 3-174, 3-189, 3-191, 3-192, 3-238, 3-239, 3-244, 7-1
Cape Canaveral Air Force Station · ii, ES-1, 2-26, 2-32, 3-180, 3-182, 3-186, 3-202, 3-210, 3-227, 3-244
carbon dioxide
CO₂ · ES-8, 2-43, 3-20, 3-21, 3-47, 3-65, 3-66, 3-68, 3-69, 3-71, 3-72, 3-73, 3-82, 3-83, 3-84, 3-88, 3-89, 3-90, 3-93
Center Master Plan
CMP · i, ii, ES-1, ES-10, 1-1, 1-6, 2-1, 2-30, 2-50, 3-2, 3-87, 3-91, 3-170, 3-189, 3-199, 3-218, 3-231, 3-269, 4-1, 4-2, 4-3, 4-5, 4-6, 4-7

Clean Air Act · 1-11, 3-58, 3-61, 3-63, 3-260
Clean Water Act · 1-11, 2-50, 2-27, 3-31, 3-45, 3-49, 3-154, 3-213, 3-271, 4-4
Council on Environmental Quality
CEQ · i, ES-1, ES-3, ES-8, 2-1, 2-9, 2-46, 3-2, 3-6, 3-84, 3-85, 3-88, 3-183, 3-257, 3-258, 3-259, 3-261
dissolved oxygen
DO · 2-38, 3-33, 3-44, 3-50, 3-251
Elliot Plantation · 3-185
Endangered Species Act · i, ES-1, 1-11, 3-31, 3-112, 3-119, 3-120, 3-131, 3-135, 3-168
Environmental Protection Agency
EPA · ii, 1-12, 2-27, 3-31, 3-37, 3-58, 3-59, 3-60, 3-61, 3-66, 3-76, 3-82, 3-83, 3-95, 3-97, 3-193, 3-211, 3-212, 3-213, 3-257, 3-260, 3-271, 4-6
expendable launch vehicle · 2-17
Federal Aviation Administration
FAA · ii, ES-3, ES-4, 1-1, 1-10, 1-13, 2-10, 2-15, 2-26, 2-32, 3-8, 3-73, 3-74, 3-100, 3-150, 3-167, 3-185, 3-190, 4-4, 4-5
Florida Department of Environmental Protection
FDEP · 1-11, 1-12, 3-27, 3-28, 3-30, 3-31, 3-32, 3-37, 3-45, 3-48, 3-58, 3-59, 3-60, 3-193, 3-212, 3-213, 3-215, 3-239, 3-251, 3-255, 4-6
Florida Fish and Wildlife Conservation Commission
FFWCC · 3-32, 3-112, 3-120, 3-131, 3-143, 3-144, 3-145
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Development Concept</td>
<td>FDC·2-15, 2-34</td>
</tr>
<tr>
<td>General Management Plan</td>
<td>GMP·1-3, 3-194</td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td>HAP·3-60, 3-61, 3-68, 3-69</td>
</tr>
<tr>
<td>Heavy Class Launch Vehicle</td>
<td>HCLV·2-18, 2-19</td>
</tr>
<tr>
<td>hydrogen chloride</td>
<td>ES-6, ES-8, 2-43, 2-20, 2-46, 3-65, 3-69, 3-73, 4-2</td>
</tr>
<tr>
<td>Integrated Cultural Resources Management Plan</td>
<td>ICRMP·3-180, 3-181, 3-182, 3-183</td>
</tr>
<tr>
<td>International Space Station</td>
<td>1-2, 2-16, 2-17, 2-33, 3-86</td>
</tr>
<tr>
<td>John F. Kennedy Space Center</td>
<td>KSC·ES-1, 1-1, 1-6</td>
</tr>
<tr>
<td>Kennedy Athletic & Recreation Social</td>
<td>KARS Park·2-13, 2-21, 3-8, 3-27, 3-118, 3-145, 3-191, 3-193, 3-232, 3-233, 3-236, 3-249, 3-253</td>
</tr>
<tr>
<td>launch vehicle</td>
<td>ES-6, 1-3, 1-5, 2-11, 2-17, 2-18, 2-19, 2-20, 2-38, 3-8, 3-21, 3-45, 3-46, 3-65, 3-66, 3-69, 3-70, 3-71, 3-73, 3-90, 3-96, 3-99, 3-100, 3-150, 3-190, 3-206, 3-214, 3-267</td>
</tr>
<tr>
<td>Liquid Oxygen</td>
<td>LOX·2-18, 2-19, 2-21, 3-47, 3-55, 3-65</td>
</tr>
<tr>
<td>Low Earth Orbit</td>
<td>i, ES-2, 1-2, 1-6, 2-7, 2-17</td>
</tr>
<tr>
<td>Maximum Achievable Control Technology</td>
<td>MACT·3-60, 3-61</td>
</tr>
<tr>
<td>Medium Class Launch Vehicle</td>
<td>MCLV·2-18, 2-19, 3-46, 3-66</td>
</tr>
<tr>
<td>Merritt Island National Wildlife Refuge</td>
<td>MINWR·ES-2, ES-3, ES-11, ES-14, 1-3, 1-12, 2-1, 2-13, 2-26, 2-31, 2-32, 2-34, 2-58, 2-65, 3-7, 3-22, 3-23, 3-25, 3-95, 3-114, 3-115, 3-116, 3-118, 3-119, 3-124, 3-128, 3-135, 3-137, 3-138, 3-141, 3-142, 3-143, 3-162, 3-163, 3-165, 3-167, 3-169, 3-171, 3-173, 3-174, 3-175, 3-176, 3-168, 3-193, 3-202, 3-237, 3-239, 3-241, 3-249, 3-251, 3-252, 3-255, 4-4</td>
</tr>
<tr>
<td>Integrated Cultural Resources Management Plan</td>
<td>ICRMP·3-180, 3-181, 3-182, 3-183</td>
</tr>
<tr>
<td>International Space Station</td>
<td>1-2, 2-16, 2-17, 2-33, 3-86</td>
</tr>
<tr>
<td>Multi-Purpose Crew Vehicle</td>
<td>2-16, 2-17, 2-33</td>
</tr>
</tbody>
</table>
| National Aeronautics and Space Administration | NASA·i, ii, ES-1, ES-2, ES-3, ES-4, ES-5, ES-8, ES-9, ES-11, ES-13, 1-1, 1-2, 1-3, 1-5, 1-6, 1-8, 1-10, 1-11, 1-13, 2-1, 2-2, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16, 2-17, 2-19, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34, 2-46, 2-58, 2-63, 3-1, 3-6, 3-8, 3-9, 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 3-16, 3-17, 3-18, 3-20, 3-21, 3-23, 3-25, 3-26, 3-27, 3-28, 3-30, 3-32, 3-35, 3-37, 3-39, 3-41, 3-42, 3-43, 3-46, 3-47, 3-48, 3-49, 3-61, 3-63, 3-68, 3-69, 3-71, 3-77, 3-78, 3-79, 3-81, 3-82, 3-83, 3-84, 3-86, 3-87, 3-88, 3-89, 3-91, 3-
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Ambient Air Quality Standards</td>
<td>3-58, 3-59, 3-61, 3-63, 3-66, 3-76</td>
</tr>
<tr>
<td>National Park Service</td>
<td>ES-3, ES-4, ES-11, 1-10, 2-1, 2-13, 2-26, 2-31, 2-32, 2-58, 3-8, 3-22, 3-178, 3-182, 3-184, 3-185, 3-189, 3-194, 3-200, 3-230, 3-238, 3-239, 3-244, 3-245, 3-246, 3-247, 3-248, 3-250</td>
</tr>
<tr>
<td>Outstanding Florida Waters</td>
<td>3-28, 3-30, 3-32</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbon</td>
<td>3-33, 3-42, 3-43</td>
</tr>
<tr>
<td>Programmatic Agreement</td>
<td>1-12, 3-183, 3-184, 4-5</td>
</tr>
<tr>
<td>Programmatic Environmental Impact Statement</td>
<td>ES-1, ES-3, ES-4, ES-5, 1-1, 1-9, 1-10, 1-11, 1-12, 1-13, 2-1, 2-13, 2-15, 2-24, 2-26, 2-30, 2-34, 3-49, 3-75, 3-174, 3-175, 3-182, 3-183, 3-257, 4-5</td>
</tr>
<tr>
<td>Quantity distance</td>
<td>2-10, 2-11, 3-54, 3-56, 3-190</td>
</tr>
</tbody>
</table>

R

reentry vehicle

RV · ES-6, 2-38, 2-21, 3-45, 3-150, 3-151, 3-157, 3-267

Resource Conservation and Recovery Act

RCRA · 1-11, 1-12, 3-51

Rocket Propellant-1 · 2-18

S

Shiloh Launch Complex · 1-1, 2-15, 3-7, 3-8, 3-57, 3-153, 3-159, 3-172, 3-185, 3-237, 3-255

Shuttle Landing Facility

SLF · 1-3, 2-8, 2-10, 2-14, 2-19, 2-20, 2-21, 2-25, 2-26, 2-29, 2-33, 3-75, 3-102, 3-166, 3-167, 3-171, 3-186, 3-190, 3-194, 3-197, 3-199, 3-200, 3-203, 3-204, 7-1

Small Class Launch Vehicle

SCLV · 2-18, 2-19, 3-46, 3-66

Space Florida · ii, ES-3, ES-4, 1-1, 1-10, 2-15, 2-19, 3-7, 3-8, 3-185, 3-194, 3-200, 7-1

Species of special concern · 3-82, 3-92, 3-120, 3-121, 3-124, 3-141, 3-162

State Historic Preservation Officer

SHPO · ES-10, 2-57, 3-178, 3-179, 3-182, 3-183, 3-184, 4-5

Super Heavy Class Launch Vehicle

SHCLV · 2-18, 2-19, 3-43, 3-46, 3-66, 3-68

T

threatened and endangered species · i, ES-1, 3-88, 3-115

total dissolved solids · 3-33, 3-39, 3-42

U

U.S. Air Force

USAF · ES-3, 1-11, 2-19, 2-26, 2-32, 3-142, 3-176, 3-182, 7-1
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>ii, 1-12, 2-50, 3-8, 3-27, 3-155, 3-168, 3-230, 3-271, 4-4</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service</td>
<td>ES-3, ES-4, ES-11, 1-3, 1-10, 1-12, 2-1, 2-26, 2-31, 2-32, 2-58, 3-8, 3-22, 3-31, 3-88, 3-91, 3-112, 3-116, 3-119, 3-121, 3-124, 3-131, 3-138, 3-139, 3-141, 3-142, 3-145, 3-166, 3-167, 3-171, 3-172, 3-173, 3-175, 3-184, 3-185, 3-189, 3-194, 3-200, 3-201, 3-230, 3-238, 3-239, 3-240, 3-241, 3-243, 3-244, 3-247, 3-252, 3-253, 4-3, 4-5, 7-1, 7-2</td>
</tr>
<tr>
<td>Unmanned Aerial Systems</td>
<td>2-19</td>
</tr>
<tr>
<td>Vehicle Assembly Building</td>
<td>VAB · 1-3, 2-9, 2-11, 2-21, 2-25, 3-27, 3-128, 3-186, 3-198, 3-199, 3-214, 3-215</td>
</tr>
</tbody>
</table>
APPENDIX A: ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-50</td>
<td>Aerozine 50</td>
</tr>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>Ac</td>
<td>Acres</td>
</tr>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>ADP</td>
<td>Area Development Plan</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>AGL</td>
<td>above ground level</td>
</tr>
<tr>
<td>AIRFA</td>
<td>American Indian Religious Freedom Act</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminum Oxide</td>
</tr>
<tr>
<td>AP</td>
<td>Ammonium Perchlorate</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effect</td>
</tr>
<tr>
<td>APU</td>
<td>Auxiliary Power Unit</td>
</tr>
<tr>
<td>ARPA</td>
<td>Archaeological Resources Protection Act</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>Be</td>
<td>Beryllium</td>
</tr>
<tr>
<td>BLM</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>BLS</td>
<td>Bureau of Labor Statistics</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BTC</td>
<td>Brevard Tax Collector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Candidate (species for federal listing)</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CANA</td>
<td>Canaveral National Seashore</td>
</tr>
<tr>
<td>CCAFS</td>
<td>Cape Canaveral Air Force Station</td>
</tr>
<tr>
<td>CCP</td>
<td>Commercial Crew Program (NASA), or Comprehensive Conservation Plan (USFWS)</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality (Office of the White House)</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>Cl</td>
<td>Chlorine</td>
</tr>
<tr>
<td>CMP</td>
<td>Center Master Plan</td>
</tr>
<tr>
<td>CNS</td>
<td>Canaveral National Seashore</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Orbital Transportation Services</td>
</tr>
<tr>
<td>COZ</td>
<td>Commercial Operations Zones</td>
</tr>
<tr>
<td>CPA</td>
<td>Canaveral Port Authority</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch per unit effort</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>CRD</td>
<td>Comment Responses Document</td>
</tr>
<tr>
<td>CRMP</td>
<td>Cultural Resources Management Plan</td>
</tr>
<tr>
<td>CRS</td>
<td>Commercial Resupply Services</td>
</tr>
<tr>
<td>CRV</td>
<td>Current Replacement Value</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>CUP</td>
<td>Consumptive Use Permit</td>
</tr>
<tr>
<td>CVLC</td>
<td>Commercial Vertical Launch Complex</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>DEIS</td>
<td>Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>DEP</td>
<td>Department of Environmental Protection (Florida)</td>
</tr>
<tr>
<td>DHHS</td>
<td>U.S. Department of Health and Human Services</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DPEIS</td>
<td>Draft Programmatic Environmental Impact Statement</td>
</tr>
<tr>
<td>E</td>
<td>Endangered (table-specific)</td>
</tr>
<tr>
<td>E</td>
<td>Exotic (table-specific)</td>
</tr>
<tr>
<td>EAB</td>
<td>Environmental Assurance Branch at KSC</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EISA</td>
<td>Energy Independence and Security Act</td>
</tr>
<tr>
<td>ELV</td>
<td>Expendable Launch Vehicle</td>
</tr>
<tr>
<td>EMB</td>
<td>Environmental Management Branch at KSC</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERD</td>
<td>Environmental Resources Document</td>
</tr>
<tr>
<td>ERP</td>
<td>Environmental Resource Permit</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESMD</td>
<td>Exploration Systems Mission Directorate Student Project</td>
</tr>
<tr>
<td>ESPC</td>
<td>Energy Savings Performance Contract</td>
</tr>
<tr>
<td>EWG</td>
<td>Energy Working Group</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
</tbody>
</table>
FAA-AST FAA Office of Commercial Space Transportation
FAWPCA Florida Air and Water Pollution Control Act
FDC Future Development Concept
FDEP Florida Department of Environmental Protection
FDOT Florida Department of Transportation
FDR Florida Department of Revenue
Fe Iron
FEMP Federal Energy Management Program
FFWCC Florida Fish and Wildlife Conservation Commission
FLEPPC Florida Exotic Pest Plant Council
FLUCCS Florida Land Use Cover Classification System
FMSF Florida Master Site File
FP Fibropapillomatosis
FPL Florida Power & Light
FSCPE Federal-State Cooperative for Population Estimates
FWPCA Federal Water Pollution Control Act
FY Fiscal Year

GIS Geographic Information System
GMP General Management Plan
gsf/yr gross square feet per year

H2O Water
HAP Hazardous Air Pollutant
HCl Hydrogen Chloride
HCLV Heavy Class Launch Vehicle
Hg Mercury
HMCF Hypergolic Maintenance and Checkout Facility
HMF Hypergol Manufacturing Facility
HPO Historic Preservation Officer
HQ Headquarters
HVAC heating, ventilation, and air conditioning

ICRMP Integrated Cultural Resources Management Plan
INSPIRE Interdisciplinary National Science Project Incorporating Research and Education Experience
IOZ Industrial Operations Zone
IPA Isopropyl Alcohol
IRL Indian River Lagoon
ISC Institutional Services Contractor
ISS International Space Station
ITE Institute of Transportation Engineers
Appendix A – Acronyms and Abbreviations

J

K

K

Potassium

KARS Kennedy Athletic & Recreation Social (Park)

KIP KSC Intern Program

KSC Kennedy Space Center

L

lb Pound

Lbf Pound Force

LC Launch Complex

LCH4 Liquid Methane

LH2 Liquid Hydrogen

LEO Low Earth Orbit

LOX Liquid Oxygen

LSP Launch Services Program

LUC Land Use Control

LUCIP Land Use Control Implementation Plan

LV Launch Vehicle

M

MACT Maximum Achievable Control Technology

MCC Mission Command & Control

MCLV Medium Class Launch Vehicle

MEA Millennium Ecosystem Assessment

Mg Magnesium

MILA Merritt Island Spaceflight Tracking and Data Network station

MINWR Merritt Island National Wildlife Refuge

MMH Monomethylhydrazine

Mn Manganese

MOA Memorandum of Agreement

MPCV Multi-Purpose Crew Vehicle

Mt million tons

MUST Motivating Undergraduates in Science and Technology

N

N2 Nitrogen

NAAQS National Ambient Air Quality Standards

Na Sodium

NAGPRA Native American Graves Protection and Repatriation Act

NASA National Aeronautics and Space Administration

NCDC National Climate Data Center

NCHS National Center for Health Statistics
NESHAPs National Emission Standards for Hazardous Air Pollutants
Ni Nickel
NO₂ Nitrogen Dioxide
N₂H₂ Diazene
N₂H₄ Hydrazine
N₂O₄ Nitrogen Tetroxide
NHL National Historic Landmark
NHPA National Historic Preservation Act
NMFS National Marine Fisheries Service
NNSR Non-attainment New Source Review
NPD NASA Policy Directive
NPDES National Pollutant Discharge Elimination System
NPS National Park Service
NRCS Natural Resources Conservation Service
NRHP National Register of Historic Places
NSPS New Source Performance Standards
NSR New Source Review
NWR National Wildlife Refuge

O
O₃ Ozone
OC Operations and Checkout
OEA Office of Environmental Analysis (of the Surface Transportation Board or STB)
O&M Operations and Maintenance
OFW Outstanding Florida Waters
OPF Orbital Processing Facilities

P
PA Programmatic Agreement
PAH Polycyclic Aromatic Hydrocarbon
PAMS Permanent Air Monitoring System
Pb Lead
PCB polychlorinated biphenyl
PCPI per capita personal income
PEIS Programmatic Environmental Impact Statement
PILT Payment in Lieu of Taxes
PM₁₀ Particulate Matter below 10 microns in diameter (total inhalable [10-micron] particulates)
PPE personal protective equipment
ppm Parts Per Million
ppt Parts Per Thousand
PPV persons-per-vehicle
PRF Parachute Refurbishment Facility
PSD Prevention of Significant Deterioration
PTE potential to emit
Acronyms and Abbreviations

Q
QD Quantity-Distance

R
RCRA Resource Conservation and Recovery Act
R&D Research and Development
RLV Reusable Launch Vehicle
RMP Risk Management Program
ROC Region of Comparison
ROI Region of Influence
RP-1 Rocket Propellant-1
RV Reentry Vehicle

S
SAV submerged aquatic vegetation
Sb Antimony
SCAPE Self-Contained Atmospheric Protective Ensemble
SCAT Space Coast Area Transit
SCLV Small Class Launch Vehicle
SDWA Safe Drinking Water Act
Se Selenium
SHCLV Super Heavy Class Launch Vehicle
SHPO State Historic Preservation Officer
SIP State Implementation Plan
SIS Strategic Intermodal System
SJRWMD St. Johns River Water Management District
SLAMM sea level affecting marshes modeling
SLF Shuttle Landing Facility
SLS Space Launch System
SLSL Space Life Sciences Laboratory
S&M Safety and Mission Assurance
SO$_2$ Sulfur Dioxide
SOP Standard Operating Procedure
Space-X Space Exploration Technologies Corporation
SRB Solid Rocket Booster
SRM Solid Rocket Motor
SSC Species of Special Concern
SSPF Space Station Processing Facility
SSPP Strategic Sustainability Performance Plan
STB Surface Transportation Board
SWORDS Soldier-Warfighter Operationally Responsive Deployer for Space
SWPPP Storm Water Pollution Prevention Plan

T
T&E Threatened and Endangered [species]
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>THPO</td>
<td>Tribal Historic Preservation Officer</td>
</tr>
<tr>
<td>Ti</td>
<td>Thallium</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Loading</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSDF</td>
<td>Transportation, Storage and Disposal Facility</td>
</tr>
<tr>
<td>TVC</td>
<td>Thrust Vector Control</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aerial Systems</td>
</tr>
<tr>
<td>UESC</td>
<td>Utility Energy Service Contract</td>
</tr>
<tr>
<td>ULA</td>
<td>United Launch Alliance</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USAF</td>
<td>U.S. Air Force</td>
</tr>
<tr>
<td>USDOC</td>
<td>U.S. Department of Commerce</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USRP</td>
<td>Undergraduate Student Research Program</td>
</tr>
<tr>
<td>VAB</td>
<td>Vehicle Assembly Building</td>
</tr>
<tr>
<td>VFP</td>
<td>Vertical Processing Facility</td>
</tr>
<tr>
<td>Vn</td>
<td>Vanadium</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compounds</td>
</tr>
<tr>
<td>VSDS</td>
<td>Vehicle Stabilization and Damping Subsystem</td>
</tr>
<tr>
<td>WTP</td>
<td>willingness to pay</td>
</tr>
<tr>
<td>W</td>
<td>will</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>ZAP</td>
<td>Zone of Archaeological Potential</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
National Aeronautics and Space Administration

Final Scoping Report for the Programmatic Environmental Impact Statement (PEIS) on Center-Wide Operations at the Kennedy Space Center

Prepared for:
Environmental Management Branch
TA-A4C, NASA Kennedy Space Center

Submitted by:

8201 Greensboro Drive, Suite 700
McLean, VA 22102
(703) 760-4801
This page left intentionally blank
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>Project Description</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>KSC History</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>KSC Location and Facilities</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>Purpose and Need</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Proposed Action</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>No Action Alternative</td>
<td>7</td>
</tr>
<tr>
<td>2.6</td>
<td>Scope of this Programmatic Environmental Impact Statement</td>
<td>7</td>
</tr>
<tr>
<td>3.0</td>
<td>Notification of Scoping Meetings</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Notice of Intent</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Newspapers</td>
<td>8</td>
</tr>
<tr>
<td>3.3</td>
<td>Radio Stations</td>
<td>8</td>
</tr>
<tr>
<td>4.0</td>
<td>Public Scoping Meetings</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Meeting Dates and Locations</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>Purpose</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>Open House Format</td>
<td>9</td>
</tr>
<tr>
<td>4.4</td>
<td>Open Forum Format</td>
<td>11</td>
</tr>
<tr>
<td>5.0</td>
<td>Public Scoping Meeting Comments</td>
<td>13</td>
</tr>
<tr>
<td>5.1</td>
<td>Collecting Comments</td>
<td>13</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of Commenters</td>
<td>13</td>
</tr>
<tr>
<td>5.3</td>
<td>Issues Identified During Scoping</td>
<td>13</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of Comments by Category</td>
<td>19</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Alternatives</td>
<td>19</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Cooperating Agencies</td>
<td>19</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Cultural and Historic Resources</td>
<td>20</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Cumulative Effects</td>
<td>20</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Health and Safety</td>
<td>21</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Land Use</td>
<td>21</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Mitigation</td>
<td>22</td>
</tr>
<tr>
<td>5.4.8</td>
<td>NEPA Process/PEIS</td>
<td>22</td>
</tr>
<tr>
<td>5.4.9</td>
<td>Noise</td>
<td>23</td>
</tr>
<tr>
<td>5.4.10</td>
<td>Proposed Action</td>
<td>23</td>
</tr>
<tr>
<td>5.4.11</td>
<td>Public Involvement</td>
<td>24</td>
</tr>
<tr>
<td>5.4.12</td>
<td>Purpose and Need</td>
<td>24</td>
</tr>
<tr>
<td>5.4.13</td>
<td>Recreation</td>
<td>24</td>
</tr>
<tr>
<td>5.4.14</td>
<td>Regulatory Compliance</td>
<td>25</td>
</tr>
<tr>
<td>5.4.15</td>
<td>Socioeconomics</td>
<td>25</td>
</tr>
<tr>
<td>5.4.16</td>
<td>Threatened and Endangered Species</td>
<td>26</td>
</tr>
<tr>
<td>5.4.17</td>
<td>Transportation</td>
<td>27</td>
</tr>
<tr>
<td>5.4.18</td>
<td>Water Resources</td>
<td>27</td>
</tr>
<tr>
<td>5.4.19</td>
<td>Wildlife</td>
<td>27</td>
</tr>
<tr>
<td>6.0</td>
<td>Conclusion</td>
<td>32</td>
</tr>
<tr>
<td>7.0</td>
<td>List of Preparers</td>
<td>33</td>
</tr>
<tr>
<td>Appendix A: Notice of Intent</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Public Meeting Newspaper Notices and Affidavits</td>
<td>B-1</td>
<td></td>
</tr>
<tr>
<td>Appendix C: PSA Text and List of Radio Stations</td>
<td>C-1</td>
<td></td>
</tr>
<tr>
<td>Appendix D: Scoping Meeting Sign-In Sheets</td>
<td>D-1</td>
<td></td>
</tr>
<tr>
<td>Appendix E: KSC Maps</td>
<td>E-1</td>
<td></td>
</tr>
<tr>
<td>Appendix F: Public Scoping Poster Display</td>
<td>F-1</td>
<td></td>
</tr>
<tr>
<td>Appendix G: Scoping Comment Form and Handout</td>
<td>G-1</td>
<td></td>
</tr>
<tr>
<td>Appendix H: PowerPoint Presentation</td>
<td>H-1</td>
<td></td>
</tr>
<tr>
<td>Appendix I: Transcript of June 4th and 5th Scoping Meetings</td>
<td>I-1</td>
<td></td>
</tr>
<tr>
<td>Appendix J: Index of Public and Agency Comments by Source and Date</td>
<td>J-1</td>
<td></td>
</tr>
<tr>
<td>Appendix K: Index of Public and Agency Comments by Category</td>
<td>K-1</td>
<td></td>
</tr>
</tbody>
</table>
TABLES:

Table 1. Newspapers and Dates of Public Notices ...8
Table 2. Summary of Scoping Comments for KSC Center-wide Operations PEIS14
Table 3. KSC Center-wide Operations PEIS Scoping Comments by Commenter and Category 28

FIGURES:

Figure 1. Location map of the Kennedy Space Center ...4
Figure 2. Map of proposed Land Use at the Kennedy Space Center6
Figure 3. Don Dankert (KSC Program Manager), New Smyrna Public Scoping Meeting10
Figure 4. Trey Carlson (KSC Master Planner), Titusville Public Scoping Meeting11
Figure 5. Leon Kolankiewicz (Solv Project Manager), New Smyrna Public Scoping Meeting ..11
Figure 6. Commenter at Titusville Public Scoping Meeting ...12
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Area Development Plan</td>
</tr>
<tr>
<td>CCAFS</td>
<td>Cape Canaveral Air Force Station</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CIP</td>
<td>Capital Improvement Program</td>
</tr>
<tr>
<td>CRV</td>
<td>Current Replacement Value</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulation</td>
</tr>
<tr>
<td>CMP</td>
<td>Center Master Plan</td>
</tr>
<tr>
<td>CNS</td>
<td>Canaveral National Seashore</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>MINWR</td>
<td>Merritt Island National Wildlife Refuge</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>PEIS</td>
<td>Programmatic Environmental Impact Statement</td>
</tr>
<tr>
<td>PSA</td>
<td>Public Service Announcement</td>
</tr>
<tr>
<td>RFI</td>
<td>Request for Information</td>
</tr>
<tr>
<td>SLF</td>
<td>Shuttle Landing Facility</td>
</tr>
<tr>
<td>SLS</td>
<td>Space Launch System</td>
</tr>
<tr>
<td>SR</td>
<td>State Road</td>
</tr>
<tr>
<td>T&E</td>
<td>Threatened and Endangered</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USDOI</td>
<td>United States Department of Interior</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Pursuant to the National Environmental Policy Act (NEPA), as amended, (42 U.S.C. 4321 et seq.), the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA; 40 Code of Federal Regulations (CFR) Parts 1500–1508; and NASA policy and procedures, 14 CFR part 1216, Subpart 1216.3, NASA intends to prepare a PEIS covering Center-wide operations at KSC. The United States Fish and Wildlife Service (USFWS), National Park Service (NPS), and the Federal Aviation Administration (FAA) will serve as Cooperating Agencies. They possess both regulatory authority and specialized expertise regarding the Proposed Action of this PEIS.

This PEIS is being prepared in conjunction with an updated Center Master Plan (CMP) to evaluate potential environmental impacts from proposed Center-wide operations and activities for a 20-year planning horizon from 2012–2032. The PEIS will consider a range of future scenarios from repurposing existing facilities and recapitalizing infrastructure, to reorganizing KSC management of its land resources with various types of commercial partnerships. The PEIS is intended to ensure NASA is in compliance with applicable environmental statutes as it sets program priorities for future operations and activities. A CMP for KSC was developed in 2002 with a 75-year planning horizon. NASA Policy Directive 8810.2, Master Planning for Real Property, requires the CMP to be updated every five years. The 2008 CMP update was based on the now cancelled Constellation Program, while the current CMP update will guide KSC as it transitions towards a multi-user spaceport over the next 20 years.

In cooperation with USFWS, NPS, and FAA, NASA held two public scoping meetings as part of the NEPA process associated with the development of the PEIS. This report describes the Proposed Action, agency and public scoping meetings and materials, and summarizes substantive public comments received during the public scoping period held from June 4 through July 7, 2014.

In addition, this document includes the following 11 appendices:

- Appendix A: Notice of Intent
- Appendix B: Public Meeting Newspaper Notices and Affidavits
- Appendix C: PSA text and List of Radio Stations
- Appendix D: Scoping Meeting Sign-In Sheets
- Appendix E: KSC Maps
- Appendix F: Public Scoping Poster Display
- Appendix G: Scoping Comment Form and Handout
- Appendix H: PowerPoint Presentation
- Appendix I: Transcript of June 4th and 5th Scoping Meetings
- Appendix J: Index of Public and Agency Comments by Source and Date
- Appendix K: Index of Public and Agency Comments by Category
2.0 PROJECT DESCRIPTION

2.1 KSC HISTORY

In the late 1950s the U.S. embarked on a new era of human space exploration. The first human space flight initiative was Project Mercury in 1958. The crewed spacecraft first launched from Cape Canaveral Air Force Station (CCAFS) in the early 1960s. In 1962 the Launch Operations Center was established as a separate NASA field installation responsible for the management and operation of the “Merritt Island Launch Area.” In 1963, after the death of President John F. Kennedy, Lyndon B. Johnson renamed the Launch Operations Center as the “John F. Kennedy Space Center.” Project Mercury was followed by Project Gemini, which served to perfect maneuvers in Earth’s orbit. The Apollo Program began in 1961, and aboard Apollo 11, American astronauts successfully landed on the moon and returned safely to Earth in July 1969. Eventually, six Apollo missions landed 12 astronauts on the moon, the last of which was in December 1972.

In the mid-1970s, NASA initiated development of the Space Transportation System (commonly called the Space Shuttle) as the next crewed vehicle. Designed solely for missions to lower Earth orbit, the Space Shuttle was the first and, to date, the only winged spacecraft capable of vertically launching a crew into orbit and horizontally landing upon return. The Space Shuttle era lasted 30 years, from the Columbia launch on April 12, 1981, to the Atlantis landing on July 21, 2011. The Space Shuttle fleet supported 135 missions, recovered and repaired satellites, conducted cutting-edge scientific research under zero gravity conditions, and helped construct and service the International Space Station, the largest structure built in space.

2.2 KSC LOCATION AND FACILITIES

KSC is located on Merritt Island in Brevard and Volusia counties, Florida, north-northwest of Cape Canaveral on the Atlantic Ocean, midway between Miami and Jacksonville on Florida’s Space Coast, approximately 50 miles east of Orlando. It is 34 miles (55 km) long and roughly six miles (10 km) wide, covering 219 square miles (570 km²).

The total KSC land and water area jurisdiction is approximately 140,000 acres. Only a very small part of the total acreage of KSC is developed or designated for NASA’s operational and industrial use. Merritt Island consists of prime habitat for unique and endangered wildlife. In 1962 NASA entered into an agreement with the USFWS to establish a wildlife preserve within KSC boundaries known as the Merritt Island National Wildlife Refuge (MINWR). Public Law 93–626 created the Canaveral National Seashore (CNS), and thereby, an agreement with the Department of the Interior was also formed in 1975 due to the location of CNS within KSC boundaries.

Since December 1968, all launch operations have been conducted from Launch Complex 39 (LC–39) Pads A and B. Both pads are close to the ocean and three miles (five km) east of the Vehicle Assembly Building. From 1969–1972, LC–39 was the departure point for all six Apollo manned moon-landing missions using the Saturn V rocket. LC–39 was used from 1981–2011 for all Space Shuttle launches. The Shuttle Landing Facility, located just to the northwest, was used for most Shuttle landings. At 15,000 feet (4,572 meters or 2.8 miles) it is among the longest
runways in the world. The KSC Industrial Area, where many of the Center’s support facilities are located, is five miles (eight kilometers) south of LC–39. It includes the Headquarters Building, the Neil Armstrong Operations and Checkout Building, Space Station Processing Facility and the Central Instrumentation Facility. KSC is a major central Florida tourist destination and approximately a one-hour drive from the Orlando area. The Visitor Complex offers public tours of the Center and CCAFS. Because much of the installation is a restricted area and only nine percent of the land is developed, the site also serves as an important wildlife sanctuary. Mosquito Lagoon, Banana River, Indian River, MINWR, and CNS are other natural area features.
Figure 1. Location map of the Kennedy Space Center
2.3 **PURPOSE AND NEED**

In the years ahead, KSC will transition from a government and program-focused, single-user launch complex to a more capability-centric and cost-effective multi-user spaceport. KSC’s new mission will be to furnish both government and commercial space providers with the facilities, experienced workforce and knowledge necessary to support existing mission sets and new space programs.

In support of these endeavors, KSC is engaged in a master planning process identified in NASA’s institutional requirements report to the Congress, pursuant to Section 1102 of the NASA Authorization Act of 2010. The resulting CMP will result in changes to KSC’s infrastructure, land uses, customer base of space transportation providers and users, and business model over a 20-year planning horizon extending from 2012-2032.

KSC’s last major revision to its CMP was completed in 2002, with an update to define Area Development Plans (ADPs) in 2008. The 2002 plan was a forward-looking, 75-year, unconstrained plan for land uses and facilities to support the evolution of KSC and the neighboring CCAFS into a more unified spaceport community supporting a robust increase in flight rates. The 2002 plan did not, however, provide a clear approach to implementation, or furthermore, anticipate dramatic changes in the pace of space commercialization and the challenging Federal budgetary circumstances that exist at present.

Thus, the current planning environment necessitates a revised baseline (NPR 8810.1A, Center Master Planning). The space transportation industry, both its technology and its economy, is evolving globally. The Space Shuttle Program has run its course. In the context of government-wide initiatives, NASA is implementing policies to reduce its facilities infrastructure footprint, consolidate for greater efficiency and sustainability, reduce operations and maintenance costs, and meet energy and water conservation goals.

2.4 **PROPOSED ACTION**

Under the Proposed Action, KSC will implement the aforementioned CMP update and transition from a government, program-focused, single-user launch and landing complex to a more central capability, cost effective, and multi-use spaceport. KSC’s new mission will be to furnish both government and commercial space providers with the necessary facilities, experienced workforce, and knowledge to support existing mission sets and new space programs.

The KSC master planning process is identified in NASA’s institutional requirements to report to Congress, pursuant to the NASA Authorization Act of 2010, Section 1102. The CMP update will result in changes to the infrastructure, land use, space transportation providers and users’ customer base, and business model over a 20-year planning horizon from 2012–2032. The CMP update will include a number of component plans, including future land use, facility development, area development, transportation, utilities systems, and safety and security control. Implementing the future land use plan will promote the right-sizing of NASA KSC operations and attract non-NASA investment by providing more operational autonomy. Consolidating KSC or NASA-managed facilities into a smaller geographic footprint is a major component of the future land use plan. Applying the Central Campus concept, for example, allows NASA to
recapitalize functions and capabilities into higher-efficiency facilities and combine nonhazardous and spread out functions into a more efficient, smaller, secured geographic footprint. Likewise, directing future NASA and non-NASA development into functional areas with defined, allowable operations will streamline safety and security considerations while promoting maximum utilization of KSC’s horizontal infrastructure capacities. In addition, the future land use plan supports expansion of the quint-modal capabilities to provide multi-use spaceport users increased support.

The future land use plan identifies 18 land use categories, their existing acreages, and their proposed future acreages. Changes in the size and location between existing and proposed land uses will constitute the basis for differential potential environmental impacts between the Proposed Action and the No Action alternatives. Figure 2 is a map of the proposed Land Use at KSC.
2.5 **No Action Alternative**

Under the No Action Alternative, KSC would not transition towards a multi-use spaceport with fully integrated NASA programs and non-NASA users. Each NASA program would continue to operate to a significant degree as an independent entity, funded separately and managing activities and buildings in support of its own program. A limited non-NASA presence would continue at KSC.

2.6 **Scope of this Programmatic Environmental Impact Statement**

This PEIS outlines and broadly describes actions associated with KSC’s proposed programs in the limited detail in which they are known at present. Two programmatic alternatives are described and their potential environmental effects are assessed in fairly general terms. Agencies rely on programmatic or broad-scale analyses to focus the scope of alternatives, environmental effects analysis, and mitigation in subsequent tiered levels of documentation. At such time as a given specific project of detailed dimensions and scale is proposed at a specific location, and is in the process of being reviewed and approved, this PEIS can serve as a master NEPA document off which future NEPA compliance documents may be “tiered”. Programmatic NEPA analyses and tiering can reduce or eliminate redundant and duplicative analysis and effectively address cumulative effects. Ideally, this will serve to expedite the environmental review process and facilitate project approval, funding, and implementation.
3.0 NOTIFICATION OF SCOPING MEETINGS

3.1 NOTICE OF INTENT

A Notice of Intent (NOI) was published in the Federal Register (FR) on Tuesday, May 20, 2014 informing the public of NASA’s intent to prepare a PEIS and conduct scoping. The notice also included details about the public scoping meetings held on June 4 and 5, 2014. A copy of the NOI as it appears in the FR is provided in Appendix A.

3.2 NEWSPAPERS

Notices were printed in local newspapers in the weeks preceding the public scoping meetings. Notices included NASA’s intent to prepare a PEIS and conduct scoping; provided a brief description of the project, and identified meeting times and locations. A list of the names of the publications and dates of the five legal advertisements and two display ads are included in Table 1. Copies of the newspaper advertisements and affidavits of legal notices are included in Appendix B.

<table>
<thead>
<tr>
<th>Newspaper</th>
<th>Publication Dates</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Today</td>
<td>May 22nd and 25th</td>
<td>Brevard County</td>
</tr>
<tr>
<td>The Daytona Beach News-Journal</td>
<td>May 23rd and 25th</td>
<td>Volusia County</td>
</tr>
<tr>
<td>Orlando Sentinel</td>
<td>May 25th and June 1st</td>
<td>Lake, Orange, Volusia, Seminole, and Osceola Counties</td>
</tr>
</tbody>
</table>

3.3 RADIO STATIONS

A 30-second Public Service Announcement (PSA) was sent to multiple local radio stations for the week prior to and the week of the public scoping meetings. The PSA was provided in both English and Spanish. A copy of PSA text and a list of radio stations contacted are included in Appendix C.
4.0 PUBLIC SCOPING MEETINGS

4.1 MEETING DATES AND LOCATIONS

NASA conducted two public scoping meetings in a combined open house and open forum format. The first was held from 5-8 p.m. on Wednesday, June 4th at the Eastern Florida State College Titusville Campus, John Henry Jones Gymnatorium in Titusville. The second was held also from 5-8 p.m. on Thursday, June 5th at the New Smyrna Beach High School Auditorium, located on 1015 10th Street in New Smyrna Beach.

4.2 PURPOSE

The purpose of the public scoping meetings is to provide the public with information regarding the Proposed Action and proposed CMP, answer questions, identify concerns regarding the potential environmental impacts that may result from implementation of the Proposed Action, and gather information to determine the scope of issues to be addressed in the PEIS.

4.3 OPEN HOUSE FORMAT

For the first hour of both scoping meetings, an open house format was used to encourage discussion and information sharing and to ensure that the public had opportunities to speak with representatives of NASA, USFWS, and NPS. Several stations with exhibits, maps, and materials were staffed by representatives of NASA, USFWS, NPS, and Solv. Information stations at the public scoping meetings included the following:

- Sign-in and Welcome table
- KSC Land Use Maps
- KSC Core Competencies
- NEPA/NEPA Process
- Purpose and Need and Proposed Action
- Cooperating Agencies
- Cumulative Effects
- Scoping Comments

The posters displayed during the open house portions of the scoping meetings are included in Appendix F.

Sign-in sheets (Appendix D), handouts and comment forms (Appendix G) were made available to all scoping meeting attendees. The proposed CMP was also available for review on three iPads.
Figure 3. Don Dankert (KSC Project Manager), New Smyrna Beach Public Scoping Meeting
4.4 OPEN FORUM FORMAT

For the second hour of both scoping meetings, Don Dankert, Trey Carlson, and Leon Kolankiewicz gave a brief PowerPoint Presentation. Don Dankert, Project Manager for the PEIS, introduced the purpose of the Scoping Meeting(s) as part of the NEPA Process and the Proposed Action. Trey Carlson, KSC Master Planner, described KSC’s mission, goals, and the updated Master Plan. Leon Kolankiewicz, Project Manager for the PEIS (Solv), detailed the NEPA Process and future development of the PEIS.

Figure 4. Trey Carlson (KSC Master Planner), Titusville Public Scoping Meeting

Figure 5. Leon Kolankiewicz (Solv Project Manager), New Smyrna Public Scoping Meeting
At the conclusion of the PowerPoint Presentation, the public was invited to approach the microphone and deliver remarks in front of the audience and for the record. Commenters were asked to fill out a color-coded slip of paper with their name and affiliation (if any). Commenters were then called up to the microphone in groups of 10 (based on the color of the slip of paper) to make a comment for the record.

![Figure 6. Commenter at Titusville Public Scoping Meeting](image)

A court reporter transcribed the presentation as well as comments from the public. Transcripts of both meetings are included in Appendix I.
5.0 PUBLIC SCOPING MEETING COMMENTS

5.1 COLLECTING COMMENTS

Both written and oral comments were made for the record. Written comments were submitted using comment forms, letters, and emails. All comments were directly delivered to NASA. Oral comments were made during the open forum portion of the scoping meetings. Others made comments for the record by dictating to the court reporter.

5.2 SUMMARY OF COMMENTERS

Comments were indexed based on the source, or commenter. Commenters included federal, state, or local agencies (A), non-government organizations (NGO), or members of the Public (P). Each comment was cataloged with a code based on the source of the comment and the order in which it was received (e.g., P-13 was the 13th comment received from a member of the Public). A total of 60 commenters including 54 unique commenters provided input during the Scoping Period. For purposes of this report, a unique commenter is defined as an individual that provided input at least once. Six (6) commenters provided input on more than one occasion (e.g., orally at both Public Scoping Meetings). Comments were received from 54 unique commenters or 54 different people. Appendix J includes an index of comments by source and date.

5.3 ISSUES IDENTIFIED DURING SCOPING

Each concern or question associated with a commenter was categorized by resource area. Comment categories, discussed in the following sections, include Alternatives; Cultural and Historic Resources; Cooperating Agencies; Cumulative Effects; Health and Safety; Land Use; Mitigation; NEPA Process/PEIS; Public Involvement; Noise; Purpose and Need; Recreation, Regulatory Compliance; Socioeconomics; Threatened and Endangered Species; Transportation; Water Resources; and Wildlife.

An overview of the most common or substantive comments are discussed in the pursuant sections and in Table 2. A total of 384 comments were received during the Scoping Period. If a commenter provided the same or very similar input more than once, whether submitted in a different form or simply repeated on the same occasion, this comment was only counted once. Appendix K is an index of comments by category and commenter, and includes a summary of each comment submitted.
Table 2. Summary of Scoping Comments for
KSC Center-wide Operations PEIS

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Commenters</th>
<th>Number of Comments</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternatives</td>
<td>6</td>
<td>16</td>
<td>The analysis of the Proposed Action and the No Action Alternative is insufficient or too limited for this PEIS. Several requests to consider alternative locations (specifically for Launch Pads 34C and D [sic]) in order to minimize potential impacts to various natural resources, CNS, MINWR, Mosquito and Indian River Lagoons. Recommended development of alternatives with USACE, USAF, and Space Florida.</td>
</tr>
<tr>
<td>Cultural and Historic</td>
<td>3</td>
<td>5</td>
<td>Potential impact to historic sites and landmark in areas managed by the USFWS and NPS, specifically the Elliot Plantation Complex. General support of the designation north of SR 402 and Beach Access Road as Operational Buffer/Public Use for the preservation of historic properties.</td>
</tr>
<tr>
<td>Cooperating Agencies</td>
<td>15</td>
<td>19</td>
<td>Working cooperatively with the USAF could obviate the need to build new launch facilities in light of the unused launch facilities and infrastructure within the CCAFS. Also recommend USACE as a Cooperating Agency to determine the viability of seaport permitting when considered against other alternatives. Several urged NASA to follow the recommendations of and work closely with the USFWS and NPS to determine appropriate methods, locations, and mitigations within KSC, MINWR, and CNS.</td>
</tr>
</tbody>
</table>
| Cumulative Effects | 19 | 28 | • Appropriations made by Congress in the 1980s to move the access road a safe distance to the north to reduced closures of Playalinda Beach for shuttle launches should be considered. Analyze potential impacts from loss of public access to CNS and MINWR east of SR 3.
• Many suggested that widespread water quality issues in Mosquito and Indian River Lagoons should be evaluated before siting new launch facilities in this area.
• Concerned with Space Florida's proposal to build a spaceport within the Shiloh area of the MINWR for commercial launches, and how this Proposed Action would affect the timing and operations of the other. |
<p>| Health and Safety | 4 | 4 | General concern for the safety of nearby residents, as well as specific concern for the potential threats to visitor and employee safety at CNS. Evaluate how the safety, security, and operational priorities required by NASA's Exploration Program and |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Commenters</th>
<th>Number of Comments</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>16</td>
<td>26</td>
<td>SLS launch operations at Pad 39B might interact with the proposed commercial operations at Pads 39C and 39D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General concerns included development by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS. Some supported Space Florida's concept of a state-managed control complex, or were concerned that the Proposed Action would affect an area larger than Shiloh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specific concerns include inconsistencies of Future Land Use Plan with CMP; CMP is too vague to enable meaningful analysis in PEIS; footprint in Future Land Use Plan is much larger than existing footprint for SLF.</td>
</tr>
<tr>
<td>Mitigation</td>
<td>10</td>
<td>12</td>
<td>The most appropriate, long-term programmatic mitigation for potential environmental impacts is the permanent transfer of lands north of SR 402 to USDOI for management as part of the MINWR and CNS; as well as the right of first refusal for any future release of KSC property in these areas. Work closely with USFWS and NPS to develop comprehensive mitigation plan, especially in Mosquito and Indian River Lagoons.</td>
</tr>
<tr>
<td>NEPA Process/PEIS</td>
<td>7</td>
<td>14</td>
<td>Concerns that CMP is too vague to enable meaningful environmental analysis in PEIS or attract broad and meaningful stakeholder scoping input. PEIS should capture/incorporate/include all of the future development plans for the SLF area that have been prepared by both NASA and Space Florida; information obtained from RFI to identify potential partners interested in developing vacant land consistent with KSC Master Plan; Space Florida's concept of a state-managed control complex; direct, indirect, and cumulative adverse impacts on recreation, socioeconomics, T&E species, wildlife, water resources; historic sites and landmark; as well as increased protection of resources that would result from Proposed Action.</td>
</tr>
<tr>
<td>Noise</td>
<td>1</td>
<td>2</td>
<td>Concerns regarding potential noise impacts on wildlife; as well as to residential homes bordering KSC property along North Merritt Island.</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>38</td>
<td>68</td>
<td>General support for the strategies like re-development and in-fill of areas currently developed; core values stated for the master plan, including evolution to a multi-user spaceport; leaner and greener; promotion of compatible relationships between adjacent land uses; recognition of wetlands at KSC and need for mitigation and development costs; preservation of Florida scrub jay habitat and recognition that future planning must recognize sea level rise. Many also</td>
</tr>
<tr>
<td>Category</td>
<td>Number of Commenters</td>
<td>Number of Comments</td>
<td>Summary of Issues</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Public Involvement | 9 | 12 | • A more collaborative planning process should have been used to develop CMP; recommended more dialogue and collaboration between KSC and its stakeholders before proceeding with a PEIS, even if it requires modification of the CMP.
• Several attendees noted that while notification for the Public Scoping Meetings was legally adequate, larger and earlier distribution would have resulted in more attendees. Others appreciated the NASA-sponsored meetings about the future of the space program, as well as the opportunity for one-on-one meetings. |
| Purpose and Need | 3 | 7 | Comments revolved around whether the Proposed Action would meet the Purpose and Need; and whether it is appropriate for NASA’s current and future mission. |
| Recreation | 27 | 39 | • Large majority of commenters were concerned with impacts to hiking, fishing, bird watching, wildlife viewing, enjoyment of cultural and historic resources, visual resources, boating, guided fishing/angling, and limited public access to Playalinda Beach, CNS, MINWR, and Mosquito and Indian River Lagoons. This same majority tended to support the designation north of SR 402 and Beach Access Road as Operational Buffer/Public Use for habitat conservation, preservation of historic properties, and public enjoyment.
• Several were concerned with how recreational activities would impact revenue and jobs due to limited visitation at CNS and MINWR. |
| Regulatory Compliance | 3 | 7 | Requests that project comply with regulations and permitting requirements, specifically Section 106 of the NHPA; Section 404 of the CWA; ESA; as well as the |

supported the underlying justification of the master plan to accommodate non-governmental users of launch facilities within KSC as a reasonable and practicable alternative to the proposed Shiloh Project.
• Others concerned that mixing a free enterprise with a government entity on government property for leased land will cause problems in the future; NASA should stay out of commercial launches. Some supported instead Space Florida's concept of a state-managed control complex.
• Specific comments concerning the location and feasibility of proposed launch facilities, including the two seaports and Launch Pads 39C and 39D. Specific concerns include inconsistencies of Future Land Use Plan with CMP; reduction and realignment with current and future NASA mission needs and requirements to reduce its institutional footprint; and long-term recapitalization liability.
<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Commenters</th>
<th>Number of Comments</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomics</td>
<td>27</td>
<td>44</td>
<td>Comments regarding impacts to taxes, jobs, social fabric, the commercial viability of the Proposed Action, and lost revenue associated with limited access at CNS and MINWR. Comments requested that the PEIS examine the potential direct, indirect, and cumulative, social and economic impacts from the Proposed Action; as well as clarify the total projected CIP funding requirements envisioned during the 20-year planning horizon. Several were concerned that with uncontrolled development, small coastal towns would lose their sense of community and identity.</td>
</tr>
</tbody>
</table>
| Threatened and Endangered Species | 11 | 18 | - Concern that many of the 16 federally-listed species at MINWR would be adversely impacted by construction and operation of the proposed launch site. Commenters urged the PEIS to consider impacts to listed species and migratory birds from the volume of water used to cool launch facilities during a launch and the proposed source of cooling water for new vertical launch operations and support facilities (34C and D [sic]).
- Several comments were specific to the Florida scrub jay, noting that the construction of new launch facilities further north would prevent/interfere with prescribed burning necessary to restore and maintain its habitat. |
| Transportation | 3 | 9 | Comments related to access roads and the impact on public access to surrounding beaches. Need to analyze the utilization and/or expansion of current existing seaport facilities on and off KSC to meet future transportation requirements; identify and analyze impacts of access roads through wetlands to service these sites, and what level of utilities would be extended from existing KSC service areas to provide required power and deluge water. Comments also concerned with the route and details of the proposed rail system and bridge. |
| Water | 19 | 31 | - Comments focusing on the Proposed Action’s effects to water quality, wetlands, and the seashore as they relate to recreational opportunities and wildlife. The majority of comments regarded the direct, indirect, and cumulative adverse impacts of Launch Pads 39C and 39D on wetlands and water quality near, in, or on the MINWR, CSN, Mosquito and Indian River Lagoons, and the seashore environment. Many were also concerned with impacts from construction of the proposed seaports at Banana Creek.
- Commenters specifically requested that the total amount of impacted wetlands and surface waters be identified in PEIS; impacts to water resources be |
<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Commenters</th>
<th>Number of Comments</th>
<th>Summary of Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife</td>
<td>16</td>
<td>23</td>
<td>Comments concerning the direct, indirect, and cumulative adverse impacts to wildlife and wildlife habitats for common species in the area. Implementation of the Master Plan could result in potential negative effects from loss and/or fragmentation of habitat, especially in MINWR and CNS, and the waters and sea grass nurseries of the Indian River and Mosquito Lagoons that support a varied and plentiful fish population. One commenter was also concerned about the potential impacts to birds in Bald Paint Pond.</td>
</tr>
<tr>
<td>Total</td>
<td>237</td>
<td>384</td>
<td>minimized per Section 404 of the Clean Water Act; and mitigation address any damage that cannot be avoided.</td>
</tr>
</tbody>
</table>
5.4 SUMMARY OF COMMENTS BY CATEGORY

5.4.1 Alternatives

Sixteen (16) comments were received from six (6) unique commenters. Several commenters noted that the analysis of the Proposed Action and the No Action Alternative would be, while legally compliant, insufficient or too limited for this PEIS. Several requested the consideration of alternative locations (specifically for Launch Pads 34C and D [sic] and 39C and D) in order to minimize potential impacts to various natural resources, CNS, MINWR, Mosquito Lagoon, and Indian River Lagoon.

Several other alternatives, or aspects of alternatives, were suggested or recommended for analysis, including:

- A land management alternative based on transfer of property title, or jurisdictional control in lieu of title transfer, for appropriate areas of the KSC geography that might be operated and sustained independently of NASA but in coordination with federal partners.
- A Future Land Use alternative based on NASA divestment of all KSC land north of State Road (SR) 402.
- Governance structure and near-term spaceport authority implementation timeframe alternatives that present more options for a spaceport authority in lieu of continued NASA field center status for KSC, including options based on federal, state, or hybrid authority structures and legal powers.
- A shared rail system like the one from the Orlando Airport to Port Canaveral.
- Place the rail alongside the 528 Beach line to connect to the existing rail in Cocoa.
- Consult with USACE to determine the viability of permitting a seaport when considered against other alternatives, including utilization and/or expansion of current existing seaport facilities on and off KSC to meet future transportation requirements.
- An alternative that utilizes existing infrastructure on the CCAFS.
- Distinguish in CMP between KSC geographic boundaries and KSC jurisdictional responsibilities over the land and built environment within those boundaries.

A few argued that the alternatives are inconsistent with the intent of the President's 2013 Space Transportation Policy, the direction of Congress, or the best interests of either the nation or the State of Florida.

5.4.2 Cooperating Agencies

Nineteen (19) comments were received from fifteen (15) unique commenters. Most comments emphasized that working cooperatively with the Air Force could obviate the need to build new launch facilities in light of the unused launch facilities and infrastructure within the Cape Canaveral Air Force Station. The USACE was also recommended as a Cooperating Agency to determine the viability of permitting a seaport when considered against other alternatives, including utilization and/or expansion of current existing seaport facilities on and off KSC to meet future transportation requirements.

Some noted that the evolution of KSC to a multi-user spaceport would likely increase the complexity of managing MINWR. Several urged NASA to follow the recommendations of and
work closely with the USFWS and NPS to determine appropriate methods, locations, and mitigations within KSC, MINWR, and CNS.

5.4.3 Cultural and Historic Resources

Five (5) comments were received from three (3) unique commenters. Commenters expressed concern that the Proposed Action would impact historic sites in areas managed by the USFWS and NPS; the direct, indirect, and cumulative adverse impacts should be studied in the PEIS. In response to the threat posed by the development of the Shiloh Space Complex, a few requested that NASA consider taking affirmative action to protect the Elliot Plantation Complex, and grant permission to move forward with National Historic Landmark and/or National Register of Historic Places nomination.

Several commenters support the Buffer Designation north of SR 402 and Beach Access Road as Operational Buffer/Public Use for the preservation of historic properties, and public enjoyment.

5.4.4 Cumulative Effects

Nineteen (19) comments were received from fifteen (15) unique commenters regarding cumulative effects, and the need for a comprehensive evaluation of the cumulative impacts of all space activities from the past, present, and reasonably foreseeable future.

Several noted that the appropriations made by Congress in the 1980s to move the access road a safe distance to the north significantly reduced closures of Playalinda Beach for shuttle launches, and the recurring loss of public access to CNS and MINWR should be considered when analyzing cumulative impacts to recreation and socioeconomics.

Many discussed NASA’s impact to Brevard and Volusia counties and KSC’s neighboring municipalities; some have suffered significant business and tax revenue disruption already from federal space program employment and funding reductions and still others have benefited from the jobs of the aerospace sector and support its presence along Florida’s “Space Coast”.

Some expressed concern that Florida's statewide aerospace sector economy and competitive position in the commercial space industry are increasingly disadvantaged by reliance on federal spaceport infrastructure, land use policies, and a heritage operating environment tied to the past; or that mixing a free enterprise with a government entity on government property for leased land will cause problems in the future. Others supported the return of business and global competitiveness.

Many of the comments suggested that widespread water quality issues from debris, ammonia, oxygen-depleting organic compounds, and other pollutants specifically in Mosquito and Indian River Lagoons should be evaluated before siting new launch facilities in this area. Several noted that the simultaneous growth of industry and population exacerbating the water quality, air quality, and basic quality of life in the State of Florida should be evaluated in the PEIS.

Many were concerned with Space Florida's proposal to build a spaceport within the Shiloh area of the MINWR for commercial launches, and how this Proposed Action would affect the timing and operations of MINWR and KSC. One noted that the planned seaport on Banana Creek to the
west of the Shuttle Landing Facility (SLF) could pose an operational conflict with the horizontal space launch and recovery operations that will drive Space Florida's future planned development and operations of the SLF. Another suggested that the Proposed Action could address the problem of the Shiloh launch proposal by making sites available in the revised plan for entities like Space Florida.

5.4.5 Health and Safety

Four (4) comments from four (4) commenters concerned health and safety. In addition to the general concern for the safety of nearby residents, there was a specific concern for the potential threats to visitor and employee safety from the development of launch facilities within and adjacent to CNS. One commenter requested that the PEIS evaluate how the safety, security, and operational priorities required by NASA’s Exploration Program and SLS launch operations at Pad 39B might interact with the proposed commercial operations at Pads 39C and 39D. This same commenter requested that the PEIS describe the priority of scheduling and operations if safety clearance requirements cause conflict between NASA activities on Pad 39B and commercial operations on Pads 39C and 39D.

5.4.6 Land Use

Twenty-six (26) comments were received from sixteen (16) unique commenters addressing land use, many of which are closely tied to the Section 5.4.10 (Proposed Action).

General concerns included development by commercial space companies in light of the availability of unused launch facilities and infrastructure within the CCAFS. Some supported Space Florida's concept of a state-managed control complex, or were concerned that the Proposed Action would affect an area larger than Shiloh.

Several commenters stated that the most appropriate, long-term programmatic mitigation for potential environmental impacts is the permanent transfer of lands north of SR 402 to USDOI for management as part of the MINWR and CNS; as well as the right of first refusal for any future release of KSC property in these areas. Another stated that any attempt by any group to change the intended federal purpose or ownership of these lands should be rejected.

Specific comments regarding the CMP and Future Land Use Plan as they relate to the PEIS include:

- Future vertical launch facilities designated as Pads 39C and 39D and seaport facilities to the west of the SLF at Banana Creek and on the shoreline of the Banana River illustrate an inconsistency of the Future Land Use Plan with environmental stewardship objectives described in CMP.
- No distinction in CMP between KSC geographic boundaries and KSC jurisdictional responsibilities over the land and built environment within those boundaries.
- CMP-proposed land use developments, affected areas, and project definitions are too vague to enable meaningful environmental analysis, even at the PEIS conceptual level.
- The Future Land Use Plan identifies an area significantly larger than the existing footprint for the SLF.
5.4.7 Mitigation

Many of the twelve (12) comments from ten (10) unique commenters suggested that the most appropriate, long-term programmatic mitigation for potential environmental impacts is the permanent transfer of lands north of SR 402 to USDOI for management as part of the MINWR and CNS; as well as the right of first refusal for any future release of KSC property in these areas. Some simply suggested that NASA work closely with the USFWS and NPS for mitigation within the KSC/MINWR/CNS boundaries.

More generally, commenters encourage a comprehensive mitigation plan to accompany the comprehensive land use plan, emphasizing mitigation for any damage under Section 404 of the Clean Water Act that cannot be avoided, especially as they relate to the Mosquito and Indian River Lagoons. One commenter recommended that the sandbar accessing the Indian River via the NASA Causeway and U.S. Route 1 be designated for non-motorized boating.

5.4.8 NEPA Process/PEIS

Fourteen (14) comments from seven (7) unique commenters regarding the NEPA Process and the PEIS were received. Space Florida requested a clear definition as to what its further participation may be in the PEIS preparation; members of the public were confused on how to comment without a better defined Proposed Action.

Other comments addressed the CMP, Future Land Use Plan, and PEIS, including:

- CMP-proposed land use developments, affected areas, and project definitions are too vague to enable meaningful environmental analysis, even at the PEIS conceptual level.
- PEIS should capture all of the future development plans for the SLF area that have been prepared by both NASA and Space Florida to minimize the need for additional NEPA analysis.
- At its current level of future development definition, the CMP is inadequately detailed to attract broad and meaningful stakeholder scoping input, or support the subsequent analysis of potential impacts required for a PEIS.

Recommendations for inclusion or analysis in the PEIS include:

- Incorporate information obtained from Request for Information (RFI) on May 27, 2014 to identify potential partners interested in developing vacant land consistent with the land use requirements outlined in the KSC Master Plan.
- Space Florida's concept of a state-managed control complex that can compete with other launch sites unencumbered by federal installation regulations and priorities.
- Direct, indirect, and cumulative adverse impacts on recreational, commercial, and economically beneficial uses; public use; T&E species, wildlife, and wetlands near CNS and MINWR; water quality of the Indian River Lagoon; nationally significant wetlands; and historic sites and landmarks.
- Potential impact of worst-case scenarios.
- The degree of impact that Launch Pads 39C and D would have on public access.
- The increased protection of habitat, listed species, and historic resources that would result from Proposed Action.
5.4.9 Noise

One (1) commenter expressed concerns regarding how noise will affect wildlife; as well as the impact to residential homes bordering KSC property along North Merritt Island.

5.4.10 Proposed Action

Sixty-eight (68) comments specific to the Proposed Action were received from thirty eight (38) unique commenters – the largest number of comments and commenters for any one category.

The majority of commenters supported future land use designation of the area north of SR 402 as an "Operational/Buffer Public Use Zone" and continued active management by the USFWS and NPS for habitat conservation, historic preservation, and public enjoyment. Many noted that this designation would protect natural resources, jobs, and recreation-based activities.

General support was expressed for the strategies discussed in the Future Development Concept, including re-development and in-fill of areas currently developed; avoid development in areas prone to inundation by storm events; enable greater on-site production of renewable energy to reduce net impact on greenhouse gases (GHG). Commenters also generally supported core values stated for the master plan, including evolution to a multi-user spaceport; leaner and greener; promotion of compatible relationships between adjacent land uses; recognition of wetlands at KSC and need for mitigation and development costs; preservation of Florida scrub jay habitat; recognition that future planning must recognize sea level rise. Many also supported the underlying justification of the master plan to accommodate non-governmental users of launch facilities within KSC as a reasonable and practicable alternative to the proposed Shiloh Project.

Others were concerned that mixing private enterprises with a government entity on government property for leased land will cause problems in the future; and that NASA should stay out of commercial launches. Some instead support Space Florida's concept of a state-managed complex that can compete with other launch sites unencumbered by federal installation regulations and priorities.

Several comments concerned the location of proposed launch facilities, including:

- Working cooperatively with the Air Force could obviate the need to build new launch facilities given underutilized launch facilities located at CCAFS.
- Two new launch operation and support facilities (34C and 34D) [sic], as well as potentially storing propellants and munitions to support launch operations, would cumulatively impact Mosquito and Indian River Lagoons.
- Eliminate the two proposed seaports site due to potential significant damage to natural resources in MINWR; impacts to a no-motor zone and a manatee protection area; and contradictions with environmental stewardship objectives described in CMP.

Specific issues with the CMP, Future Land Use Plan, and Proposed Action include:

- Future vertical launch facilities at Pads 39C and 39D in Future Land Use Plan are inconsistent with environmental stewardship objectives described in CMP.
- Identify the type of launch vehicles this plan intends to support in CMP and PEIS.
quantify acreage size depicted on the CMP future development; explain and define configuration of the conceptual site; define extent of wharves, dock, and support facilities construction.

- CMP describes a "business-focused implementation and operating framework" but does not discuss governance, regulatory, and operating environmental changes to facilitate institutional footprint reduction and realignment with current and future NASA mission needs.

- Pads 39C and 39D would not accommodate a medium-class or heavy-class liquid fueled launch vehicle with supporting launch integration and support capabilities.

- CMP does not sufficiently describe how KSC's existing physical assets would align with NASA requirements or reduce its institutional footprint and long-term recapitalization liability.

5.4.11 Public Involvement

A total of twelve (12) comments from nine (9) commenters were submitted regarding Public Involvement. Comments stated that a more collaborative planning process should have been used to develop its new CMP, and recommended more dialogue and collaboration between KSC and its stakeholders before proceeding with a PEIS, even if it requires modification of the CMP.

Several attendees noted that while notification for the Public Scoping Meetings was legally adequate, larger and earlier distribution would have resulted in more attendees. One commenter expressed frustration that NASA representatives would not answer questions at the meetings. Others appreciated the NASA-sponsored meetings about the future of the space program, as well as the opportunity for one-on-one discussions with NASA representatives during the open house.

5.4.12 Purpose and Need

Seven (7) comments were received from three (3) unique commenters revolving around whether the Proposed Action would meet the Purpose and Need, and whether it is appropriate for NASA’s current and future mission. Another commenter supported all efforts to use KSC for its intended primary purpose, a National Space Center.

In light of the unused and unavailable launch pads at the CCAFS, another addressed whether the Purpose and Need for this project could address the divergent missions and priorities of both NASA and the U.S. Air Force (USAF).

5.4.13 Recreation

Thirty-nine (39) comments were submitted from twenty-seven (27) unique commenters regarding recreation. A large majority of commenters were concerned with impacts to hiking, fishing, bird watching, wildlife viewing, enjoyment of cultural and historic resources, visual resources, boating, guided fishing/angling, and limited public access at Playalinda Beach, CNS, MINWR, and Mosquito and Indian River Lagoons. This same majority tended to support the designation north of SR 402 and Beach Access Road as Operational Buffer/Public Use for habitat conservation, preservation of historic properties, and public enjoyment.

As discussed in the Section 5.4.4 (Cumulative Effects), commenters noted that Launch Pads 39C and D would undo appropriations by Congress in the 1980s to move the beach access road to
reduce instances of closure for shuttle launches; and result in recurring loss of public access to CNS and MINWR east of SR 3.

Several were concerned with how recreational activities would impact revenue and jobs due to limited visitation at CNS and MINWR.

Specific requests for clarification or analyses in the PEIS included:

- Discuss potential impacts on public access from proposed facilities adjacent SR 402 (Launch Pads 39C and D, rail gun strip), including the worst-case scenario and the degree of impact.
- Study and predict the frequency of closure of the southern entrance to CNS from Launch Pads 39C and D, and impacts from limited public access.
- Study impacts of restrictions on public use of CNS for access to beaches, boating (Mosquito Lagoon at Eddy Creek), and wildlife viewing opportunities along Beach Road from Launch Pads 34C and D [sic].
- Study the direct, indirect, and cumulative adverse impacts on recreational, commercial, and economically beneficial uses near CNS and MINWR.

5.4.14 Regulatory Compliance

Seven (7) comments were received from three (3) commenters regarding Regulatory Compliance. Commenters stressed the importance for the Proposed Action to comply with all current regulations and permitting requirements, specifically citing Section 106 of the National Historic Preservation Act (NHPA); the Endangered Species Act (ESA); Section 404 of the Clean Water Act; as well as the 2010 National Space Policy and the 2013 National Space Transportation Policy.

The Florida Trust requested the opportunity to participate as a consulting party in the Section 106 consultation process, pursuant to 36 CFR 800.2(c)(5) and 800.3(f)(3).

5.4.15 Socioeconomics

Forty-four (44) comments were received from twenty-seven (27) unique commenters regarding impacts to tax revenue, jobs, social fabric, commercial viability of the Proposed Action, lost revenue associated with limited access at CNS and MINWR. Comments requested that the PEIS examine the potential direct, indirect, and cumulative, social and economic impacts from the Proposed Action and clarify the total projected Capital Improvement Program (CIP) funding requirements envisioned during the 20-year planning horizon.

Many argued that Florida's aerospace sector economy and competitive position in the commercial space industry are increasingly disadvantaged by reliance on federal spaceport infrastructure, land use policies, and a heritage operating environment tied to the past. Commenters expressed concern that Brevard and Volusia counties and KSC's neighboring municipalities have suffered significant business and tax revenue disruption already from federal space program employment and funding reductions. Many argued that the proposed launch sites would not be commercially viable, since an investor might not be able to comply with contracts if NASA will always have priority.
Others generally supported the Proposed Action as it would guarantee that there will be no commercial space facility at Shiloh and provide Volusia County with needed development and associated jobs. One commenter urged that we work together to re-prosper and re-grow the area instead of each county competing for its own jobs.

As discussed in Section 4.5.13 (Recreation), many were concerned with how recreational activities would impact revenue and jobs due to limited visitation at CNS and MINWR. Several requested that the PEIS include discussion of the direct, indirect, and cumulative adverse impacts on recreational, commercial, and economically beneficial uses near CNS and MINWR. Commenters urged NASA to hold firm to public interests and protect MINWR, Mosquito and Indian River Lagoons; and maintain beach access. A few commenters were also concerned with potential impacts to utilities, infrastructure, roads, and property values.

Commenters expressed concern that with uncontrolled development, small coastal towns would lose their sense of community and identity. One commenter added that the simultaneous growth of industry and population growth is already exacerbating the water quality, air quality, and basic quality of life in Florida.

Specific requests for clarification in the CMP and/or inclusion in the PEIS include:
- CMP does not sufficiently describe how KSC's existing physical assets would align with NASA requirements or reduce its institutional footprint and long-term recapitalization liability, measured by the Current Replacement Value (CRV) of agency facilities assets.
- CMP and PEIS should clearly identify the total projected CIP funding requirements envisioned during the 20-year planning horizon.
- Reliance upon non-NASA funding sources for critical and non-critical horizontal infrastructure should be identified to highlight the risks to NASA and to the prospective commercial and non-NASA stakeholders in the overall CIP.
- Distinguish the CIP projects required to support NASA mission and the CIP projects which are deemed to enhance overall spaceport infrastructure and capabilities, along with individual project cost estimates and total CIP rollup values.
- NASA-centric CMP that fails to recognize the needs of its Florida stakeholders puts Florida at high risk of becoming irrelevant in the dynamic commercial space industry.
- Consider potential failure to attract the envisioned private-sector investment and state involvement in funding critical spaceport infrastructure.

5.4.16 Threatened and Endangered Species

Eighteen (18) comments were received from eleven (11) unique commenters regarding Threatened and Endangered (T&E) Species as well as state-listed species of special concern and species of management concern.

The majority commented that many of the 16 federally-listed species at MINWR would be adversely impacted by construction and operation of the proposed launch site. Some noted that the MINWR and CNS are located along the Atlantic Flyway and serve as an important migration and wintering site for a variety of waterfowl, shorebirds, and Neotropical migrants. One commenter pointed out that significant funds have been mobilized for restoration of the Indian River Lagoon in light of recent deaths of manatees, dolphins, pelicans, and the loss of sea grass.
Commenters urged the PEIS to consider impacts to listed species and migratory birds from the volume of water used to cool launch facilities during a launch and the proposed source of cooling water for new vertical launch operations and support facilities (34C and D) [sic].

Several comments were specific to the Florida scrub jay, noting that the construction of new launch facilities further north would prevent/interfere with prescribed burning necessary to restore and maintain its habitat.

5.4.17 Transportation

Nine (9) comments from three (3) unique commenters addressed transportation, specifically as it relates to access roads and the impact on public access to surrounding beaches. Commenters expressed the need to analyze the utilization and/or expansion of current existing seaport facilities on and off KSC to meet future transportation requirements; to analyze impacts of access roads through wetlands to service these sites; and identify what level of utilities would be extended from existing KSC service areas to provide required power and deluge water. Commenters were also concerned with the route and details of the proposed rail system and bridge.

5.4.18 Water Resources

A total of thirty-one (31) comments were received from nineteen (19) unique commenters regarding water resources, focusing on the Proposed Action’s effects to water quality, wetlands, and the seashore as they relate to recreational opportunities and wildlife.

The majority of comments regarded the direct, indirect, and cumulative adverse impacts of Launch Pads 39C and 39C on wetlands and water quality near, in, or on the MINWR, CSN, Mosquito and Indian River Lagoons, and the seashore environment. Several commenters stated that siting new facilities further north than the current launch pads would increase the debris and pollutants from the space vehicle fuel mix, which are a major concern at the Mosquito Lagoon and adjacent Indian River system. Several were also concerned that construction of the one of the proposed seaports would necessitate Banana Creek to be dredged, deepened, and filled.

Commenters specifically requested that the total amount of impacted wetlands and surface waters be identified in PEIS; impacts to water resources be minimized per Section 404 of the Clean Water Act; and that mitigation address any damage that cannot be avoided.

5.4.19 Wildlife

Twenty-three (23) comments were received from sixteen (16) unique commenters regarding the direct, indirect, and cumulative adverse impacts to wildlife and wildlife habitats for common species in the area.

In addition to those concerns discussed in Section 5.4.16 (Threatened and Endangered Species), many were concerned that implementation of the Master Plan could result in potential negative effects from loss and/or fragmentation of habitat, especially in MINWR and CNS, and the waters and sea grass nurseries of the Indian River and Mosquito Lagoon that support a varied and plentiful fish population. One commenter was also concerned about the potential impacts to birds in Bald Paint Pond.
Table 3. KSC Center-wide Operations PEIS Scoping Comments by Commenter and Category
(Scoping Period June 4–July 7, 2014)

<table>
<thead>
<tr>
<th>Commenter</th>
<th>Alternatives</th>
<th>Cooperating Agencies</th>
<th>Cultural and Historic</th>
<th>Cumulative Effects</th>
<th>Health and Safety</th>
<th>NEPA Process/PEIS</th>
<th>Noise</th>
<th>Proposed Action</th>
<th>Public Involvement</th>
<th>Purpose and Need</th>
<th>Recreation</th>
<th>Regulatory Compliance</th>
<th>Socioeconomics</th>
<th>T&E Species</th>
<th>Transportation</th>
<th>Water Resources</th>
<th>Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO1</td>
<td></td>
</tr>
<tr>
<td>NGO2</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO3</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO4</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO5</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO6</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO7</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO8</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO9</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>NGO10</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Commenter</td>
<td>Alternatives</td>
<td>Cooperating Agencies</td>
<td>Cultural and Historic</td>
<td>Cumulative Effects</td>
<td>Health and Safety</td>
<td>Land Use</td>
<td>Mitigation</td>
<td>NEPA Process/PEIS</td>
<td>Noise</td>
<td>Proposed Action</td>
<td>Public Involvement</td>
<td>Purpose and Need</td>
<td>Recreation</td>
<td>Regulatory Compliance</td>
<td>Socioeconomics</td>
<td>T&E Species</td>
<td>Transportation</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>NGO11</td>
<td>X</td>
</tr>
<tr>
<td>NGO12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NGO13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Public (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P7</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P8</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P9</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P11</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P12</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P13</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Commenter</td>
<td>Alternatives</td>
<td>Cooperating Agencies</td>
<td>Cultural and Historic</td>
<td>Cumulative Effects</td>
<td>Health and Safety</td>
<td>Land Use</td>
<td>Mitigation</td>
<td>NEPA Process/PEIS</td>
<td>Noise</td>
<td>Proposed Action</td>
<td>Public Involvement</td>
<td>Purpose and Need</td>
<td>Recreation</td>
<td>Regulatory Compliance</td>
<td>Socioeconomics</td>
<td>T&E Species</td>
<td>Transportation</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>P14</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td></td>
</tr>
<tr>
<td>P19</td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td></td>
</tr>
<tr>
<td>P23</td>
<td></td>
</tr>
<tr>
<td>P24</td>
<td></td>
</tr>
<tr>
<td>P25</td>
<td></td>
</tr>
<tr>
<td>P26</td>
<td></td>
</tr>
<tr>
<td>P27</td>
<td></td>
</tr>
<tr>
<td>P28</td>
<td></td>
</tr>
<tr>
<td>P29</td>
<td></td>
</tr>
<tr>
<td>P30</td>
<td></td>
</tr>
</tbody>
</table>

Final Scoping Report 30 September 2014
<table>
<thead>
<tr>
<th>Commenter</th>
<th>Alternatives</th>
<th>Cooperating Agencies</th>
<th>Cultural and Historic</th>
<th>Cumulative Effects</th>
<th>Health and Safety</th>
<th>Land Use</th>
<th>Mitigation</th>
<th>NEPA Process/PEIS</th>
<th>Noise</th>
<th>Proposed Action</th>
<th>Public Involvement</th>
<th>Purpose and Need</th>
<th>Recreation</th>
<th>Regulatory Compliance</th>
<th>Socioeconomics</th>
<th>T&E Species</th>
<th>Transportation</th>
<th>Water Resources</th>
<th>Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td>P31</td>
<td></td>
</tr>
<tr>
<td>P32</td>
<td></td>
</tr>
<tr>
<td>P33</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P34</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P35</td>
<td></td>
</tr>
<tr>
<td>P36</td>
<td></td>
</tr>
<tr>
<td>P37</td>
<td></td>
</tr>
<tr>
<td>P38</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P39</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P40</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P41</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P42</td>
<td></td>
</tr>
<tr>
<td>P43</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P44</td>
<td></td>
</tr>
</tbody>
</table>

Final Scoping Report 31 September 2014
6.0 CONCLUSION

The overall tenor of scoping feedback from participating stakeholders – including agency, NGOs, and members of the public – was broad, qualified support for the basic concepts behind the KSC CMP. This was tempered by widely shared concerns about specific elements of the land use plan, such as impacts from the siting of the proposed Launch Pads 39C and 39D, restricted access to and closures at Playalinda Beach, impacts from proposed seaport siting, and others.

General concerns were expressed about cumulative impacts to resources and recreationists at MINWR and CNS, as well as to water quality and wildlife in the surrounding water bodies. These water bodies (i.e., Indian River, Mosquito Lagoon) are critical to the environmental health and quality of life of the region and are showing signs of acute stress even now as a result of cumulative population growth and development in the region and the loadings of pollutants these entail.

Several concerns expressed repeatedly by certain stakeholders during the scoping process were not environmental per se, but more oriented toward the commercial viability of the “business model” of the proposed future management of KSC as expressed in the CMP. These commenters expressed doubt as to whether NASA’s goal of KSC evolving toward a multi-user spaceport was feasible. There is concern that the CMP is not sufficiently responsive to the dynamic, evolving commercial space market, and that as a result, KSC and Florida will miss out on emerging opportunities in this market.

Commenters suggested a number of issues and alternatives that should be assessed in the PEIS.
7.0 LIST OF PREPARERS

NASA prepared the various Scoping Materials and the Scoping Report with contractual assistance from Solv, LLC. The following individuals were primarily responsible for the development, drafting, and review of the scoping materials and Scoping Report:

Don Dankert (NASA)
KSC Project Manager/Author/Reviewer

Trey Carlson (NASA)
KSC Master Planner/Author

Leon Kolankiewicz (Solv)
Solv Project Manager/Author/Reviewer
Years of Experience: 30

Nathalie Jacque (Solv)
Environmental Scientist/Author
Years of Experience: 5
Kennedy Space Center
Titusville, Florida
APPENDIX C: COMMENT RESPONSE DOCUMENT

Appendix C is divided into two parts:

1) The first part consists of all comments received by NASA KSC on the Draft Programmatic Environmental Impact Statement (Draft PEIS) issued in March 2016. These written or spoken comments were submitted by stakeholders such as cooperating federal agencies, members of the public, and an informal coalition of non-governmental organizations (NGOs). The comments include transcripts of two public meetings held on March 29, 2016 in Titusville and March 30, 2016 in New Smyrna Beach, Florida.

The comments have each been “coded.” On the left-hand margin of each page is a unique code (in red) that corresponds to a certain comment linked to a particular commenter. For example, “NPS-1” identifies that comment as comment #1 of the National Park Service (NPS). On the right-hand margin each comment is categorized according to the comment category (or categories) into which it falls. For example, the comment NPS-1 falls into the PA-8 and REC-4 categories, that is, it is grouped with other comments under the topics of Proposed Action (PA) and Recreation (REC). NPS-1 is comment #8 under PA as well as comment #4 under REC, because this particular comment is related both to the Proposed Action in the PEIS as well as to the topic of Recreation.

2) The second part consists of summarized comments and NASA KSC responses to those comment summaries. In many instances, different commenters made essentially the same point using somewhat different words, so the comment summaries are a general expression of the same idea or opinion that different commenters were voicing. In other cases, comments that are highly specific and/or technical were made by just one commenter. These are repeated verbatim. NASA KSC’s responses are below each comment.

Comments were received from the following entities and individuals:

Federal and State Agencies
- Environmental Protection Agency (EPA), Region 4
- Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST)
- National Park Service (NPS), Southeast Regional Office
- Space Florida

Individuals
- Mark Barker
- Jeannette King
- Andrea Panzeca
- Paul Wehr
- Robert Bishopric
- Hans Leisman
- Tim Sheldon
- Gerry Harris
- Melissa Martin
- Tim Ubl
Non-Governmental Organizations (NGOs)

Combined comments (single comment letter) of National Parks Conservation Association, Friends of Canaveral, Audubon Florida, Southeast Volusia Audubon Society, and Florida Trust for Historic Preservation

Commenter at public meeting in Titusville, Florida on March 29, 2016
Bill Klein

Commenters at public meeting in New Smyrna Beach, Florida on March 30, 2016

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Arman</td>
<td>Deb Denys</td>
<td>Michael Ignasiak</td>
<td>Billie Wheeler</td>
</tr>
<tr>
<td>Daniel Blazi</td>
<td>G.G. Galloway</td>
<td>Bill Menosky</td>
<td>Sue Williams</td>
</tr>
<tr>
<td>Jim Cameron</td>
<td>Douglas Gibson</td>
<td>Keith Norden</td>
<td>Jake Sachs</td>
</tr>
<tr>
<td>Fred Costello</td>
<td>Clay Henderson</td>
<td>Tony Otte</td>
<td></td>
</tr>
</tbody>
</table>
April 26, 2016

National Aeronautics and Space Administration
Kennedy Space Center
Environmental Management Branch, TA-A4C
Kennedy Space Center, FL 32899

ATTN: Mr. Donald Dankert

Re: Draft Programmatic Environmental Impact Statement (DPEIS) on Kennedy Space Center, Center-Wide Operations; CEQ No.: 20160059

Dear Mr. Dankert:

The U.S. Environmental Protection Agency (EPA) has reviewed the subject document and is commenting in accordance with Section 309 of the Clean Air Act and Section 102(2)(C) of the National Environmental Policy Act (NEPA). The National Aeronautics and Space Administration (NASA) has prepared this Programmatic Environmental Impact Statement (PEIS) to evaluate the potential environmental impacts from the proposed center-wide Kennedy Space Center (KSC) operations, activities, and facilities for the next 20 years. The Center Master Plan (CMP) is to provide the overall management guidance for KSC from 2016 to 2032. The implementation of the CMP will facilitate a 20-year transformation from a single, government user launch complex to a multi-user spaceport.

The EPA understands that the DPEIS presented three (3) descriptions of the alternatives: The Proposed Action would transition to a multi-user spaceport, whereas a number of new facilities would be constructed to include two seaports and horizontal and vertical launch and landing facilities. There would also be planned changes in the acreage of designated land use categories at KSC. We further understand that Alternative 1 was introduced as a direct response to concerns expressed in comments received during the PEIS public scoping period in June 2014, as well as other observations and data acquired from stakeholders and other agencies during the scoping process.

The EPA understands that Alternative 1 is similar to the Proposed Action but has differences in the location and size of the vertical and horizontal launch and landing facilities. Also, the two new seaports identified in the Proposed Action would be removed from the plan. Under the ‘No Action’ plan, KSC management will continue to emphasize delicate NASA programs and would not transition in the coming years towards a multi-user spaceport.
The NASA program would continue to be operated as an independent entity to a significant degree, funded separately, and managed for activities and buildings in support of its own programs.

This PEIS outlines and broadly describes NASA's actions associated with KSC's proposed programs in limited detail that are known at the present time. The EPA acknowledges that three programmatic alternatives outlined in this PDEIS are described with their potential environmental effects in general terms. At such time, as specific project details and proposed locations become available, the EPA recommends that specific future NEPA documents be tiered from this programmatic document as the principal NEPA document. Also note that under the Section 404 Clean Water Act permitting authority, the U.S. Army Corps of Engineers would require the applicant to avoid and minimize and then provide compensatory mitigation for unavoidable impacts resulting from construction (dredging and filling) in jurisdictional wetlands. The impacts and specific details required for potential permitting should be provided in these subsequent NEPA documents. The EPA recommends that any proposed actions (including cumulative actions) in the future having adverse direct or indirect impacts on wetlands or other jurisdictional waters of the U.S. must seek avoidance and minimization first before making a determination for compensatory mitigation.

Overall, the EPA has rated the Preferred Action in the DPEIS as 'LO', or lack of objections, which indicates that the review has not identified any potential environmental impacts requiring substantive changes to the preferred action (alternative). The EPA requests a copy of the Final PEIS and Record of Decision when they become available. If you wish to discuss this matter further, please contact Mr. Larry Gissentanna at 404-562-8248 or gissentanna.larry@epa.gov of the NEPA Program Office.

Sincerely,

Christopher A. Militscher
Chief, NEPA Program Office
Resource Conservation and Restoration Division
<table>
<thead>
<tr>
<th>Commenter</th>
<th>Location</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA AST</td>
<td>1-12</td>
<td>GLOBAL: The FAA’s NEPA Implementing Regulations are found in FAA Order 1050.1F, Environmental Impacts: Policies and Procedures. FAA Order 1050.1F is now in force and has replaced FAA Order 1050.1E. Please revise references here and throughout the PEIS to reflect FAA Order 1050.1F.</td>
<td>NEPA-3</td>
</tr>
<tr>
<td>FAA AST</td>
<td>1-12</td>
<td>GLOBAL: The FAA will make a determination of applicability of DOT Act Section 4(f) on a project-by-project basis. Please revise this reference throughout the document accordingly.</td>
<td>NEPA-4</td>
</tr>
<tr>
<td>FAA AST</td>
<td>1-12</td>
<td>Text should be revised to reflect that future NEPA analyses prepared in support of FAA licensing actions would tier from this PEIS, if appropriate. However, there may be instances where the FAA determines that the required NEPA document should not tier from the PEIS.</td>
<td>NEPA-5</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-10</td>
<td>Should the small launch pad 39C (?) be included here as well? How will 39C be incorporated throughout this PEIS? Is this PEIS intended to address impacts from launches at 39C?</td>
<td>PA-3</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-10</td>
<td>The text in this section references pads north of 39B as “39C and D” should this instead refer to LC49? Here and throughout the document, to avoid confusion, ensure that all launch pads and notional launch pads are consistently named.</td>
<td>PA-4</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-19</td>
<td>Propellant acronyms are used in this section, but they are not spelled out. To ensure consistency with plain language guidelines, spell these terms out.</td>
<td>NEPA-6</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-20</td>
<td>Table 2.1-1 is almost completely comprised of acronyms. Recommend providing a key at the bottom of the table to spell out acronyms to ensure compliance with plain language guidance.</td>
<td>NEPA-7</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-20</td>
<td>Does NASA have a definition for “horizontal spaceport?” This is not a term that is defined in the FAA regulations. If referring to a runway from which launch vehicles are launched</td>
<td>PA-5</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-20</td>
<td>The text and table refer to potential “types” (plural) of horizontal launch vehicles that could operate from KSC; however, it appears that only one type of horizontal launch vehicle is described, are there other types that should be included as well? Please see FAA NEPA documents for descriptions of other types of horizontal launch vehicles.</td>
<td>PA-6</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-27</td>
<td>The following sentence is not clear and should be revised “Under the Proposed Action, for example, as a multiuser spaceport, future commercial space customers would be subject to FAA licensing, including Order 1050.1E, as well as Section 4(f) eventually.”</td>
<td>NEPA-8</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-28</td>
<td>How does LC 39-C fit into the discussion of vertical launch pads? Is this pad included in the PEIS?</td>
<td>PA-7</td>
</tr>
<tr>
<td>FAA AST</td>
<td>2-34</td>
<td>Why would the “No Action Alternative” necessarily mean that “no new construction would occur at both the south-field and mid-field sites along the SLF?”</td>
<td>ALT-6</td>
</tr>
</tbody>
</table>
This issue is of particular concern to the FAA as an EA is currently under development, which would consider the environmental impacts of construction activities at the mid- and south-field sites and operation of the SLF by Space Florida. As written, if the No Action Alternative were selected for this PEIS, it would appear to eliminate future development at the SLF from consideration.

In addition, the approach proposed in Section 2.3.8 is highly unusual for a Programmatic EIS and would appear to significantly limit NASA’s ability to conduct future operations at KSC.

GLOBAL: Throughout the document, ensure that when references are made to having considered alternatives in detail in the PEIS, that Alternative 1 is referenced in addition to the Proposed Action and No Action.

Table 3.6-7 is referencing data from a 2005 FAA document. This information may not reflect current launch data, consider using more up-to-date data.

Please revise the sentence to read “In the FAA’s review of licenses for launch and reentry or review of applications for an experimental permit at KSC, the FAA would coordinate with NASA to determine whether there is a need to further consult with either USFWS or NMFS, based on any new activities proposed by the applicant.”

Should this read “Surface Transportation Board (STB)?”

Revise text to reflect changes to page 3-164.

The full reference for “FAA, 2005” is missing.

The full reference for “FAA, 2015” is missing.
Mr. Robert Cabana
Director
John F. Kennedy Space Center
Kennedy Space Center, Florida 32899

Dear Mr. Cabana:

The National Park Service (NPS) welcomes the opportunity to submit comments regarding the Draft Programmatic Environmental Impact Statement (PEIS) for Center-wide Operations at Kennedy Space Center (KSC), Florida, for all phases of the study which have the potential to affect Canaveral National Seashore (CANA). We offer the following comments, which provide relevant background on CANA and highlight specific issues that should be evaluated and considered in the Final PEIS. These comments are consistent with comments submitted by NPS during previous scoping periods in 2014 and 2015.

We understand the purpose of the PEIS is to identify and evaluate the potential environmental impacts from proposed center-wide KSC operations, activities, and facilities across a 20-year planning period. We note these operations, activities, and facilities are described in the 2013 Center Master Plan (CMP), which has a planning horizon of 2012 - 2032.

General Comments

The NPS has had long standing concerns with the development of additional privatized launch facilities within and immediately adjacent to CANA. Under the National Aeronautics and Space Administration (NASA) Proposed Action, KSC proposes the construction of a Vertical Landing Site and a Horizontal Launch and Landing Site within the southeastern portion of CANA and also proposes construction of two landing pads immediately adjacent to CANA’s southern boundary. It is NPS’ understanding these proposed new facilities would not be operated by NASA, but would be leased out to private entities. As noted in the Draft PEIS, "With the potential number of combined additional launches proposed for KSC and Shiloh Launch Complex, as well as other regional developments, total visitation at CANA could decrease considerably." NPS has resource and operational concerns given the close proximity of the proposed launch sites and the number of potential new launches. Our primary concerns given the above are over the long term viability of CANA given the theoretical number of closures that could occur for both proposals. The impacts to our visitor experiences and public enjoyment of...
our resources could be severely compromised. Additional concerns primarily involve potential impacts to natural resources including concerns over an aborted launch and the fallout that could plunge into the park and surrounding environs. Absent additional information in the Final PEIS to substantiate the need for these competing facilities and why they can’t be accommodated with existing infrastructure in different locations, NPS does not support the Proposed Action (Preferred Alternative) as we understand it to be.

The 1975 Memorandum of Agreement between NASA and the Department of the Interior (Department) for the Use of Property at JFK Space Center as a Part of the Canaveral National Seashore describes this area as Area II and states the following:

- The Department shall, upon request by the Director of KSC, close all or any part of Area II to the public during checkout, launch and landing periods or during emergencies involving safety and/or security of property and/or personnel.

- NASA reserves the right to site any future Space Program facility at any location in Area II, but in such siting, as well as other Space Program operations, NASA will take under consideration the Department’s utilization and administration of said property in order to insure compatibility of NASA activities with those of the Department wherever practicable.

- The use of Area II by the Department shall be subject to all valid easements, rights-of-way, licenses, and present or future interests in, upon, across, or through said property granted by NASA for purposes related to the Space Program; Provided, however, that prior to granting any future interests in the Seashore, NASA shall obtain and consider the views of the Department with respect to the design, nature, and location thereof.

- This Agreement may be terminated as to Area II in whole or in part in the event the Administrator determines that use of Area II as a Seashore is inconsistent with public safety and the needs of the space and defense programs of the Nation; Provided, however, that the Administrator shall make no such determination without first obtaining and considering the views of the Department.

The Draft PEIS fails to make the argument that the proposed additional privately operated leased facilities are required to meet the needs of the space and defense programs of the Nation, especially given concerns about impacts to the adjacent CANA and Merritt Island National Wildlife Refuge. The NPS recommends that this be addressed in the Final PEIS.

Specific Comments

Section 2.0 - Description of Proposed Action and Alternatives - This section states, “The three alternatives being considered are the Proposed Action (Preferred Alternative) and the No Action Alternative.” The terminology as presented appears to indicate the Proposed Action is NASA’s Preferred Alternative. What is the NASA preferred alternative in the PEIS? Please revise to provide clarification.
Section 2.1.1.2 - Future Land Use - This section outlines a development framework that would support the growth of the multi-use spaceport model. The Draft PEIS fails to identify the siting criteria that were used to identify the Proposed Action locations of Launch Complexes 39C and 39D as well as the Vertical Landing Area. For example, why wasn’t a Launch Complex proposed between Launch Complexes 39A and 39B? There appears to be adequate open space in the vicinity of these already developed areas that could support the anticipated new infrastructure. The NPS recommends that KSC consider in the Final PEIS relocating one or both of these complexes further south in areas more removed from the southern boundary of CANA.

Section 2.2 - Alternative 1 - This section notes that Alternative 1 was crafted as a direct response to concerns expressed by the public and cooperating agencies during the PEIS scoping period in June 2014. Given the alternative descriptions presented in Section 2.0 there is some confusion as to why the Draft PEIS fails to discuss why Alternative 1 was not identified as the Proposed Action/Preferred Alternative. However, in Section 2.4 NASA identifies Alternative 1 as their preferred alternative. The Final PEIS needs to provide a clear distinction between the Proposed and Preferred alternatives. In general, the NPS is more supportive of Alternative 1 than the Proposed Action alternative, as it seeks to site future infrastructure further away from CANA’s southern boundary and appears to place less certainty on the need for this infrastructure in the future.

Section 2.1.1.2.7 - Utility Systems - The Draft PEIS notes additional utility corridors would be established as needed. NPS is concerned impacts associated with potential utility systems would detract from CANA’s natural setting. This section in the Final PEIS should provide some clarification on how these concerns would be addressed.

Section 2.1.6.2.3 - Divestiture - The Draft PEIS notes Beach Road has been identified as a candidate for future divestiture. NPS currently maintains Beach Road. Given our commitment, NPS continues to program and request funding to ensure this access to CANA. It’s unclear in the document on what would be the process for moving forward with this divestiture and what NPS’ future role would be. This should be explained in the Final PEIS.

Table 2.6-2 Impact Comparison Matrix, Biological Resources - The Proposed Action and Alternative 1 would disrupt ongoing turtle and endangered species bird nesting monitoring/studies due to potential for increased operations and related beach closures. These impacts should be summarized in this table and discussed in Section 3.9 of the Final PEIS.

Section 3.9 - Biological Resources - NPS notes there are more recent wildlife studies and associated data available for the gopher tortoise, eagles, sea turtle and nesting predation, and Southeastern beach mouse. The NPS would be happy to work with NASA and KSC to ensure these reports and studies make it into the Final PEIS for accurate descriptions of the affected environment and potential impacts to these resources.

Section 3.9.1.1.1.2 - Invasive Plants - NPS and the United States Fish and Wildlife Service (USFWS) are currently responsible for invasive species management and control in our respective individual and joint managed areas. Would these agencies be responsible for eradicating invasive species that colonize due to construction and land disturbance activities as
described in the Draft PEIS? This concern needs to be addressed in Section 4.0 - Summary of Mitigation Measures in the Final PEIS.

Figure 3.11-1 - General Land Use - Map inaccurately depicts NPS areas. This should be corrected in the Final PEIS.

Table 3.15-6 - Economic Impact of CANA - Please use the following current economic data:

- $88,428,900 - Non-Local visitor spending
- 1,334 - Jobs
- $42,595,400 - labor income
- $118,327,100 - Output

Section 3.15.1.2 - Canaveral National Seashore - Please correct, “Congress created Canaveral National Seashore...” to “Congress established Canaveral National Seashore...”

Section 3.15.1.2 - Canaveral National Seashore - Please correct, “CNS logs more than 4,000 sea turtle nests each season.” to “CNS logs 4,000 - 8,000 sea turtle nests annually and has the highest recorded density of turtle nesting in the NPS.”

Summary

As a result of our review of the Draft PEIS, and the ongoing Space Florida Shiloh Launch Complex Proposal, we respectfully request that the NASA update the PEIS analysis to more fully evaluate the potential impacts on NPS resources and values at CANA, including the potential to relocate some of the proposed infrastructure further to the south. The NPS remains eager to collaborate with the NASA to achieve an operational KSC outcome that is mutually beneficial and in keeping with each agency’s missions and legal authorities.

Thank you for considering our comments and taking our views into careful consideration. We are available to meet and discuss these concerns. Should you have any questions or need additional information regarding our comments, please contact Superintendent Myrna Palfrey at (321) 267-1110 or via email at Myrna_Palfrey@nps.gov.

Sincerely,

Stan Austin
Regional Director

cc:
NASA - Donald Dankert

1 2014 National Park Visitor Spending Effects, NPS/NRSS/EQD/NRR--2015/947
May 2, 2016
Mr. Donald Dankert
Environmental Management Branch
NASA Kennedy Space Center
SI-E3
Kennedy Space Center, FL 32899

RE: Space Florida Written Response and Comments to the Center-Wide Operations
Draft Programmatic Environmental Impact Statement (PEIS)

Dear Mr. Dankert:

In our role as a Participating Agency for the Center-Wide Operations PEIS and pursuant to statutory
responsibilities of Chapter 331, Part II, Florida Statutes, Space Florida is providing this written response and
attached table of sectional comments for your consideration in preparing the Final PEIS. We request this letter
response and attached comments be incorporated into the Administrative Record of this Action and addressed
in the comment response log to be published with the Final PEIS in the final public review period.

Space Florida has thoroughly reviewed the Draft PEIS document published by your office on March 18, 2016. We
also attended both of the public review meetings held March 29-30 in Brevard and Volusia counties.

Our response offers specific input and recommendations regarding the programmatic environmental impact
analysis of NASA’s proposed 20-year Center-Wide Operations and the guiding Center Master Plan. Our response
also addresses from a Space Florida perspective NASA’s stated Purpose and Need, and the range of alternatives
considered in preparation of the Draft PEIS.

We have organized our written input to summarize the principal areas of concurrence and concern we wish to
highlight in this cover letter. Specific sectional comments and additional detail are addressed in the Attachment.

We note that in the referenced public review meetings and as evidenced in the Draft PEIS itself, NASA has
emphasized that the Center Master Plan (CMP) and associated PEIS for Center-Wide Operations is focused on
future land use as opposed to specific proposed and defined projects. The CMP and Draft PEIS address several
areas of asset divestment, and will serve to provide overall management guidance for KSC Center-Wide
Operations to 2032.
Principal Areas of Concurrence and Concern

1. Land Use: This is Space Florida’s area of greatest concern with the CMP and Draft PEIS. In general, the Future Land Use Plan of both the Proposed Action and Alternative 1, together with the CMP Land Use category definitions, lack flexibility to adapt to evolving space industry and market needs. We are concerned the absence of flexibility to adapt and amend the Future Land Use Plan through a defined process will disadvantage both Space Florida and KSC objectives to implement a balanced land use approach supporting transition of the spaceport. Further, this absence of flexibility will require lengthy and expensive amendment of the PEIS.

Space Florida believes a priority emphasis should be placed on ensuring future capacity for space transportation infrastructure and operations, long-term economic sustainability, and market-driven opportunities for environmentally-responsible development.

Space Florida further observes that a dynamic planning environment confronts NASA, the U.S. Air Force (USAF), Space Florida, and our respective/shared commercial and federal program customers. This planning environment is driven by changing national policies and budgets; accelerating private sector improvements and innovation in technology; and increased globalization and competition in the space transportation industry.

For these reasons, Space Florida is currently in the process of amending its Cape Canaveral Spaceport Complex Master Plan and Florida Spaceport System Plan with a holistic view of the entire Cape Canaveral Spaceport. Our planning horizon will be a 10-year look out to 2025 and we expect to engage both NASA and the USAF in a collaborative effort we discuss further below. Future Land Use definition and flexibility is critical to our collective purposes as we seek to implement a multi-sector space transportation complex that serves U.S. civil, defense, and commercial interests.

We offer for your consideration the following comments and suggestions, plus those on the Attachment, regarding the Draft PEIS and proposed CMP:

- Space Florida concurs that Alternative 1 and its corresponding Future Land Use Map (Figure 2.2-1) is an improvement over the Proposed Action Future Land Use Map (Figure 2.1-1) and incorporates several key comments and observations we made in our initial scoping written input of July 7, 2014. Notably, Alternative 1 eliminates the proposed new seaports and consolidates the two notional Launch Complexes 39C and 39D into a single notional LC-49 area to the north of existing LC-39B.

- Space Florida concurs with the designation of notional LC-48, located on both Future Land Use Map alternatives, as a “Small Vehicle Launch Site Area” (Figure 2.1-4) and the corresponding small vehicle weight and thrust limits identified in 2.1.3.1.2. Space Florida concurs LC-48 is too close in proximity to existing LC-41 and LC-39A to support a vehicle class heavier than “small.”

- While concurring that Alternative 1 is an improvement over the Proposed Action, Space Florida continues to recommend that additional alternatives for Future Land Use should be considered, including the location of notional vertical launch areas to the north of Complex 39B and the Beach Road. Space Florida is concerned that KSC future land use planning has overly constrained and perhaps even precluded the consideration of NASA land north of the Beach Road for future development for Vertical Launch or possibly other categories. This is a result of the lack of Future Land Use flexibility noted above, and overly prescriptive and ambiguous definitions of land use categories. Precluding land development and use for space program purposes would be in conflict with the
1963 Congressional authorization and appropriation for acquisition of additional land for the nation’s space program, and with conditions of the State of Florida’s decisions to grant use of State lands to the U.S. Government.

- An additional alternative beyond Alternative 1 could include the designation of other notional future vertical launch sites. One of these could be at the location of the CVLC Site 2 identified and assessed by NASA in 2007-2008 in the same study that identified the area KSC now designates in the Draft PEIS as notional LC-48. An area of similar ground cover adjacent to the original CVLC Site 2 could be included in the notional site “bubble” of this Alternative similar to LC-49. The CVLC Site 2 has already been assessed by NASA for cultural resources with a field investigation and existing site research. This Alternative could also include on the Future Land Use Plan the notional site for Shiloh, as extensive site planning performed thus far for the FAA-led EIS clearly warrants its consideration in Future Land Use planning.

- An additional alternative beyond Alternative 1 could include the re-definition of the 1,043 acres of land designated for “Renewable Energy” to a broader land use category allowing flexibility in use of these areas which are mostly comprised of former, now fallow, citrus groves. These areas under the U.S. Fish and Wildlife Comprehensive Conservation Plan (CCP) are a preferred ground cover type for future development as they are not practical to reclaim for native scrub habitat. Instead, they tend to foster the expansion of invasive plant species including Brazilian Pepper. It is not at all clear that market conditions and demand for renewable energy production assets will require the designated land at the proposed 1,043-acre intensity. However, the availability of this developable land could be attractive to other “highest and best” uses that support or are ancillary to the spaceport. A future independent spaceport authority will need to employ a diversity of uses to help sustain the broad infrastructure required to support the spaceport’s primary uses. As “Renewable Energy” is essentially an industrial and commercial use for generating electricity or alternative fuels, an expansion of industrial and commercial use would not seem to greatly impact the disturbance of all of these acres for solar farms or other renewable energy enterprises. Perhaps a mixed-industrial/commercial use that includes renewable energy categories would provide the suggested flexibility.

- It does not appear the Draft PEIS analysis of potential impacts from the identified Vertical Launch areas, in particular LC-49, took advantage of data provided by NASA’s internal Ground Systems Development and Operations study of the area, or Space Florida’s submission in response to the KSC Announcement for Proposals (AFP). The cited studies would inform PEIS assessment of the wetlands disturbance and other impacts of this site’s potential development. In addition, the CMP and Draft PEIS have not addressed the issue of allowable range of flight azimuths from Notional LC-49 with respect to LC-39B. Space Florida recommends the PEIS include a more detailed but high-level discussion of the environmental issues that may be associated with Notional LC-49 being developed in the future, including conformity with the elevation-based policies of the CMP.

2. Divestment of Infrastructure: Space Florida understands and concurs with NASA’s need to seek divestiture of Roads and Bridges that would not impact the security of NASA programmatic activities or impact the operations of NASA programs. However, the roads and bridges identified in Section 2.1.6.2.3 remain essential transportation components of the Cape Canaveral Spaceport, its linkages with offsite support capabilities, and connection to regional assets that service both federal and commercial users.

Space Florida recommends strongly that this highway infrastructure must be maintained and sustained as part of the spaceport infrastructure whether retained by NASA or divested as proposed. Space Florida requests NASA ensure the principle of “divesting without diminishing” is applied to the transportation network that supports the entirety of the Cape Canaveral Spaceport, including all land within the boundaries of the Kennedy Space Center.
Space Florida recommends a third criterion be added in the PEIS: Divestiture would not diminish the existing transportation network and spaceport accessibility for non-NASA programs and users of the Cape Canaveral Spaceport.

One specific example, as emphasized by commenters at the NASA Public Review meeting in New Smyrna on March 30, is the continued designation of Kennedy Parkway North as part of the spaceport transportation network, allowing it to be utilized as may be required in connection with offsite support functions such as manufacturing and processing that may be based in Oak Hill and Southeast Volusia County.

Space Florida also remains a key stakeholder as it relates to the future utilization and potential divestment of other transportation assets such as the KSC rail system and, should it arise, the barge terminal. These also are critical transportation assets of the Cape Canaveral Spaceport and provide important linkages with the rest of Florida’s Strategic Intermodal System and regional assets that support the spaceport.

These issues of maintaining the integrity and priority uses for the existing spaceport transportation infrastructure are critical to NASA’s and Space Florida’s shared objective to grow the user base of the Cape Canaveral Spaceport and ensure planning supports future capacity and servicing improvements that may be identified in the Cape Canaveral Spaceport Complex Master Plan and Florida Spaceport System Plan.

3. Timeframe of KSC transition to an independent spaceport authority: Space Florida concurs with the Draft PEIS and CMP that KSC should evolve toward a multi-user spaceport controlled by an “independent spaceport authority.” This future state of spaceport management is noted in the Draft PEIS Abstract and Alternatives sections, as well as the Future Development Concept and the Transformation window in the Implementation Section of the CMP.

We do not agree, however, with the timeframe suggested in the CMP of “beyond 2032.” Space Florida believes it is in the best interest of all Cape Canaveral Spaceport stakeholders to pursue an accelerated implementation of this concept along with interim bridge steps. Space Florida will be examining this in the preparation of its Cape Canaveral Spaceport Complex Master Plan and will soon engage NASA, the USAF, FAA and our other organizational and industry stakeholders in this conversation.

We support the concept of establishing areas that can be designated as commercial zones, in which application of state and local laws, coupled with commercial standards, can offer a commercial operating environment consistent with that which would be available on non-federal land. Space Florida would like to expand on this NASA-developed concept as well, maturing its definition, accelerating its implementation, and applying it to the broad territory of the Cape Canaveral Spaceport where it is found to be appropriate by our federal partners and landowners.

We point out that the Congress provided in the 2015 Commercial Space Launch Competitiveness Act new policy direction to the Secretary of Transportation to work with the USAF and NASA to re-evaluate and streamline the regulatory and operating environment for commercial providers locating on federal sites at the Cape Canaveral Spaceport and elsewhere.

As we noted above in the Land Use discussion, the pace of transformation in our industry is only going to pick up in the near term years, and so the transformation of management structures and governance approaches in most all aspects of the space transportation business will need to keep up.

Again, the attached listing of Draft PEIS comments by section will offer additional input for your consideration in further preparation of your Center-Wide Operations PEIS.
4. Collaborative Planning: Space Florida encourages and requests NASA to embrace a renewed collaborative planning initiative similar to that undertaken in KSC’s 2002 CMP performed in coordination with all of the principal stakeholder organizations comprising the Cape Canaveral Spaceport, in which all the participating federal agencies and Space Florida’s predecessor organization were in agreement that the optimum future for the spaceport would only be realized by planning it as a whole. We are concerned this principle is absent from the current proposed CMP and the PEIS that has assessed it.

Consistent with the Legislative intent of our authorizing statute, Space Florida will lead that renewal of federal-state collaboration in planning the future Cape Canaveral Spaceport as we perform an update to Space Florida’s Cape Canaveral Spaceport Master Plan and Florida Spaceport System Plan in the coming months.

Sincerely,

James Kuzma
Chief Operating Officer
Space Florida

SF 16-180 -pe-jk
<p>| Space Florida | 1 | Last paragraph, line 6: The State of Florida dedicated rights are subject to a definition of use and duration of use, with prioritization for space operations. Recommend factual clarification and citation of the dedication instruments of the Trustees of the Internal Improvement Fund (No. 23151-8 Supplemental dated January 30, 1970 and No. 23151 Modification dated March 8, 1967) | ES-1 |
| | SF-14 | GEN-7 | |
| Space Florida | 2 | Last paragraph, reference should be made to State-owned submerged land, wetlands, and uplands (see references item 1) and the parenthetical water bodies should also include Banana Creek and the Banana River (See figure 1.2-2) | ES-1 |
| | SF-15 | GEN-8 |
| Space Florida | 3 | Last sentence of paragraph 4 should be clarified as to the purpose of the property acquisition by adding the phrase "and to meet future space program launch facility and operational needs" (KSC 1964 facilities planning map; 1962 letter DoD Secretary McNamara to U.S. Sen. Jackson re: additional property acquisition) | ES-1 |
| | SF-16 | GEN-9 |
| Space Florida | 4 | Reference to KSC as "world's preeminent launch facility" should be modified to include the entire Cape Canaveral Spaceport as defined to include the launch facilities of Cape Canaveral Air Force Station. The previous 2002 CMP recognized the entire Cape Canaveral Spaceport and its collective capabilities. | ES-2, paragraph 4 |
| | SF-17 | GEN-10 |
| Space Florida | 5 | Reference paragraph 3 under Alternatives Considered section: the phrase "...controlled by an independent spaceport authority with fully integrated NASA Programs and non-NASA users" should also be included in the paragraphs describing the Proposed Action, Alternative 1, and any further Alternatives added prior to the Final PEIS – please include in all Alternatives | ES-4 |
| | SF-18 | ALT-13 |
| Space Florida | 6 | See Land Use comments in attached letter. Recommend describing land use budget as "Acreages of planned land uses" as opposed to "designated" to address flexibility for future land use amendments and the dynamic planning environment confronting all stakeholders in the Cape Canaveral Spaceport. This is a 20-year planning document. See comment 10 for further recommendations regarding the developable land budget. | Table ES-1 |
| | SF-19 | LU-19 |
| Space Florida | 7 | Paragraph 3 under Water Resources. This statement should be balanced with the potential positive impacts of economic growth and development from foreseeable projects, e.g. the installation of improved regional sanitary wastewater systems replacing septic fields in southeastern Volusia County and extension of municipal potable water service that could lessen shallow well impacts. An absence of economic growth and resources will likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters. |
| Space Florida | 8 | Biological Resources Section – This references a planned reduction of 4,406 acres of operational buffer to be used for development under the Proposed Action, with Alternative 1 resulting in a lower 3,305 acres being committed to more developed uses and facilities. The amount of planned future development proposed for either alternative uses only about half of the 8,000 acres of future development capacity identified as “developable areas” in the CMP, under Planning Conditions – Development Capacity. Space Florida does not recommend full use of all this capacity or that it should be programmed. But the lack of flexibility to increase the developed footprint above the limits of the current alternatives and the land use categories is of concern for accommodating future spaceport capacity and use demand over a 20-year period. An increased non-specific allocation of some additional share of the development capacity is recommended to support the CMP objectives. This would facilitate flexibility to amend the Future Land Use Map and area boundaries without requiring a new CMP and amended PEIS. In addition, we recommend flexibility to swap development acres among the various land use categories currently defined. We previously recommended broader definition of those categories for improved flexibility as well. At a programmatic level, the cumulative impact of increased developed land is in its total, provided that development occurs in the areas that are identified in the plan as "developable." |
| Page | Space Florida | 9 | Cultural Resources assessments: All undeveloped areas of KSC have some potential for undiscovered and previously unrecorded cultural sites. There should be a consistent application of Section 106-required evaluations that does not discriminate between NASA projects and those to be carried out by non-NASA entities. The KSC Cultural Resources Plan should address methodologies and processes that support these investigations for both NASA-sponsored, and non-NASA proposed actions. This is advisable in light of the expectation that future projects will be funded, constructed, and operated by non-NASA entities. "Appropriate surveys and studies" should be determined based on objective and balanced criteria that can allow for a phased investigation to determine appropriate APE and cultural resource presence. Space Florida requests that NASA site-wide processes and study approaches be clarified and addressed in the PEIS for Center-Wide Operations |
| Space Florida | 10 | Land Use: Consistent with the Future Development Concept and CMP, there should be a notation in this section that public use of KSC land is a conditional use as defined in the CMP. Areas designated for Recreational Use (161.36 acres) and areas labeled as Operational Buffer in which recreation "may" be a use will likely lead to confusion. This ambiguity also complicates the application of the U.S. DOT section 4f matters for projects requiring an action by the FAA. Space Florida recommends greater clarity on NASA's intent, as jurisdictional agency for all of KSC per Congressional designation. The issues related to 4f as a requirement on Transportation Projects can apply broadly to all areas of KSC and could have significant impact on KSC's goals for the CMP and as a multi-user spaceport. This is less of a concern if it is legally clarified or otherwise determined that 4f does not apply to the lands acquired for and under the jurisdiction of NASA at Kennedy Space Center |
| Space Florida | 11 | Utilities: Recommend confirming KSC's intent beyond expectation it will itself be a retail customer for listed utilities to address and clarify how utilities will be furnished to non-NASA users and tenants on the spaceport. Also, recommend |</p>
<table>
<thead>
<tr>
<th>Space Florida</th>
<th>12</th>
<th>There appears to be little if any difference between the potential impacts of the Proposed Action and Alternative 1, as the identified projects for launch and landing (both horizontal and vertical) "might not be constructed" under either alternative, whether projects are designated as notional or not. Impacts on wetlands in these areas should be contemplated as potential impacts of the PEIS that could occur, as well as impacts to beach access.</th>
<th>ES-13 and ES-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Florida</td>
<td>13</td>
<td>The characterization of adverse long term effects on outdoor recreation opportunities is not balanced with the referenced beneficial impacts mentioned in the first sentence under Recreation on ES-13. These beneficial impacts could include increased awareness and utilization of natural resources on and near the KSC as a direct result of increased space program activities of a multi-user spaceport. There is a conflict in defining adverse impacts of Recreation by projects that might reduce access to CNS and MINWR, and also defining adverse impacts to Recreation by projects increasing area population and otherwise driving an increased visitation to the CNS and MINWR.</td>
<td>ES-14</td>
</tr>
<tr>
<td>Space Florida</td>
<td>14</td>
<td>Most of the comments above to the Executive Summary will cascade into consistency revisions in the PEIS sections that these summaries were drawn from. Appropriate amendment to text in those sections should also be made for comments that are accepted and incorporated into the final PEIS.</td>
<td>Global to other Sections</td>
</tr>
<tr>
<td>Space Florida</td>
<td>15</td>
<td>The labeling of this map as "Federal Jurisdictions" adds further confusion to the ambiguity of federal agency roles and land use (reference the PEIS narrative on 2-32 and the last paragraph of 1-12 regarding Section 4(f) review with NASA as the jurisdictional authority. NASA jurisdiction over all KSC land acquired for the space program is designated by Congress. We recommend a better description of this map. We suggest consideration of "Federal Administrative Responsibilities" or "Federal Management Responsibilities"</td>
<td>Figure 1.2-1</td>
</tr>
<tr>
<td>Space Florida</td>
<td>Page</td>
<td>Comment</td>
<td>Section</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>SF-29</td>
<td>16</td>
<td>Recommend addition of the word "land" after "facilities" on line 4 of paragraph 2 to read "land, facilities, experienced workforce..."</td>
<td>Section 1.3.1</td>
</tr>
<tr>
<td>SF-30</td>
<td>17</td>
<td>Last bullet: Recommend addition of the phrase "controlled in the coming years by an independent spaceport authority." Consistency with Alternatives description and CMP</td>
<td>Section 1.3.1 pg. 1-8</td>
</tr>
<tr>
<td>SF-31</td>
<td>18</td>
<td>In reference to last CMP in 2002: This should be identified as the Cape Canaveral Spaceport Master Plan, with acknowledgement that it had established a principle for collaborative planning for the entirety of the spaceport, including both KSC and CCAFS. It is understood that the updated KSC CMP has a need to be more institutional-specific to NASA, but the focus on that need to "right size" NASA and its KSC institutional footprint should not abandon the previously agreed to need of planning for the entire Cape Canaveral Spaceport. This is especially valid in light of the anticipated reliance on new users for a multi-user spaceport. Those commercial providers will have facilities and use land across the federal jurisdictional boundaries. We recommend and request that this aspect of the 2002 CMP, and the need for collaborative planning of the entire spaceport complex, be acknowledged in this section</td>
<td>Section 1.3.2</td>
</tr>
<tr>
<td>SF-32</td>
<td>19</td>
<td>As a Participating Agency in this PEIS, Space Florida requests an opportunity to review and comment further on the Comment Response Document prior to its publication in the Final PEIS</td>
<td>Section 1.4.4</td>
</tr>
<tr>
<td>SF-33</td>
<td>20</td>
<td>Land Use Plan Overview: See and consider incorporating earlier comments regarding flexibility, overall land use budget for development, flexibility among categories, capacity to transfer development allocations among categories. As currently structured, the CMP and the PEIS does not promote the highest, best, and most efficient use of land area resources or provide the needed balance with development suitability and capacity to promote commercial use of space and encourage future non-NASA opportunities. Also recommend some broadened category definitions to allow more flexibility in uses as appropriate (e.g. recommendation made regarding lands</td>
<td>Section 2.1.1</td>
</tr>
<tr>
<td>Designation</td>
<td>Comment</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Space Florida 21 SF-34</td>
<td>For accuracy, the following words (in italics) should be inserted in the last sentence under Future Development: "...also concluded that vertical launch pads could be sited to the northwest of 39B and the Beach Road and sited to the south of 39A..." Cite reference RS&H 2007</td>
<td>Section 2.1.1.2.2 PA-11</td>
<td></td>
</tr>
<tr>
<td>Space Florida 22 SF-35</td>
<td>The thrust characteristics for HCLV in this table appears to be in error, or too low. A more appropriate number should be 4,000,000 (the Falcon Heavy for example is 3.9 million lbf). Same issue is in 2.1.3.1.4 description of Heavy Class Table 2.1-2</td>
<td>PA-12</td>
<td></td>
</tr>
<tr>
<td>Space Florida 23 SF-36</td>
<td>Recommended additional criterion in 2.1.6.2.3: 3. Divestiture would not diminish the existing transportation network and spaceport accessibility for non-NASA programs and users of the Cape Canaveral Spaceport</td>
<td>Section 2.1.6.2.3 PA-13</td>
<td></td>
</tr>
<tr>
<td>Space Florida 24 SF-37</td>
<td>Re: discussion of Vertical Landing relocation (top of page 2-28) it would not appear based on location adjacent to the CNS accessible area that this repositioning would lesson impact to beach access at all. See Space Florida response to NASA AFP for conceptual location and access impacts</td>
<td>Section 2.2 ALT-14</td>
<td></td>
</tr>
<tr>
<td>Space Florida 25 SF-38</td>
<td>2nd paragraph is inaccurate. Even under the No Action Alternative, new construction would occur at both the SLF south-field and mid-field sites in accordance with previous EA and the terms of the signed property management and development agreement</td>
<td>Section 2.3.8 ALT-15</td>
<td></td>
</tr>
<tr>
<td>Space Florida 26 SF-39</td>
<td>A potential beneficial impact of the development of a Shiloh launch complex is mitigation against the risk of loss of one or more coastal launch sites by inundation resulting from climate change. This benefit extends to the risk exposure of CCAFS sites as well, thus mitigating a reduction of future launch capacity at Cape Canaveral Spaceport</td>
<td>Section 3.7.2.2 CC-1, CUM-5</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Reference</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>SF-40</td>
<td>Reference the "new Central Master Plan" said here to be under development. Is this the published CMP already approved and online? Should it be Center Master Plan?</td>
<td>Section 3.11.1.1</td>
</tr>
<tr>
<td>28</td>
<td>SF-41</td>
<td>Recommend the addition of the SLF Property Agreement entered into between NASA and Space Florida as this area is extensively covered in portions of the PEIS</td>
<td>Section 3.11.1.5</td>
</tr>
<tr>
<td>29</td>
<td>SF-42</td>
<td>Last sentence of first paragraph undermines the principle that public access is conditional. Is NASA committing that the area north of old Haulover Canal would always remain open to the public? Only for NASA-operated launches?</td>
<td>Section 3.15.2.1.2.1</td>
</tr>
<tr>
<td>30</td>
<td>SF-43</td>
<td>There is no objective basis or supporting rationale for the statement that "total annual visitation to CNS would decrease considerably." There is every likelihood that total annual visitation will increase due to increased launch activity, even if Shiloh is built as proposed. Elsewhere in the PEIS, there is concern that visitation to the CNS and MINWR will increase due to the proposed and alternative action, and considering potential cumulative effects, resulting in adverse impacts to the experience at CNS and to resources. It can't be both ways, or we should conclude that decreased visitation may be a good thing, even though it is not substantiated that decreased visitation is a consequence. NASA launches are assessed to only be 5-7 over a 20 year period</td>
<td>Section 3.15.2.1.2.5</td>
</tr>
<tr>
<td>31</td>
<td>SF-44</td>
<td>Discussion in this section should be limited to Alternative 1. There would likely be greater impacts to Playalinda Beach resulting from either the Proposed Action or Alternative 1 than Shiloh's cumulative effects. The Shiloh proposal has identified areas of expected temporary closure and would not affect Playalinda Beach due to more than adequate safety margins from either proposed site. Some of the potential Shiloh alternatives, such as Notional LC-49, may have impacts, as they would under Alternative 1. The speculation that any project may or may not actually be constructed is not relevant to assessing its potential impact on affected resources in the event that it is constructed.</td>
<td>Section 3.15.2.2</td>
</tr>
<tr>
<td>Space Florida</td>
<td>32 SF-45</td>
<td>Paragraphs 2-5 on pg. 2-32 are read to apply to all alternatives and not just the "No Action Alternative" section they appear in. The assumption in paragraph 4 that the KSC workforce in excess of 2100 federal employees will be government contractor employees is already incorrect. Recommend a phrase at end of sentence to add "or employees of commercial or other non-NASA spaceport users and tenants."</td>
<td>Section 2.3.1 ALT-16</td>
</tr>
</tbody>
</table>
By way of introduction, my name is Mark Barker and I am a resident of Volusia County, Florida. I write today in opposition of any further development or expansion into the Kennedy Space Center buffer area. It is my belief - based upon the findings of the recent environmental impact statement - than any additional development of the area will have a continuing adverse impact on the health of the Indian River lagoon system and other sensitive wetlands. I believe, as many of my neighbors do, that additional development in support of private space-related enterprises can be well confined to already developed areas of the KSC complex. In addition, it is my opinion that that the renovation and re-purposing of existing facilities can attract and support commercial interests without the need to expand development to sensitive buffer areas.

Thank you in advance for taking public comment on this important matter, and for your consideration of my opinion.

Sincerely,

Mark D. Barker
1105 Overbrook Drive
Ormond Beach, Florida
I strongly oppose any KSC development which could potentially impact access to Playalinda Beach. This is a national seashore.

Thank you for your consideration.
Please note that as of January 2016, Port Canaveral is no longer pursuing a railroad easement across the Banana River.

Please revise the report to remove Section 3.2.3, Proposed Port Canaveral Rail Extension. In addition, please revise the map on Figure 2.2-1, "Proposed future land use at the Kennedy Space Center under Alternative 1" to remove the railroad easement.

Gerry Harris
Merritt Island, FL
321-613-2727
In addition to those already discussed in the Draft PELs, what other adverse or beneficial impacts do you think the proposed project might have on the natural and human environment? Have you reviewed the Draft PELs, and if so, what other adverse or beneficial impacts do you think the proposed project might have on the natural and human environment?
Thank you for your participation!

Please comment by either mailing to the address provided; dictating to the court reporter; or submitting online at:

ksc-dl-centerwide-eis@mail.nasa.gov

Please reference KSC Center-wide Operations Draft PEIS in the subject line of the email. Comments MUST be received on or before May 2, 2016 to assure full consideration in the Draft PEIS public review process.

Mr. Donald Dankert
Environmental Management Branch, SI-E3
Kennedy Space Center, FL 32899

Public participation is an essential component of the National Environmental Policy Act (NEPA) process, and NASA welcomes comments on the Kennedy Space Center-wide Operations PEIS (Programmatic Environmental Impact Statement).

Please fill out the following form to ensure that the analysis, and ultimately the decision, considers the affected communities’ opinions.

If you would like to be added to the mailing list and receive information about the project, please provide your email or mailing address.

Name: Jeannette King
Affiliation (Optional):
Mailing Address: P.O. Box 560718
City: Rockledge State: FL Zip Code: 32956
Email:

Please check the box below if you would like to be notified when the Final PEIS is released.

☑ Yes, mail/email to the above address.
I have a public comment in regards to the Kennedy Space Center, Center-Wide Operations, Draft Programmatic, Environmental Impact Statement. On page ES8 under the heading of climate change, the executive summary reads, “With regard to point #1, all three alternatives would add a negligible amount to the U.S. emissions contributing to global climate change.” Later it reads, “With regard to point #2, sea level rise is the single largest hazard to continued KSC/CCAFS operations and regional land management activities.” The executive summary also mentions that extreme temperatures and more intense and frequent droughts and floods are consequences of climate change they have to deal with at the KSC.

Additionally under the heading of biological resources the executive summary spells out that under the proposed action 4,406 acres of native vegetation (including wetlands) would be converted to development as a result of the reduction of the operational buffer. The alternative proposal reduces this but still converts 3,286 acres of wildlife habitat to development.

Now the executive summary claims the effect on climate change is negligible and does acknowledge the effect on the vegetation and habitat. There are a couple interesting things about this. One is the juxtaposition of the fact that the KSC needs to adapt to changing positions but will not be significantly contributing to the problem of climate change. It is also concerning that so much acreage of habitat will be destroyed.
Good evening,

I see that I may have missed the 5pm window today, but I literally just received notice on this as an issue.

I'm not a science expert, but the impact study seems to correlate toward the most plausible causal determination. The nature of the brown tide organism is known not to be affected by normal human "nutrients"; rather, the only known limiting factor was iron according to studies we've been reading.

I'm not sure how to comment in this context, above the collective plea we have as a community to please 1) conduct the necessary studies on this point, 2) institute an immediate moratorium of known/reasonably known iron-based effluents from KSC flowing to the IRL, and 3) keep the public updated on all relevant matters via better forms of communication. I'm not sure what form the initial notice was published, but it should reasonably account for the modern mode of communication (online news stories, share-able by way of social media).

Thank you, and please confirm receipt of this message when convenient.

Very respectfully,
Melissa Martin
Hi NASA,

I just wanted to you to know that I don’t think you should add an additional runway or fill any wetlands. I’m a poet from the area, and believe you should consider having an artist in residence program.

Thanks,
Andrea Panzeca

I’ve attached my press kit. I attended the Alliance for Artists Communities’ Emerging Program Institute, and would love to partner with you to create such a program.
Public Comment about NASA' plan
Timothy Sheldon [tjs49@students.calvin.edu]
Sent: Tuesday, March 29, 2016 12:20 PM
To: KSC-DL-CENTERWIDE-EIS [ksc-dl-centerwide-eis@mail.nasa.gov]

National Aeronautics and Space Administration
Kennedy Space Center
ATTN: Donald Dankert
Environmental Management Branch, TA-A4C
Kennedy Space Center, FL 32899

Public Comment-

I am most in agreement with Alternative 1. I see the adjustments and edits made to the plan from the original are educated and well thought out, and the concerns expressed in comments received during the PEIS public scoping period in June 2014 are concerns I align with. In turn, the adjustments made are ones that I agree with and see as necessary.

As addressed in section 3.9.1.2.2.2 Special Status Species, sea turtle hatchlings use the moon to orient themselves once they hatch, and begin moving towards the water based on the light of the moon. This makes it vital that the light pollution at night is minimized to prevent the turtles from confusing themselves and heading inland. I see it as a major problem caused by NASA and the Air Force at KSC, so it is important that it is a priority. This report suggests that this problem is at the forefront of NASA's mind and operations, and is being made a priority. This issue is one that cannot be forgotten or sea turtles will continue to decrease in numbers. What NASA seems to be doing about the issue is satisfactory.

Tim Sheldon
2nd Year Student
Calvin College
Grand Rapids, MI.
The 45th wing rips up rail to preserve the wildlife, which we all know is bullshit. It was about the commander being damned if anyone would travail his turf. As applied, you caused it you clean it up.

NASA owes us and if NASA made a real effort and incorporated the little people to help and made it a community effort it may help reinvent what most locals perceive as a government agency that is useless as tits on a bull.

Open the locks. The port is currently dredging to bring in bigger ships. Is it so much to ask to leave the locks open for a few months? The study that concludes the locks being open have no value is also bullshit. I lived on the river. They opened the locks before many years ago. The lagoons thrived.

Tom Ubl
(321) 458-7511
Mr. Donald Dankert
Environmental Management Branch
NASA Kennedy Space Center
Mail Code: TA-A4C
Kennedy Space Center, FL 32899

Re: Comments Regarding Draft Programmatic Environmental Impact Statement (PEIS) for Kennedy Space Center

Dear Mr. Dankert:

I am writing today to support Alternative 1 because it addresses many of my concerns with the original proposal. I believe our national parks and national wildlife refuges should be managed for protection of the natural and cultural resources found within them for the benefit of current residents and future generations. Utilizing a portion of these lands for local economic is at odds with the mission of protecting these properties.

While I support economic development of the area, I believe that can be accomplished by changing Kennedy Space Center from a single government user launch facility to a multi user facility that will accommodate commercial launches. Allowing future commercial launch operations within the existing security zone of Kennedy Space Center not only eliminates the need for new launch facilities “outside the gate,” but protects the natural resources, allows for economic growth and provides a protective buffer for existing residences and businesses.

I support the Buffer Designation as it will serve to protect the wetlands, submerged lands, local endemic species which call this property home and the numerous historical resources located within the buffer boundaries. This buffer designation will also protect the estuarine waters of Mosquito Lagoon which have recently seen a devastating decline in water quality. Because all of the land within the Buffer Area is currently managed for public recreation and habitat protection, a continuation of this designation provides protection of the interests of the hundreds of thousands of people who visit Merritt Island NWR and Canaveral Seashore each year. As an aside, this recreational use also generates an enormous economic boost to the area.

It’s also important for me to stress my belief that we need long-term protection of the Buffer Area as mitigation against future adverse actions – especially the idea that the Shiloh property may be considered in the future for development of a launch facility. To ensure that we don’t continue to examine the Shiloh property for future development as we’ve done several times in the recent past, it seems reasonable to follow the suggestion of several commenters who recommended permanent transfer of lands north of SR 402 to USDOI for management as part of the Merritt Island National Wildlife Refuge and Canaveral National Seashore.

Thank you for the opportunity to comment on this PEIS. I appreciate you listening to my comments.

Sincerely,

Paula Wehr
Attached are comments to the Draft Programmatic EIS for KSC.
Regards
Clay

Clay Henderson
Executive Director
Institute for Water and Environmental Resilience
Stetson University
421 North Woodland Blvd Unit 8262
Sage Hall Room 212
DeLand, Florida 32723
386.822.7961
clay.henderson@stetson.edu
http://www.stetson.edu/other/water-environmental-resilience/index.php
Mr. Donald Dankert
Environmental Management Branch
NASA Kennedy Space Center
Mail Code: TA-A4C
Kennedy Space Center, FL 32899

Re: Comments Regarding Draft Programmatic Environmental Impact Statement (PEIS) for Kennedy Space Center

Dear Mr. Dankert:

These comments are provided by the National Parks Conservation Association, Friends of Canaveral, Audubon Florida, Southeast Volusia Audubon Society, and Florida Trust for Historic Preservation in response to the Notice of Availability of the Draft Environmental Impact Statement (PEIS) for the Kennedy Space Center Master Plan as set forth in the Federal Register on March 4, 2016. Pursuant to the Notice and the National Environmental Policy Act, these comments are directed to the PEIS. These comments supplement oral comments provided at the public meeting held in New Smyrna Beach on March 30, 2016.

Certain lands subject to the PEIS are managed for protection of natural and cultural resources as part of Canaveral National Seashore and Merritt Island National Wildlife Refuge. Your commenters represent millions of members across the United States who expect our national parks and national wildlife refuges to be managed for protection of the natural resource values and cultural resources found within them for the benefit of current residents and future generations. Some of the commenters at the public hearing called for utilizing a portion of these lands for local economic development projects which were beyond the scope of this PEIS. In any event, such proposals are clearly at odds with the mission of the USFWS and NPS whose duty it is to protect these resources.
As an overall comment, we appreciate that NASA has taken into consideration many of the specific issues we raised in our collective comments provided in 2014 as part of the scoping process. Accordingly, we agree that Alternative 1 addresses a number of our concerns by elimination of proposed launch related infrastructure which could have adversely impacted Merritt Island National Wildlife Refuge, Canaveral National Seashore, and the Indian River Lagoon, and thus support that as the preferred alternative. We appreciate that certain proposed infrastructure which could have an adverse impact on natural resources have been eliminated from the plan. In addition, we support the general direction of the PEIS to transform Kennedy Space Center from a single government user launch facility to a multi user facility that will accommodate commercial launches. By focusing future commercial launch operations in proximity to the existing launch related infrastructure at Kennedy Space Center, we believe this obviates any need for commercial launch facilities outside of this specific area.

Support for Buffer Designation. The Future Land Use Plan within the PEIS designates all of the land owned by NASA north of SR 402 and Beach Access Road as Operational Buffer/Public Use (the “Buffer Area”). We agree that the Buffer Area contains valuable wetlands, submerged lands, areas vulnerable to inundation by rising water and high-value upland habitat for listed species such as the Indigo Snake and Florida scrub jay. A buffer designation for this area will also protect the estuarine waters of Mosquito Lagoon which have recently seen a decline in water quality. All of the lands within the Buffer Area are managed for public recreation and habitat protection by National Park Service as part of Canaveral National Seashore, and by USFWS as part of Merritt Island National Wildlife Refuge, thus a buffer designation will also protect the interests of the more than one million visitors to CNS-MINWR each year.

The Buffer Area also contains significant historical resources including the Elliott Plantation Complex. The site encompasses 2585 acres within the Buffer Area and contains a sugar works factory, rum distillery, slave village, overseer's house, canals, and other agricultural remnants. The site is currently listed on the State Master Site Files, and according to review by the National Park Service, the site is eligible for both the National Register of Historic Places and as a National Historic Landmark. Due to the potential conflict with commercial launch operations, the Florida Trust for Historic Preservation has listed the site as among the eleven most endangered historic sites in Florida.

We strongly support continued protection of all areas north of SR 402 as Operational/Buffer Public Use and further support their active management by the USFWS and NPS for habitat conservation and public enjoyment. We specifically oppose calls to utilize this property for commercial space launches or to accommodate commercial and industrial development.

We note with concern the acknowledgement within the PEIS that the Shiloh Launch Complex is “reasonably foreseeable” for the purposes of examination of cumulative impacts. We also note for concern that such reasonably foreseeable projects could contribute to the cumulative impairment of the Indian River Lagoon.

Because we stress the importance of protection of the Buffer Area and remain concerned about long term cumulative effects, we continue to stress the need for perpetual protection of the Buffer Area as mitigation against future adverse impacts. The most appropriate, long-term programmatic mitigation for potential environmental impacts is the permanent transfer of lands.
north of SR 402 to USDOI for management as part of the Merritt Island National Wildlife Refuge and Canaveral National Seashore. The PEIS acknowledges that several commenters made reference to this idea but the PEIS does not address the comment with any degree of specificity.

Thank you for the opportunity to comment on this PEIS. We are appreciative that NASA took many of our comments to heart in developing Alternative 1 with its lesser known impacts. On the other hand we must continue to advocate for long term mitigation for reasonably foreseeable cumulative impacts. Perpetual management of the Buffer Area as part of Merritt Island National Wildlife Refuge and Canaveral National Seashore offers the best opportunity for long term mitigation. Like most Americans, we take great pride in our national space program, but we also recognize our National Parks and National Wildlife Refuges represent the best of America's natural resources, wildlife viewing opportunities, immeasurable recreational opportunities, and historic landmarks which collectively remain our legacy for future generations of Americans to enjoy.

Very truly yours,

NATIONAL PARKS CONSERVATION ASSOCIATION

AUDUBON OF FLORIDA

SOUTHEAST VOLUSIA AUDUBON SOCIETY

FLORIDA TRUST FOR HISTORIC PRESERVATION

FRIENDS OF CANAVERAL
NASA Kennedy Space Center
Center-Wide Operations

Draft Programmatic Environmental Impact Statement
Public Meeting

Tuesday, March 29, 2016
6:10 p.m.

Eastern Florida State College Titusville Campus
John Henry Jones Gymnasium
Titusville, Florida

Reported by:
Rita G. Meyer, RDR, CRR, CBC, CCP
Realtime Reporter/Notary Public
PRESENT:
Don Dankert, KSC Environmental Management Branch
Mario Busacca, Chief KSC Spaceport Planning Officer
Leon Kolankiewicz, PEIS Project Manager, Solv
<table>
<thead>
<tr>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation by Don Dankert</td>
<td>4</td>
</tr>
<tr>
<td>Presentation by Mario Busacca</td>
<td>7</td>
</tr>
<tr>
<td>Presentation by Leon Kolankiewicz</td>
<td>12</td>
</tr>
<tr>
<td>Public Comments</td>
<td>26</td>
</tr>
<tr>
<td>Certificate of Reporter</td>
<td>28</td>
</tr>
<tr>
<td>Word Index</td>
<td></td>
</tr>
</tbody>
</table>
DON DANKERT: Good evening. I'd like to welcome all of you to tonight's public meeting for the Kennedy Space Center Center-Wide Operations Programmatic Environmental Impact Statement.

We're here tonight as part of our NEEPA process and we were here roughly two years ago in 2014 when we released the notice of intent to publish the EIS. We took a lot of comments and certainly got quite a few more people here. But we took your comments into consideration and we wanted to come back and share with you the results of our analysis with EIS.

Again, my name is Don Dankert. I'm the project manager for EIS and I work in the environmental management branch.

So the purpose of today's meeting, we'll give you a brief overview of the National Environmental Policy Act and the public involvement process. We'll explain the content and background of the KSC Master Plan and the rationale for the development of this EIS.

Provide an overview of the EIS to help facilitate your comments. And at the end of that, if any of you wish to do so, we'll solicit public comments. You can come up and give us your comments here or fill out forms; mail them in.
So what is NEEPA? The National Environmental Policy Act requires all federal agencies to take a hard look at their actions and evaluate potential environmental consequences of those actions. It's really a decision-making tool to look at what is the -- what is the -- for the Government to have an action, what are the potential consequences to the human and natural environment.

Next slide, please.

And so what is an EIS? The EIS is the culmination of that process. It's a full disclosure document which goes through the entire life cycle of how that project was developed and looks at all of the various potential environmental impacts that may result from that project.

We have two types of EISes. There's a project-specific EIS that would be geared towards a specific action, and then there's another one, which our EIS falls in the category, we call it a programmatic EIS which looks at a much broader study and so as you read through it and looked at the poster session, our EIS really focuses, the core of it is looking at potential future land use changes rather than focusing on specific projects.

So the overall process, we published the Notice
of Intent in May 2014. We were here and the New Smyrna Beach in June for our public scoping meetings. The draft EIS was issued March 18th of this year and here we are at our public meeting.

The next steps in this, we will go through a 45-day review period, which will close on May 2nd. Once we have that, we'll take all the comments received from the public that are mailed in from other agencies. We will go through them. And we're required to answer all of the comments and questions that come in.

We'll develop a report and we'll make the appropriate changes in the document based on what we receive in the public comments.

We hope to issue the final EIS in July of this year, at which time there's a 30-day waiting period when we file that, and then we'll issue our record of decision in September of this year.

Next slide, please.

So public involvement. This is a big and integral part of the process. So one of the most important things that a citizen or anyone that has concern about a major federal action is comment, you know, make your voice heard during the process. So we ask that if you do want to solicit comments, you
know, be clear and concise, you know, solution oriented. If there's data out there that maybe you feel we missed, provide us direction to that data so we can go find it and look at it. If you have some additional alternatives, feel free.

Then as I said, we will take all those comments into consideration and they will be become part of the final document.

As a second part of that tonight, we have a court reporter here, so everything that we're doing here tonight, any of your comments that you want to come to the mike and speak, they will all become part of our official record for this EIS.

Next slide, please.

With that I'd like to introduce Mario Busacca from our Center Planning Development Office.

MARIO BUSACCA: Good evening. Thank you all for coming.

I'm Chief of Spaceport Planning Office. The Master Plan was developed under the auspices of my office and we're going to kind of give you the same brief we gave two years ago.

Next slide, please. Okay. New slide for me. It's been restructured, sorry.

So our mission, everything we do has to follow
our overall mission. We -- the major launch program for NASA and Kennedy is the space launch system. That's what we'll be going beyond lower earth orbit with. And once we actually start flying that over the next twenty years, we should be doing five to seven flights. So it's must less intense than you saw in the shuttle program.

Then we have a commercial crew that will go into lower earth orbit. We do have two commercial providers were selected the year before last, I guess, or last year, Space X and Boeing are building capsules that will bring us to the International Space Station will be launched from the Cape area.

We have extended the mission to the International Space Station through 2024, with the hopes that will be extended further than that. And we do support that a number of different ways.

Then supporting the commercial space industry per the NASA Authorization Act, that gives us our direction as to what we are supposed to do. In 2010, we were authorized to promote commercial space. One of the ways we have a commercial crew. And we also can use the assets that we've built. We've done a number of those. Complex 39A, for example, has been leased to Space X to launch
commercial crew and other things and land and that's largely what you're seeing in our Master Plan here.

And then our launch services program, which people just kind of forget, all of the things that we launched to other planets or we launch to orbit the earth, to do earth observing, are done out of our launch services program, which basically provide commercial rides on commercial launch vehicles. So that is stationed here at Kennedy Space Center. So our Master Plan is designed to address all of these various activities.

Next slide.

So we started working on this Master Plan in 2010. It's the first major update. Our last update we had was 2002. We did something called the Future Development Concept. In 2012 we kind of laid the framework for this. We used a number of different methods to get lots of input from the public and from interested parties. And that provided a basis for the plan that you're seeing here or you saw the draft EIS in the scoping meeting.

The Master Plan, itself, was developed and it was approved for use, so we can sort of implement it and use those to make our decisions which are going to provide the framework.
In 2014, we also decided at that time we wanted to get even more public input and that's the reason we decided to go in the NEEPA process.

There's three major sessions. There's the planned background, which is what is, what's the basis of what we've done. What are the existing conditions and then future development, which is where you see the maps which we use to make our decision.

Next slide.

So we have four basic core strategies to develop the Master Plan and they remain in place. The first and foremost, supporting the NASA mission, obviously.

Second is the idea of divesting without diminishing. We've built all these assets over a course of time and we didn't want to just get rid of them if they're still viable. Again, the example would be Launch Complex 39A, which rather than demolishing it or allowing it to go into disrepair, we've leased that to a commercial launch provider, Space X, and they will use that. So we don't diminish our capability, but we're no longer responsible for or have to spend the dollars to maintain it.
Going leaner and greener. This means more than just sustainability, which is a big part of it, we also talked about being more business friendly in the sense of having better processes for how we would work with the commercial partners because they work differently than the Government. So the idea of going leaner and greener allows us to figure out how we can work better and more quickly with other people.

And finally, when we first came to you, this was the idea of developing a multi-user spaceport. We've since been cleared by our center director this past year as now we are a multi-user spaceport, so we need to continue to enhance it. The reason we're a multi-user spaceport is because we have multiple launch providers and other commercial capability that is developing and will develop on the Space Center.

Again, Space X is going to be launching large engine, is going to be launching off the Cape, but will be building their rockets on Kennedy Space Center and so forth. So we are now going to be using the spaceport, we're very proud of that and so quickly.

Next slide.
So the future land use plan -- and what you saw if you were talking to any of us in the back, when we developed the future land use map, this looks like a map you would see in a comprehensive plan for a city or county. Basically, a series of land uses. We need to make decisions. We have the future land use map, that is the Proposed Action. Any other action is, of course, No Action. It provides for functional areas of zones of activity, including what you see there, government, industry and commercial. And there can be a mix of those depending on what we're doing where.

Next, please. So you can find this, and we do have back in the -- we have an IPad in the back. You can take a look after the meeting. You can get it at masterplan.ksc.nasa.gov and that is our Master Plan. And some people asked the last time can we get a copy of the master plan? No. Because we decided to go into the 21st century and it is fully web based. We do not have a hard copy master plan. So if you want to see the master plan, you've got to go there.

Next slide. And now I'll turn it over to Leon.

LEON KOLANKIEWICZ: Let's see if I can avoid blowing the eardrums out.
How's that? Can everyone hear me okay? Not too bad?

All right. I'm going to talk a little bit about the highlights of this Environmental Impact Statement. The Programmatic EIS that we have just completed a draft version of.

And, again, Don went over this briefly, but we published a Notice of Availability in the Federal Register. That's sort of the official putting the country on notice that the document is available. And the EPA did it earlier this month as well.

Written comments, to reiterate, I think are due by May 2nd if you want to get them considered and responded to in the final EIS. I wanted to reiterate that you can come right over here and just verbalize comments. They become written comments by the act of speaking to the court reporter.

So two locations again where it's available online, both at an EPA website and at NASA's project website.

It's also available in these listed locations there. Most of the public libraries in the area are pretty wide area. Six of them.

And I think you've already seen this slide. We're now in the public review process of the
Programmatic Draft EIS. A Notice of Intent when we first started this, was back in 2014. So it's been about two years to get to this point and we hope to wrap it up in the coming months.

So what does an EIS do? It looks at the purpose and need of a project. What are you -- what is the agency, the lead agency trying to accomplish? What are the different ways of achieving that? That's the other major part. What are the alternatives?

And then you have affected environment and environmental consequences. The affected environment is not everything under the sun, but it's those parts of the surroundings and the resources that are in an area that might potentially be affected by different elements of the Proposed Action or alternatives to that Proposed Action.

So the purpose is to facilitate this transformation that is already well under way to a multi-user space complex. And then the need is to update the Center Wide Master Plan in a manner that allows this to be achieved.

Then the EIS is looking at different means of approving or implementing each of these. Going after the purpose of these or pursuing it. Go
So when we came here two years ago, we actually had two alternatives: The No Action, which was to continue doing things the way we are right now, and then there was the Proposed Action, which was approval and implementation of the Center Wide Master Plan. As a result of a lot of comments received during public scoping from the folks who were here, from folks who wrote in, from some of the cooperating agencies, NASA came up with a second action alternative, so called Alternative 1, which is similar to the Proposed Action, but as it says, it changes the siting of some of the facilities, make some of them optional and eliminates one particular category altogether, which were seaports. There two seaports in the Proposed Action and under this alternative, Alternative 1, those go away.

So when we're looking at environmental consequences, I'm not going to get into the affected environments out there in the document. When we look at the environmental consequences of the No Action Alternative and Action alternatives, you look at different aspects of this. The magnitude is how much of the type of impact. How long do those impacts last? That's the duration or frequency.
How far do they extend? Geographically, that's the extent. The likelihood. What is the probability of their occurring? And then finally, how unique are these impacts? Do they have any precedent or are they quite commonplace?

All right. So let's review some of the different topics that are covered in the EIS real quickly here.

Sounds like we're dealing with some water up above unless that's just the HVAC system. At least we're in here and dry.

So water quality, wetlands, the No Action alternative would be no additional impacts to what is going on out there right now. The document, itself, goes into a lot more detail in describing that, of course.

Under the Proposed Action and Alternative 1, there would be impacts, of course, from construction sites. Those would tend to be temporary and well controlled.

And then there would be long-term or operational impacts much as there are now and perhaps at a greater level than what is happening right at the moment.

We don't foresee any substantial impacts on
surface -- from the Proposed Action or Alternative 1, substantial or significant impacts from -- on lagoons, on the ocean, on streams and so forth from either short-term construction or long-term operation.

The other hand, in terms of cumulative impacts, which are not only from the Proposed Action or any of the alternatives, but from everything else going on in the area, as a result of a probable increase in non-point sources of pollution and the watersheds feeding into the Indian River Lagoon, there could well be substantial impacts on water quality and water resources, and I know you've been seeing some of those in just the last few weeks here with recent elder blooms and fish kills.

So biological resources. As you well know, they are important biological resources here, on Merritt Island, a lot of those are protected and managed by the National Wildlife Refuge and Canaveral National Seashore.

In terms of the No Action Alternative, things would stay the same as they are now. No additional impacts on those biological resources.

Under the Proposed Action, there would be a conversion of approximately 4400 acres to more
developed land uses and that would represent the loss of about ten percent of existing operational buffer and conservation land. And then under the Proposed Action as well, two proposed seaports would eliminate 286 acres of what amounts to wetland habitat.

And then finally, launches, again, over the long term, would have minor to moderate short-term impacts on water resources in the surrounding areas.

So from Alternative 1, the impacts would be similar to those of the Proposed Action, but somewhat less because there are fewer areas that would be developed. And at this point, I wanted to point out, too, that both the Proposed Action and the initial planning for it and Alternative 1 made every effort to consolidate facilities and reduce the sorts of conversion or loss of habitat that we're referring to earlier.

Under Alternative 1, the two seaports would not be constructed, eliminating that habitat conversion.

Biological resources, cumulative impacts. There are concerns about Florida scrub jay habitat in the area and beyond that. And overall, as a result of climate change and ongoing development in the area, their potentially significant cumulative
impacts on habitats and on the wildlife that depend on those habitats.

Climate change, itself, was a resource topic in this EIS. The federal government requires environmental impact statements to look at this now and from two perspectives. You look at the greenhouse gas emissions, carbon dioxide, methane, et cetera, and their impacts on climate and then you look at how changes in climate that are projected over the coming decades impact the proposed action alternatives.

So KSC, under the No Action Alternative, we would not implement certain elevation-based zoning that would require new development to stay out of areas or would require developed areas to be lifted up. So they're less susceptible to storm damage and the sea level rise that's projected for this area.

Operations would be at somewhat greater risk as a result of the impacts from climate change than if the action alternatives were undertaken.

Under both the Proposed Action and Alternative Number 1, it would be negligible amounts of CO2 and methane and greenhouse gasses adding to the U.S. emissions.

The hardening and improving and moving of
facilities as an adaptive measure would help reduce
impacts of climate change on KSC infrastructure and
operations in the coming decades. And the
consolidation of operations would reduce the
geographic footprint as well as energy use here,
which would help reduce KSC's contributions to the
greenhouse gasses.

And then efforts to increase renewable energy
on site would also be a step in the right direction
in terms of minimizing greenhouse gas emissions from
KSC operations.

Cumulative impacts that would occur under,
really, all of the alternatives, are sea level rise,
which is projected to be on the order of up to
several feet of the remainder of this century. And
then more frequent temperature extremes and a
greater likelihood of severe storm and weather
events in this area and throughout Florida, really.
Not just here.

Okay. Air quality. Under the No Action
Alternative, air emissions and ambient air quality
would not change.

And under both Alternative 1 and the Proposed
Action, there would be potentially minor increases
in air emissions that, again, are not likely to
substantially affect the generally good air quality that you enjoy in this region.

Cumulative impacts. Short term, adverse impacts would be minor in the air quality topic.

Land use alternative. Under No Action Alternative, existing land uses would remain the same. There would be no additional impacts.

Under the Proposed Action and Alternative Number 1, the land use, the acreage currently used for administration, open space, operational buffer and support services would decrease under both Alternative 1 and the Proposed Action.

There would be no change to the acreage associated with water recreation, acreages for launches and landings, operations support, R&D, renewal energy and assembly, testing, processing would increase under both the Proposed Action and Alternative Number 1.

Alternative Number 1 would result in fewer land use impacts as a result of the elimination of those two seaports.

Overall cumulative impacts from land use would likely be moderate since only impacts to KSC landings resulting from the CMP, Center-wide Master Plan.
Socioeconomics. The Environmental Impact Statement requires us not to look at just the physical and biological environments, but the human environment as well. Under the No Action Alternative, there would be no additional socioeconomic effects on Brevard and Volusia Counties.

Under the Proposed Action and Alternative 1, there is the potential for minor to moderate beneficial impacts as a result of the creation of jobs and labor income.

There would be long-term indirect economic benefits from KSC's transformation to a multi-user spaceport, which is expected to attract new tenants. Future employees from non-NASA projects would represent new purchasing power to support additional regional jobs and payroll, the multiplier effect.

And then impacts from Alternative 1 would be similar, but on a somewhat smaller scale, due to the elimination of the new seaports and other facilities that might not be built.

Cumulative impacts. Under socioeconomic, again, you've all heard this multiplier effect. It's from additional jobs and payroll that would increase over time, potentially producing
significant economic benefits in terms of employment, payroll in general; economic activity in the area.

Recreation. Again, a lot of folks commented on that here two years ago and we took those comments to heart and considered them.

The No Action Alternative, there would be no additional impacts. And on the other hand, there would be cumulative impacts resulting from sea level rise, erosion from that sea level rise, and then general increase in population and activities, recreational activities in this area. And those could affect the visitor experience in both Merritt Island National Wildlife Refuge and Canaveral National Seashore.

The Proposed Action, it would have mixed impacts, both adverse and beneficial. Development of a horizontal launch infrastructure could hinder or delay access to Playalinda Beach, which would adversely affect the visitor experience. For example, intermittent closures.

Development north of Beach Road, vertical and horizontal, launch and landing, would have long-term adverse impacts on recreation at Playalinda and CNS or Canaveral National Seashore.
The development of the two seaports could potentially affect saltwater marsh or mangroves, impacting boating and fishing, by degrading fish and nursery habitat.

Alternative 1 would likely have fewer impacts on Playalinda Beach and recreational impacts generally from the seaport development that would be avoided.

Additional launches and other development could cause annual visitation to CNS to decrease as a result of closures. Again, we can't really quantify that at this point, but it is a possibility.

And then increases in water run off, sedimentation and potential spills, primarily during construction activities, would also tent to have localized effects.

Hazardous materials and waste. There would be under the No Action Alternative, no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed of at KSC.

And then under the Proposed Action and Alternative both, there would likely be an increase in the amount of hazardous materials, but not new ones. They would be the same solvents, surface
coatings, propellants; fuels that have been handled here for years. The handling procedures would not be affected, but increased exposure always leads to some increased risk, of course.

There would be some higher likelihood of accidental release, mitigated by training and the adherence to best practices.

No cumulative impacts are expected in that regard.

And that's it. That's an overview, a brief summary. I encourage you to look at the document, itself, if you want to get more detail on all of these. You can fill out a comment form and leave it with us here tonight. Take it with you and send it back later.

The address up here, I believe it is on the comment form as well. The e-mail address is right here and listed in several of the pieces of paperwork that you had out there.

And then finally, again, you can -- we've got a court reporter here just waiting to hear what you have to say. And come up to the microphone right now. I want to reiterate we're taking comments right now. We're not here to get into a discussion or answer questions, but if you want to take, take a
few minutes and give us some comments, we'd appreciate them.

When we were here a couple years ago, there was so many folks that had to ask everyone to keep it to three minutes. I don't think we need to do that tonight, but still, you know, bear in mind, you go on a bit too long, people start to lose interest.

So anyone like to come up and be the first to have anything to say? Do we have comment cards? Okay.

All right. I believe you want to speak. I'll give that to you.

BILL KLEIN: Hello. I'm Bill Klein. This looks like a very interesting project and I'd like to see that there's a little less environmental impact with the proposed, proposal number one.

The one thing that I'm very interested in is for a long time, there's been a lot of development in the area and inadequate mitigation and consequences.

So what I'd like to know is, whatever the environmental impact that is being done by either proposal, what the mitigation -- what mitigation actions you all are doing. Because this, to me, is the most important issue. If ten percent of the
land is clear, there should be about that amount of land with native plants and processes provided to the county. So whenever something is damaged, there is something done to compensate for it.

But I very much like what you've discussed today and it looks like you've done a great job.

LEON KOLANKIEWICZ: Thanks, Mr. Klein.

Anyone else have a comment or comment card?

We'll be around for a while yet. You can still come up here and comment. I believe we're going to be going back to the station and talk to people one on one there. Those comments aren't recorded. If you want a comment to be officially considered in the document, please come to the court reporter or fill out one of our comment forms.

Anyone else before I turn off the microphone?

Thank you for coming tonight. I don't know, is that rain or is that just -- okay. All the more reason to stick around for a few minutes. Thank you again.

(Proceedings concluded at 6:44 p.m.)
CERTIFICATE OF REPORTER

STATE OF FLORIDA:
COUNTY OF BREVARD:

I, RITA G. MEYER, RDR, CRR, CBC, CCP, do hereby certify that I was authorized to and did stenographically report foregoing proceedings and that the foregoing transcript is a true and correct record of my stenographic notes.

I FURTHER CERTIFY that I am not a relative, employee, attorney or counsel of any of the parties, nor am I a relative or employee of any of the parties, attorneys or counsel connected with the action, nor am I financially interested in the outcome of the action.

DATED on this 28th day of April, 2016.

RITA G. MEYER, RDR, CRR, CBC, CCP
to [7] 4/10 12/2 14/12 14/14 2/25 25/17 27/11
background [2] 4/18 10/5
bad [1] 13/2,
basic [1] 10/11,
basically [2] 9/7 12/5
basis [2] 9/19 10/6
be [52]
bear [1] 26/6,
because [5] 11/5 11/15 12/8 18/12
become [3] 7/7 7/12 13/16
been [7] 7/24 8/25 11/12 14/2 17/13 25/11
26/18
before [2] 8/10 27/16
being [2] 11/3 26/22
believe [3] 25/16 26/11 27/10
beneficial [2] 22/10 23/17

some [1] 1/1

B

NASA [1] 12/10

benefits [2] 22/13 23/1
best [1] 25/7,
beyond [2] 8/3 18/23
Bill [1] 26/13
biological [5] 17/16 17/17 17/23 18/21
22/3
bit [2] 13/3 26/7
blooms [1] 17/15
blowing [1] 12/25
boating [1] 24/3
Boeing [1] 8/11
both [9] 13/19 18/14 19/21 20/23 21/11
21/17 23/13 27/17 24/3
branch [2] 2/2 4/14
Brevard [2] 22/6 28/3
briefly [1] 13/7
bring [1] 8/12
broader [1] 5/20
buffer [2] 18/3 21/10
building [2] 8/11 21/21
Busacca [2] 2/3 7/15
business [1] 11/3

C

call [1] 5/19
called [2] 9/15 15/11
came [3] 11/10 15/2 15/10
Campus [1] 1/13
12/13 12/15 12/15 17/12 24/13 13/1 13/15
25/13 25/20 27/9
can't [1] 24/11
capsules [1] 8/12
Carbon [1] 19/7
card [1] 27/8
cards [1] 26/9
category [2] 5/19 15/15
cause [1] 24/10
CBC [3] 1/24 28/5 28/19
CCP [3] 1/24 28/5 28/19
center [12] 1/1 1/2 4/3 4/3 17/6 9/10
11/12 11/18 11/22 14/21 15/6 21/24
Center-Wide [3] 1/2 4/3 21/24
century [2] 12/19 20/15
certain [1] 19/13
certainly [1] 4/8
CERTIFICATE [1] 28/1
certify [2] 28/6 28/10
cetera [1] 19/8
change [6] 18/24 19/3 19/9 20/2 20/22
21/13
Chief [2] 2/3 7/19
citizen [1] 6/22
city [1] 12/5
clear [2] 7/1 27/1
cleared [1] 11/2
climate [6] 18/24 19/3 19/9 19/9
20/2
close [1] 6/6
CMR [1] 21/4
CNS [2] 23/24 24/10
CO2 [1] 19/22
coatings [1] 25/1
College [1] 1/13
| T | viable \[1\] 10/18
thing \[1\] 26/17
three \[7\] 9/11 10/16 13/21 14/24 14/25 16/4 25/13
they \[12\] 7/7 7/12 10/12 10/22 11/5 13/16 16/1 16/4 16/5 17/17 17/22 24/25
their \[2\] 10/18 19/16
things \[5\] 6/22 9/1 9/4 15/4 17/21
think \[3\] 13/12 13/24 26/5
this \[37\]
those \[18\] 5/4 7/6 8/24 9/24 12/11 14/14 15/17 15/24 16/19 17/14 17/18 17/23 18/11 19/2 21/20 23/5 23/12 27/12
two \[3\] 10/4 26/5
through \[5\] 5/12 5/21 6/5 6/9 8/15
throughout \[1\] 20/18
time \[6\] 6/16 10/1 10/17 12/17 22/25 26/18
Titusville \[2\] 1/13 1/14
today \[1\] 27/6
today's \[1\] 4/15
tonight \[6\] 4/5 7/9 7/11 25/14 26/6 27/17
tonight's \[3\] 4/2
too \[3\] 13/2 18/4 12/6
took \[3\] 4/8 4/9 23/5
tool \[1\] 5/5
topic \[2\] 19/3 21/4
topics \[1\] 16/7
towards \[1\] 5/17
training \[1\] 25/6
transcript \[1\] 28/8
transformation \[2\] 14/19 22/13
transported \[1\] 24/20
true \[1\] 28/8
trying \[1\] 14/7
Tuesday \[1\] 1/9
turn \[2\] 12/23 27/16
twenty \[1\] 8/5
two \[15\] 4/6 5/16 7/22 8/9 13/18 14/3 15/2 15/3 15/16 18/4 18/19 19/6 21/21 23/5 24/1
type \[1\] 15/24
types \[1\] 5/16
U |
U.S \[1\] 19/23
under \[22\] 7/20 14/13 14/19 15/16 16/17 17/24 18/3 18/19 19/12 19/21 20/12 20/20 20/23 21/5 21/8 21/11 21/17 22/4 22/8 22/22 24/18 24/22
undertaken \[1\] 19/20
unique \[1\] 16/3
unless \[1\] 16/10
up \[10\] 4/24 4/4 15/10 16/9 19/16 20/14 25/16 25/22 26/8 27/10
update \[3\] 9/14 9/14 14/21
us \[9\] 4/24 7/3 8/12 8/19 11/7 12/2 22/2 25/14 26/1
use \[14\] 5/23 8/23 9/23 9/24 10/8 10/22 12/1 12/3 12/7 20/5 21/5 21/9 21/20 21/22
used \[2\] 9/17 21/9
user \[5\] 11/11 11/13 11/15 14/20 22/13
uses \[3\] 12/5 18/1 21/6
using \[1\] 11/23
V |
various \[2\] 5/14 9/11
vehicles \[1\] 9/9
verbalize \[1\] 13/16
version \[1\] 13/6
vertical \[1\] 23/22
very \[4\] 11/23 26/14 26/17 27/5
VI |
waiting \[2\] 6/16 25/21
wanted \[4\] 4/10 10/1 13/14 18/13
was \[14\] 5/13 6/3 7/20 9/15 9/22 9/23 11/11 14/2 15/3 15/5 15/9 23/6 23/8 6/
W |
weather \[1\] 20/17
web \[1\] 12/20
website \[2\] 13/19 13/20
weeks \[1\] 17/14
welcome \[1\] 4/2
well \[9\] 13/11 14/19 16/19 17/12 17/16 18/4 20/5 22/4 25/17
went \[1\] 13/7
were \[9\] 4/6 6/1 8/10 8/21 12/2 15/9 15/15 19/20 26/3
wetland \[1\] 18/5
wetlands \[1\] 16/12
what \[29\]
what's \[1\] 10/5
whatever \[1\] 26/21
when \[9\] 4/6 6/17 11/10 12/2 14/1 15/2 15/18 15/20 26/3
whenever \[1\] 27/3
where \[3\] 10/8 12/12 13/18
which \[22\] 5/12 5/18 5/20 6/6 6/16 9/3 9/7 9/24 10/5 10/7 10/8 10/19 11/2 15/3 15/5 15/11 15/15 17/7 20/6 20/14 22/14 23/19
while \[1\] 27/9
who \[2\] 15/8 15/9
wide \[6\] 1/2 4/3 13/23 14/21 15/6 21/24
wildlife \[3\] 17/19 19/21 23/14
will \[13\] 6/5 6/6 6/9 7/6 7/7 7/12 8/8 8/12 8/13 8/16 10/22 11/17 11/21
ish \[1\] 11/23
without \[1\] 10/15
Word \[1\] 3/8
work \[4\] 14/13 11/5 11/6 11/8
working \[1\] 9/13
would \[55\]
wrap \[1\] 14/4
written \[2\] 13/12 13/16
wrote \[1\] 15/9
Y |
year \[6\] 6/4 6/16 6/18 8/10 8/11 11/13
years \[8\] 4/6 7/22 8/5 14/3 15/2 23/5 25/2 26/3
yet \[1\] 27/9
you \[53\]
NASA Kennedy Space Center
Center-Wide Operations

Draft Programmatic Environmental Impact Statement
Public Meeting

Wednesday, March 30, 2016
6:00 p.m.

New Smyrna Beach High School Auditorium
1015 10th Henry Street
New Smyrna Beach, Florida

Reported by:
Rita G. Meyer, RDR, CRR, CBC, CCP
Realtime Reporter/Notary Public
PRESENT:

Don Dankert, KSC Environmental Management Branch

Mario Busacca, Chief KSC Spaceport Planning Officer

Leon Kolankiewicz, PEIS Project Manager, Solv
<table>
<thead>
<tr>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation by Don Dankert</td>
<td>4</td>
</tr>
<tr>
<td>Presentation by Mario Busacca</td>
<td>8</td>
</tr>
<tr>
<td>Presentation by Leon Kolankiewicz</td>
<td>14</td>
</tr>
<tr>
<td>Public Comments</td>
<td>28</td>
</tr>
<tr>
<td>Certificate of Reporter</td>
<td>56</td>
</tr>
<tr>
<td>Word Index</td>
<td></td>
</tr>
</tbody>
</table>
DON DANKERT: Good evening, folks. My name is Don Dankert. I'm from the Kennedy Space Center Environmental Management Branch and the project manager for the Programmatic Environmental Impact Statement based on our twenty-year Master Plan.

I'd like to welcome you all here this evening for our public meetings. We were here almost two years ago when we released the notice of intent to prepare this and we talked to you guys then. We have a brief presentation for you this evening. I'm going to talk a little bit about our process.

We have a gentleman from our Center Planning Office who's going to talk about the KSC Master Plan and then Leon is going to get up and talk with you; give you a brief overview of the key findings in our environmental impact statement.

Before we get started, I'd like to point out this meeting will become part of our official record. We have a court reporter here. We will open the floor up to receive your comments after our presentation. You have comment cards you can mail in, you have my contact information; e-mail address; mailing address, or you're welcome to sit down with our court reporter and give your comments directly to her. They will become part of the official
One other point I'd like to make before I get started, a number of you came up and asked about the Shiloh proposal. I just want to be very clear why we're here tonight. Our Programmatic Environmental Impact Statement is based on the Kennedy Center Wide Master Plan which covers the next twenty years. The Shiloh proposal is a separate project being led by the Federal Aviation Administration. It is not within our Master Plan and we're not here to discuss that tonight in the context of our presentation. So I just wanted to make that clear before we get started tonight.

The purpose of today's meeting, we're going to talk a little about the NEPA process, the National Environmental Policy Act; what that is. We're going to explain the contents and background of the Master Plan; how we arrived at this point. We're going to provide an overview of the EIS. And then as I said, we're going to solicit your comments as part of the official record.

So what is NEPA? So the National Environmental Policy Act is our nation's charter that requires federal agencies to take a look at their actions and the potential environmental consequences of those
actions and use that in their decision-making process before they go forward.

There are two types of Environmental Impact Statements. You have what is called, we call a project specific environmental impact statement which deals with a specific action or a very specific project.

We also have what's called a Programmatic Environmental Impact Statement, which is what our EIS is. It takes a very broad look at a much larger program, much higher level document. And so the basis for this Environmental Impact Statement is our Master Plan. And really, what we looked at in here is the conversion of various land uses over the next twenty years. There's no specific projects included within the context of this document.

So where we're at in the process, as I said back in May of 2014, we released our notice of intent to prepare this EIS. We performed public scoping meetings in June. We were in Titusville and then here in New Smyrna in the same facility. Our draft EIS position, March 18th of this year. And here we are in the public review period.

This lasts for 45 days. We will accept comments on the document in any fashion you want to
get them to us up until May 2nd.

Following that, we'll compile all of the comments we receive from the public and our cooperating agencies and other federal and state agencies. We'll develop a report and we will provide responses to those comments within the document and make the appropriate changes where necessary within the document.

And we hope to publish our record of decision in the early fall of this year.

Why we're here tonight. So public involvement is really a very integral part of the process. Really, one of the cornerstones of NEPA. NEPA is a very open and public forum, so tonight, as I said, we want to receive your comments. And your comments do and will make a difference. It's a huge part of the process.

And some, some suggestions about comments.

Clear and concise; relevant to the analysis. Things such as if there's relevant information or data out there that you believe that we didn't have when we did our analysis on this draft EIS, feel free to enlighten us, aid us in how we can find it. Or just any concerns that are important to you. As I said, all these will become part of our official record.
and will be included in the final EIS.

With that, I'd like to introduce Mr. Mario Busacca of our Spaceport Planning Office.

MARIO BUSACCA: Thank you, Don. Good evening everyone.

THE AUDIENCE: Good evening.

MARIO BUSACCA: That was pitiful. Thank you all for coming. Seriously, we really appreciate you being here.

I am the Chief of the Spaceport Planning Office. And the Master Plan, which is the consideration of this EIS, comes out of my office.

So to give you some background, basically, kind of the thing we talked about, about two years ago when we first started this.

So our Master Plan was designed to implement our KSC mission. It was given to us from various places, but I received from NASA headquarters.

So the first of our mission, one of the more important ones is basically the replacement of the shuttle program. And that's the SLS program. Space Launch System. That will be our next big rocket that we hope to launch in 2018 for its first flight. And it will have five to seven flights over the next twenty years. A much lower rate, of course, than
the shuttle.

Then we have the commercial crew program, which is going to be using commercial rockets. We've hired or contracted with two organizations, Space X and Boeing, to provide the capability to bring astronauts back into lower earth orbit and go to specifically to the International Space Station.

Then we have our launch services program. All the other things we launch are probes to other planets. Our satellites to do earth observation, all that sort of thing are done out of our Launch Services Program which is housed at Kennedy Space Center and they also use commercial rockets to get into space.

We also support the International Space Station, the ISS. And that mission of the ISS has been extended to 2024 by Congress. We're hoping it will be extended even further, but it's a major activity for us.

And then probably one of the bigger -- one of the big pieces that you're going to be talking about today is supporting the commercial space industry. In our Authorization Act of 2010, we were specifically directed as an agency, to support commercial space in various assets and, of course,
we are a launch center, so we support them that way and we do this by leasing some of our assets. We've already done that. We've leased the shuttle landing facility which we used to bring the shuttle back to Space Florida. Launch Complex 39A has been leased to Space X and we also have land. And that's probably the biggest piece of this Master Plan implementation is the ability for us to lease our land to these commercial entities and perhaps other government entities so that they can forward commercial, commercial and government space.

So the Master plan. We had a Master Plan in 2002. And it was the first major update, really, the big update. We started in 2010. We started with something -- we wanted to do something different. Our old master plans were largely capital improvement plans. This is now more like a comprehensive plan where we have land uses and trying to figure out how to use this plan to be more of a guide to making future decisions. So we first developed the future development concept. We got that approved internally in 2012. We did lots of interaction with outside entities and inside to try to get that.

We then used that to develop our Master Plan,
which went through a whole another series of iterations. And it was approved by NASA headquarters in 2014. But even though we had pulled together lots of input from lots of different places, we simply wanted a wider set of input from the public and that's when we decided to do this programmatic EIS.

The Master Plan, itself, has three basic sections, and it's all online, by the way. If you ask us to give you a copy of our Master Plan, we cannot do it because it's all electronic. We're trying to go into the 21st century.

Organized structurally, there's a background for how we got there, the existing conditions under which we have today and then our future development, which is manifested largely as you can see in the maps you've seen today.

So when we did our Master Plan, we had four core strategies we developed. And these first of, as I've just talked about, supporting the NASA mission and programs.

Second is this idea of diverting without diminishing. When we get ended the shuttle programs, lots and lots of infrastructure that we didn't need or don't need for the shuttle, the space
launch system. For example, the orbiter processing facilities which were the hangars we maintained the shuttle orbiters in. Those have been leased out now.

The shuttle landing facility, another good example. Something relevant, rather than letting it degrade or demolishing, it's now going to be used for other space activities. So we divested the responsibility for maintaining them without diminishing the capabilities.

Going leaner and greener. This is more than just sustainability. While that is a big part of it, we're also trying to be more commercially friendly and try to reduce our processes and procedures such that -- and our fiscal operations such that it is more viable for commercial space entities to come and work with us. So that's the leaner.

And then finally, enhancing the multi-user spaceport. The main goal of the Master Plan when we started was to move to a multi-user spaceport. Last year our center director declared we have reached that. We're now a multi-user spaceport. We have at least three different entities that will be launching from our area or operating in our area.
Plus, there's other support facilities and capabilities coming in.

So now that we've reached that capability, we still want to enhance it and so that is one of our core strategies to enhance that capability.

So the future land use plan is what we've been talking about this evening, and it provides for the areas and zones of activity. Again, much like you would see in a city or county. When we want to build something new or develop a new capability, how do we cluster that so it makes more sense efficiently, more environmentally sensitive and more physically capable.

So what are these activities? They could be government owned, they could be industrial, commercial or some mix of those sorts of things. Only, again, we said it's a web-enabled platform and we encourage you to go to our platform, masterplan.ksc.nasa.gov. What you see here is the Proposed Action that we had developed, and that was our first piece.

When we did our scoping meetings two years ago, we got lots and lots of comments and based on that and some other things that have happened, we have come up with an alternative and we're going to talk
about that. But that's an alternative you didn't see in the scoping meetings and it really is a minor modification to the land use map.

So with that, I'm going to turn it over to Leon and let him explain all that.

LEON KOLANKIEWICZ: Thank you, Mario. And you can see why he stuck with Leon. He didn't try and elaborate or extend it. Leon Kolankiewicz is what I grew up with.

So I'm going to talk a little bit about the findings and the draft Environmental Impact Statement and then I will open it to comments.

A lot of you, I think 17 by my count, have already filled out one of the little slips of paper saying you'd like to comment. And if we ask everyone to try and keep it to three minutes, that is still 45 minutes or more, right? So please keep that in mind. I'm not going to yank anyone out, but please be cognizant of that and try and be polite to everyone who's here.

So the Environmental Impact Statement conducted under NEPA, National Environmental Policy Act. We published a document called The Notice of Availability in the Federal Register on March 4th, and then EPA acknowledged that; published another
document in the Federal Register on March 18th and here we are a week or two later. Written comments, if you want to send them in as opposed to making them here tonight when they're going to be transcribed, are due by May 2nd. So if you want them to be considered in formulating the final Environmental Impact Statement, please do it by May 2nd.

Just to reiterate -- and I think the literature that you received probably has this on it -- but it's available in two places online. On NASA's website and at the EPA's website. It's also available in a number of public libraries in the area here.

Public review, March. We hope to get to issue the final by July of this year. And then publish the Record of Decision, which is the official acknowledgment of the choice that NASA's made by September of this year.

So the major contents of an EIS. First, you look at the purpose and need. What is driving the document. What is the lead agency trying to do. What are they trying to achieve.

Alternatives, then, are different ways of achieving that. And then finally, you look at the
affected environment and the environmental consequences of pursuing each of those alternatives.

Purpose is to facilitate KSC's twenty-year transition to a multi-user spaceport, and then the need is to update the center Master Plan in a manner that allows this to be achieved.

Two years ago when we came here, we had the No-action Alternative and then the Proposed Action. The No-action Alternative was to do things just the way they are right now and the Proposed Action was the land use plan that Don and Mario alluded to.

As a result of the comments we received in scoping two years ago, NASA developed another alternative that we call Alternative 1. And that is similar to the Proposed Action in most respects, but makes some alterations that reduces a lot of its environmental impacts.

And in looking at the environmental consequences that I mentioned, in an EIS, you look at the magnitude, how much of something. How big its affect is going to be. How long that effect is going to last. The extent of it. How far it goes geographically. The likelihood. What's the probability that it's going to occur at all and then how unique is that impact. Does it have any
precedence. Is it loss of a species or something like that which is pretty unique because you can't go back.

So let's review some of the different -- these are just sort of the highlights of the findings of the draft Programmatic EIS, looking one of the big issue topics, water quality, wetlands, water resources.

Under the No-action Alternative, continue to go do things the way they are right now, there would no additional impacts.

Under the Proposed Action, the Alternative 1, there would be some overall impacts, especially from construction projects. Those would tend to be localized.

Over the long-term operation, over a twenty-year period approximately, of course, there would be some localized, again, impacts. From launches; to some extent, landing. But there would not be any substantial impacts on surface waters of nearby lagoons, the ocean, large water bodies, such as the Indian River Lagoon, due to their buffering capacities.

Cumulatively, on the other hand, as a result of the growth and development of this area, the Indian
River Lagoon in particular is likely to feel the effects of an increase in non-point sources of pollution. Now, those would not be caused by the Kennedy Space Center’s Proposed Action or Alternative 1, but it would occur and this would contribute to that overall cumulative impact on water quality, which is a big issue, especially in the Indian River Lagoon over the last few years and even last couple of weeks.

Biological resources. Another important topic. No change from the current condition over what we have right now under the No Action Alternative.

Under the Proposed Action, up to 4400 plus acres of native vegetation communities, and some of those communities aren’t entirely native. They have a lot of invasive species in them. And that is ten percent of the buffer and conservation land would be converted to developed areas.

Two proposed seaports would eliminate 286 acres of wetlands habitat.

And launches over the long term, again, in terms of operational activities, would have minor to moderate impact on aquatic habitats for temporary periods, but throughout the duration of the plan.

Alternative 1, as opposed to the Proposed
Action, fairly similar to it but somewhat less because it converts your acreage, and the two seaports that are part of the Proposed Action, would not occur, so those 286 acres that would be eliminated would not occur under this Alternative 1.

Cumulative impacts. The Florida scrub jay could possibly see some significant impacts over a twenty-year period as a result of land use changes and as a result of climate change and other activities occurring in the area. That's one of the key indigenous species in this area.

Climate change, itself, is occurring here in Florida and everywhere else and federal agencies now have to look at the impacts of their actions on climate change in terms of additional emissions of greenhouse gasses like carbon dioxide and methane and then you have to look at the impacts of climate change on those federal actions. Is there a feedback from the climate. How it would affect activities and infrastructure here at KSC.

Under the No-action Alternative, KSC again would continue to do things the way they are now. They would not implement elevation based zoning to make sure that things are -- existing facilities are outside areas of potential harm. And operations
would be at somewhat greater risk as a result of the impacts of climate change than they would be if additional actions were undertaken.

Under both the Proposed Action and Alternative 1, there would be negligible increases to U.S. total greenhouse gas emissions. Really quite insignificant. The hardening, improving and moving of facilities to adapt to potential climate change would require additional funding and implementation.

Consolidation of operations and infrastructure to a smaller geographic footprint would reduce the facility's energy use, which would tend to reduce greenhouse gas emissions.

And then finally, continued and increased efforts to power NASAs activities using renewable sources like wind and solar, would tend to reduce NASAs contributions to greenhouse gas emissions.

Cumulative impacts. Sea level rise is occurring and will continue to occur throughout this century. And it may cause the loss of some usable land and the inundation of certain coastal ecosystems.

There's likely to be more frequent and extreme high temperatures and a greater incidence of extreme weather events in this area, and in a lot of places,
but Florida's particularly vulnerable to that.

Moving on to air quality. Under the No-action Alternative, the level of air emissions and ambient air quality, which is quite good in this area generally, would not be changed.

Under the Proposed Action Alternative 1, airborne dust and emissions from construction equipment would tend to have localized affects on air quality. There could be some introduction of new sources, such as heating boilers and back-up generators, all of which would have some emissions associated with them.

Increase in transportation-based emissions and some combustion impacts, including some of those substances, again, that was mentioned there. All of these components of both actions are taking place within an attainment area and we don't think that will change. We don't think increased emissions will make it non-attainment. That is really degrade air quality.

Cumulative impacts. Again, short and long-term impacts would be minor on air quality.

Land use. Now again, everything else that we're looking at here is really sort of an implication or a result of the different land use
changes proposed over a twenty-year period. But under the No-action Alternative there would be no change to land uses, so there would be no additional impacts from that.

Under the Proposed Action and Alternative 1, generally, there would be minor to moderate impacts on land use and land cover. KSC acreage is currently used for administration, open space, operational buffer and support services would decrease over these twenty years. There would be no change in acreage associated with water or recreation.

Acreages for launches and landings, operations support, research and development, renewable energy and assembly, testing and processing would all increase over the long term under both the Proposed Action and Alternative 1.

And then finally, Alternative 1 in general, would result in similar impacts to the Proposed Action, but it would be less pronounced because there would not be two new seaports and some of the other acreages would be reduced again in size as well as moved to less, less potentially impacting locations.

Cumulative impacts in land use are likely to be
moderate over the long term. And there would be, of course, a lot of land use changes in the wider area, in Volusia and Brevard Counties, that would contribute to those cumulative impacts in the area and the region.

Moving on to socioeconomics. EIS and NEPA requires us to look at not just the natural environment, wildlife, air quality, water and so forth, but also the human environment. That's what the Act originally calls for. So under the No-action Alternative, there would be no socioeconomic changes to either Brevard or Volusia Counties.

Under the Proposed Action and Alternative 1 alike, there's a potential for minor to moderate beneficial impacts from job creation and added income to the area.

There would be long-term indirect economic benefits from KSC's transformation to a multi-user spaceport as a result of attracting new tenants to the area.

Future employees from non-NASA projects would have purchasing power that would add to additional jobs regionally as a result of the multiplier effect.
That's for the Proposed Action. But for Alternative 1, they're broadly similar, if a little bit less, because the amount of construction might be a bit less. For example, two seaports would not be constructed and operated.

Cumulative impacts, socioeconomic, that multiplier effect of additional jobs and payrolls would increase over time, potentially producing even significant, very, very beneficial economic benefits in employment, payroll, economic activity, tax base, et cetera.

Recreation. Also an important part of what happens on Merritt Island. Both the Canaveral National Seashore and Merritt Island National Wildlife Refuge.

Under the No action alternative, there would be no additional impact in the center-wide Master Plan activities. Although over time, as a result of increasing population in the area and increasing visitor numbers likely to visit these units of the National Wildlife Refuge System and the National Park System, there's some potential for degraded visitor experience as a result of overcrowding or overuse.

Also, sea level rise and erosion from climate
change could likely have some adverse effects on both the National Seashore and the National Wildlife Refuge.

Under the Proposed Action, development of the horizontal launch infrastructure could hinder or delay access to Playalinda Beach. That was a concern that was expressed strongly a couple of years ago. Resulting in intermittent closures and overall reduced usage. And development of Beach Road in general, vertical and horizontal, launch and landing could have some long-term adverse effects on similar recreation resources.

Likewise, the development of two seaports involving the removal of saltwater marsh and/or mangroves could impact boating and fishing, by degrading fin fish and shellfish spawning and nursery grounds at those sites.

Alternative 1 would likely have fewer impacts on Playalinda Beach and recreation impacts from the seaport development would be avoided.

Cumulative impacts. Again, additional launches and other activity could cause some decrease in annual visitation to the recreation facilities in the area.

And then increases in water run off,
sedimentation, potential spills to the extent these occur, could cumulatively impact water-based recreation in and around Mosquito Lagoon and the Indian River Lagoon.

Hazardous materials and waste. Under the No-action Alternative, nothing would really change. People are experts at handling these materials right now. We expect that will continue in the future with no real additional impacts.

Under the Proposed Action and Alternative 1, in general, there would be somewhat of an increase in the amount of hazardous materials on KSC. And these materials, solvents, surface coatings, propellants and fuels, would be largely the same, with perhaps one or two exceptions.

Handling procedures would not be affected. Any increased exposure, of course, leads to some increased risk, accidents or health or human safety primarily for workers, themselves. There would be somewhat of a higher likelihood of accidental release, mitigated by training and adherence to good management practices.

No cumulative impacts are expected by this resource area.

And then, that's it. That's the summary of our
findings in total. We would appreciate your comments and they will be responded to by -- in developing a final EIS.

One complement of the final EIS typically, appendix is actually called the Comments and Responses. Every comment or groups of comments, similar comments require a response from the lead agency. In this case, NASA. So you can fill out a comment form and give it to us tonight or mail it in later or speak to our court reporter. You can send them in to Don Dankert, whose address is up here in the materials. You can e-mail them. That is also on the materials that you have. And/or, you can come up and make the comments for the record.

Now, again, I have the little slips of paper that you put your names on up here. I think I'll try and stick with the first names. Although all of your names are shorter than mine, I can't necessarily, especially with my non-reading glasses on, read all of your writing all that well.

So I'm going to read a name. Come on up. That person can come up and speak. Again, try and keep it to what you think of as three minutes. If you are going on a little bit long, I'll do this or something like that (indicating). We want to give
everyone a chance to speak.

Those who haven't filled out one of these yet can still come and do it. As you know, one after another. After the people who gave them to me are finished.

All right. Let's see what we have here first. Do we have an Ellen in the room? Ellen Darden, I believe?

ELLEN DARDEN: My name is Ellen Darden and I'd like to waive my comments tonight.

My name is Ellen Darden. I'm with the Board of Realtors. I'm also a political and a public relations consultant.

I'd like to waive my comments tonight until I learn more about what this means for Volusia County specifically. I really didn't hear from this report anything that would lead me to understand it would have much impact for us.

LEON KOLANKIEWICZ: And thank you, Ellen.

I did want to emphasize that this is an opportunity for comments. This is not a Q and A period, okay? I won't be answering any questions up here. But giving you the opportunity to comment. And if you need some more information later, we'll get it to you and then you can comment in written
All right. Next. Fred Costello is it?

FRED COSTELLO: Thank you. It's my honor to be here tonight as both the state representative and a resident of Volusia County for 39 years. There's many of us here with many diverse backgrounds.

We're here to partner together with the Cape Canaveral Spaceport folks to try and make it so that Volusia County can be an active participant in this program. We're here not to tell you that we want the Spaceport to benefit Volusia, but we want Volusia to also benefit the Spaceport. The Cape Canaveral Spaceport includes part of Volusia, so I thank you for having this presentation here.

I'm of the opinion that to foster the job creation in Volusia that many of us are here to facilitate, there needs to be five things. I think Volusia has all of these five things.

Number one, a pristine environment. That's necessary for the quality of life and absent the current problems with the Indian River Lagoon brown tide, I think we have that outstanding environment.

We need an outstanding education system with a STEM program, science, technology, engineering and math, and we have that.
We have a trained workforce that has the necessary talent. We have an inventory of the necessary high quality infrastructure, including our roads, our rail, and the nearest general aviation airport to the Spaceport is New Smyrna Beach Airport that has a tower, so I think we're in good shape there.

Low taxes, low regulation, low litigation. Florida is working on that everywhere. I think in Volusia County, we're doing a good job with that.

I'm really proud of what the Volusia County governments are doing. The property owners, the businesses and our outstanding educational institutions, they are all partnering together to facilitate the job growth that we seek. The property owners and Volusia County governments have consolidated and properly zoned industrial property that's ready and waiting to be used.

Our businesses and Volusia County governments have partnered together with both private and public funds in a program to incentivize business relocation and expansion with our Team Volusia and our CEO Business Alliance.

Our Volusia County School Board and our outstanding colleges and universities are working
together to make sure that we have the trained
talent necessary for this.

I've enjoyed watching the space program
blossom. As you can tell by looking at me, I'm a
little bit old. I was born in Orlando, so being
born in Orlando and being around here a long time,
I've seen a lot of launches. I also observed the
Challenger. It makes me think that we need to make
sure that we do things safely and that we protect
our environment. And I'm excited that between what
the Spaceport folks are doing and what Embry Riddle
is doing, we can be sure that we are going to do
things the right way, the safe way, the scientific
way and the environmentally sensitive way.

Volusia is ready, willing, able and, yes,
chomping at the bit or some might say chopping at
the booster, to be an active partner in what I
believe will be an amazing journey into the
exploration of our solar system, at the Cape
Canaveral Spaceport. With Embry Riddle Aeronautical
University right here in Volusia County, that some
of us forget is the premiere aeronautical university
in the entire world, it's certainly beneficial to
all involved that we would augment the tie that
binds us together. We mostly certainly need the
space and -- we most certainly are the space and aviation capitols of the world. Now we simply need to combine our efforts together.

It seems appropriate for this former U.S. Air Force Captain to close with an adaptation of the Air Force song and, no, I'm not going to sing it.

Off we go into the wild blue yonder, climbing high into the sun. Here we come, zooming to help America's Spaceport. At em team, give them our best. On we go, sharing passion for out yonder, off with a Team Volusia roar. We're in the fast lane, so up we'll go. Hey, nothing can stop the Volusia partnering with the Spaceport.

(Applause)

LEON KOLANKIEWICZ: Is Tony here?

TONY OTTE: Right here. Good evening, everybody.

THE AUDIENCE: Good evening.

TONY OTTE: Hello. Is this thing on? Thank you, Mike. I want to welcome everybody here. And I want to especially welcome Kennedy Space Center representatives back to New Smyrna Beach. And I want to thank Dave Cameron. Where's Dave?

THE AUDIENCE: Jim.

TONY OTTE: I'm sorry, Jim. Jim Cameron, these
signs really say it all.

New Smyrna Beach, Edgewater and Oak Hill, the three cities in southeast Volusia, are working to be ready for this. We had a meeting two weeks ago, that the representatives from the three cities said we want to work together for higher wage jobs. The City of New Smyrna Beach and the City of Edgewater both just recently finished economic development plans and higher wage jobs are our goal.

The City of Oak Hill has been working and done -- taking steps to rezone property; be ready for this. So we're very excited about the possibilities.

We are the northern neighbor of Kennedy Space Center and we want to be a full participant in the local economy that is generated from Kennedy Space Center. We want to maximize our resources. The airport was mentioned. We are the closest airport in Volusia County with a tower and a 5,000 foot runway that's a resource.

And in southeast Volusia, we're between Kennedy Space Center and Embry Riddle. So we're a perfect place for this job growth and we're very anxious to be a full partner. Thank you.

(Appause)
LEON KOLANKIEWICZ: Is Mike here?

MIKE IGNASIATT: You have trouble spelling the last name? Me, too.

LEON KOLANKIEWICZ: We have a bunch of Mikes tonight. [IGNASIAK]

MIKE IGNASIATT: Yes. Thank you. First of all, I want to thank you, the park rangers, thank you for being here and taking care of security. You had a calming influence on the audience as you can see.

Good evening. I'm the Mayor of the City of Edgewater here in southeast Volusia. We are embracing the Canaveral Spaceport project. I believe this is not only good for Brevard, but also good for Volusia and will spawn many jobs going into the future. I guess my comments are going to go under other items and comments.

Economically, as he just talked about here, what we're looking at, Edgewater is conveniently placed between Embry Riddle in the north and Canaveral Spaceport in the south. We already have an industrial port and we have an intra structure to support it. We have rail, we have roadway, and we have river access directly to the port, itself. And we're looking at the economic opportunities.
As this program grows and more competition comes into the area, companies are going to be coming in and looking to get an edge. And when they look to get an edge, we want them to take into consideration Volusia County. We have the space up here, we have a business friendly atmosphere and we have an economic incentive package to go along with it.

There’s a reason why Boston Whaler is located in Edgewater and not the city of Boston. Our door is open. We're looking for opportunities and we hope you’ll help us provide those. Thank you.

(Applause)

LEON KOLANKIEWICZ: Lyn? I'd try the last name, but is there a Lyn here? L-Y-N?

LYN SEDWARD: I'm going to reserve my comments for another time.

LEON KOLANKIEWICZ: Okay. Sue Williams?

SUE WILLIAMS: Good evening. I'm Sue Williams, Executive Director of the Southeast Volusia Chamber of Commerce serving Edgewater, Oak Hill and New Smyrna Beach. And on behalf of the business community of these three cities, the Chamber supports the alternative to open NASA and Cape Canaveral to non-NASA commercial space.
transportation.

Additionally, southeast Volusia and all of Volusia County are at the ready to provide these industrial sites for businesses that support the commercial space industry. Each city has assets at the ready and are in the process of making them even more available and ready for these opportunities.

And I had a thought when I was listening to the report this evening, the study, and I leave this with you. And I do not want any answer, but also for KSC is how does any entity, how does any entity consider no plan of action? And with today's technology, how do you plan for no action? I just don't --

(Applause)

LEON KOLANKIEWICZ: Steve from the Oak Hill Partnership. Oak Hill Partnership, is there a Steve?

UNIDENTIFIED SPEAKER: He just left.

LEON KOLANKIEWICZ: Okay. Do you want to speak for him?

UNIDENTIFIED SPEAKER: No, sir.

LEON KOLANKIEWICZ: All right. Billie Wheeler?

BILLIE WHEELER: Good evening. I am Billie Wheeler. I'm a city commissioner in Daytona Beach
Shores, a little bit north of Edgewater and all of you, but we still care.

My purpose for speaking is to lend my support and that of my city's for the Cape Canaveral Spaceport. Volusia County intends and is poised to support commercial aerospace access. The Cape Canaveral Spaceport will maximize the excess capability and assets to encourage a thriving workforce so desperately needed in our communities. Partnering with the Cape Canaveral Spaceport, Volusia County is poised to support the expanding commercial aerospace market industries and at the same time, continuing our commitment to a thriving environment. Daytona Beach Shores wants to be a partner with NASA. We want jobs in Volusia. It's about jobs, it's about time, and the time is now.

(Applause)

LEON KOLANKIEWICZ: Daniel from the Edgewater City Council?

DANIEL BLUZI: Good evening. I'm Dan Bluzi, I'm from the Edgewater City Council.

First, I wanted to go ahead and thank you for a very comprehensive and objective look into the pros and cons of the Proposed Action and also, of course, with Alternative 1. So I wanted to thank you for
that. It solidified for me even further how much research has gone into this Proposed Action and how much attention has been spent in safeguarding our environment towards this project. Growth will always have impact.

Growth is also an inevitable thing, whether it's good growth or bad growth, growth is going to happen. And I think this is very, very good growth. And also from the economic standpoint, absolutely Mario Busacca went ahead and already expressed that is the fact that we are, none of us live in a bubble. People like to separate government from the private sector from nonprofits. They love to have separation in this, but the reality is that we are, all of us, in this together. We all have families. We all have children. We all care about those things that are important. We care about good growth and we care about our environment and we care about the pros and the cons and I did want to go ahead and thank you very much.

First thing, and I've got, you know, myself, Proposed Action, absolutely. Growth is good. And I can see through your research, that that growth is going to be smart growth. Thank you.

LEON KOLANKIEWICZ: You're welcome.
LEON KOLANKIEWICZ: Douglas Gibson, Oak Hill Mayor.

DOUGLAS GIBSON: Good evening. Douglas Gibson, Mayor for the City of Oak Hill.

As many of you remember, Blue Origin was looking at a 425-acre site. It wasn't ready because it wasn't zoned industrial, so we hit a snag, but 125 acres of that site is now industrial. The rest is conservation and agriculture.

Oak Hill is ready. The one thing lacking is infrastructure. But if somebody comes like Blue Origin, there's enough money. If the state and the county can give International Speedway millions, they can certainly allow a few million to come to Oak Hill to benefit the state.

As everybody recalls, because we're all used to the space industry, the United States used to be the leader. I'm concerned that we've fallen short in the last decade. I truly believe that the plan that NASA has put together will be beneficial to the State of Florida allowing commercial launches from the Cape.

I can't speak for everybody on the commission, but I'm fully behind this action. And thank you.
again for a good presentation. Thank you.

(Applause)

LEON KOLANKIEWICZ: Stan Escudero? Stan?

UNIDENTIFIED SPEAKER: He left.

LEON KOLANKIEWICZ: He left? Okay. You don't want to speak for him, right? Okay.

Jake Sachs?

JAKE SACHS: Good evening, everyone. I'm sure some of you know me. I'm here to speak to you as a very concerned, involved private citizen. We've been here before when Space Florida wanted to expand to Shiloh. And I know we're not here to talk about that project, but I feel tonight that NASA is acting in lieu of Space Florida. It sounds like they're promoting commercial space on their own property, which I think is a, is a good thing. I'd like to see all of those dangerous activities confined to that area.

I would support a no action plan at this time. I know that is unpopular. I'm not here to make friends, but I'm hopefully here to influence people. To find some type of compromise. I am very concerned about our environment.

Currently, Edgewater, Oak Hill, New Smyrna Beach have a reasonable assurance plan to clean up
our waters. I realize, and I think I'm correct, that NASA is currently a point source polluter and I'll tell you why I think so. I've gone over reams and reams of paper. I've become a rocket scientist. I'm just joking.

I've learned the propellants, the solvents, all of the noxious chemicals that go on in this very, very dangerous, flammable, explosive industry. I've just got to share a few points with you; a few quotes as well.

We don't drink the water at KSC or the air station, but federal law stills mandates the clean up at taxpayer expense. Currently, there's a chemical called trike, tryethylchlorine. We call it ethyl methyl, the bad stuff. It's still there. It still exists on site. And some launch pads, some facilities still may have this chemical as well as others, including ammonia, other very toxic chemicals that are in our earth, in our water; possibly in our air.

We know that the Falcon 9 rocket uses refined kerosene as a propellant. These fumes look like innocuous vapors, but they are actually noxious chemicals. And they will go all the way up into the atmosphere. Depending on which way the wind blows,
the people of Titusville or Mims or Scottsmoor may be affected or New Smyrna Beach.

So I do support the space program; I support commerce, but I just want to be that voice of caution that tells us, we must all be aware and we want NASA to be the best steward, because they helped create our Merritt Island National Wildlife Refuge. I know it's really there as a buffer. We do enjoy the wildlife that is there. But we know that sites are uninvestigated. Environmental impact studies have not been completed for the operations that have gone on there since the 40s or 50s.

So, please, get with our program. Be concerned about the environment. Be good stewards of the land. I don't want you to have to make spacesuits for all of us because our land has been so polluted and we must balance commerce with our environment. Because if we don't have an environment, we won't be able to live here and nobody will want to come here.

Thank you all.

(Applause)

LEON KOLANKIEWICZ: Keith Norden? Team Volusia?

KEITH NORDEN: Thank you. I'm here just to show support. I'm Keith Norden, President of Team
Volusia, the public private partnership that covers Volusia County. We have more than 97 investors; 80 private sector companies, many of our cities, 12 cities, the county and five colleges and universities. We're poised to attract space-related jobs.

One of my jobs, and my board knows that, is to be on the road and travel around the country to spread and raise visibility of Volusia County as a business destination. And we're there -- there's a lot of excitement about our colleges and universities; our 40,000 college students here in Volusia County. And we're poised and ready to accept and go after space-related jobs with the second and third-tier companies, private sector companies that will be attracted to the Space Center and we're here to support NASA in all your efforts. Thank you.

(Applause)

DEB DENYS: Deb from the Volusia County Council.

You know, as I'm listening to all this -- and I'm not going to read my prepared comments. I'm going to enter them into the Record. I want to say a few comments here.
But how many of you went outside and watched that night launch and watched it go? You're proud to be an American, aren't you? I'm proud to be from Volusia County and the State of Florida and Brevard and to partner with this because, ladies and gentlemen, if we don't support this and expand the commercial aerospace opportunities at the Cape and opportunities that will come to Volusia, we will be outsourcing this to China or Russia or any of the other countries.

This is important not just for the Cape, not just for Brevard County, Volusia County, but the State of Florida. The congressional candidates that are here, thank you. This is a bigger job than just us and what we can do.

Volusia County, this is about jobs. This is absolutely about jobs, and there's no boundaries. When you watch that launch go off, you don't think, well, gee, that's from Brevard County. No. Whether you're in Volusia, you're in Brevard or the surrounding county, if you can see it in the night sky or you drive down to watch it, you're proud to be part of this commercial aerospace project. This is about jobs.

Indian River Lagoon, Mr. Mayor, I hear you. We
You need to know Volusia County Council unanimously directed staff to assemble parcels that we own to help get rid of some of your credit nightmare and the stumbling blocks that existed in a previous project. It's a learning process. We're at the table. We're supporting it. We will be there to help commercial aerospace when and if the opportunity comes, and when that opportunity comes, you see the brown tide in Indian River Lagoon. With that comes the infrastructure to clean this up.

We have been a good partner for the last 15 years with the environment. We will continue to do so.

Did you know that in Brownsville, Texas, with their EIS, the Space X, do you know who they use as an example of how the environment and commercial aerospace cannot only coexist but thrive? Us. We are the model for the nation. That is not going to change. We're committed to that.

Just a few comments in closing. What you're seeing here tonight is collaboration at its best with the cities of Oak Hill, Edgewater, New Smyrna Beach, Port Orange; Daytona Beach Shores. The
counties here, we have the CEO alliance, we have TCART, we have Team Volusia, we have elected officials. There's a broad scope of support here in collaboration and our local municipalities and the county stand ready to support the speed to market that the CCS, the Cape Canaveral Space Station will require in order to successfully compete against other U.S. states and against other countries in the current race to commercialize space.

Volusia County is ready to play a larger role in the freedom, the potential and the markets that are needed and, yes, in demand for the successful development of commercial space in Florida.

We believe the future of the commercial space industry, your future, is our future, and we're here to support that. Thank you.

(Applause)

LEON KOLANKIEWICZ: Mike from Oak Hill Economic Development.

MIKE ARMAN: I'm Mike Arman. I'm the Economic Development Coordinator for the City of Oak Hill.

The developments already happening in the Cape. I think the zero change option's dead because the Space X is there; Blue Origins is there. You've got commercial activity. I would love to see more
commercial activity at the Kennedy Space Center and here is why:

Most of the development money coming into Volusia County goes to Daytona. The Speedway got, what? $100 million something -- he knows the number -- for Daytona Rising and the pedestrian bridge and so forth and so on. Well, unfortunately, Mr. Reagan was wrong. It doesn't trickle down. We haven't seen any of it down here.

We coughed up $25,000 towards the study to clean up the Indian River Lagoon. It came out of the City's coiffeurs and I think -- which, by the way, were not profitable. The city executive cars, 2000 something Ford Taurus, has 150,000 miles on it, but we own it. I think we robbed it out of Streets and Roads because we thought it was important.

But if we're going to see any money, it's got to come from businesses. It's got to come from space-related businesses. It's got to come from jobs. Tallahassee is not exactly breaking down City Hall's doors to give us money. There's a little coming from the county. But it's got to come from business, so send us the businesses; send us the jobs. We want them.

(Applause)
LEON KOLANKIEWICZ: Jim Cameron.

JIM CAMERON: Thank you so much. I'm Jim Cameron of Daytona Regional Chamber of Commerce. I'm also of Florida Space Volusia and being at last night's hearing, Tony, I just wanted to mention with your presentation, I'm hearing more support for the Proposed Action; I'm hearing some good comments about the Alternative 1. But if I can go over here, if you all follow me, Space Volusia, we want, like you've heard before, we want to share with the jobs and we want to share with the aerospace industry up here in Volusia County. And I know that you all had some questions and stuff about the some seaports and all here, Mario, this area in here I believe it is, right?

And so, what we're wanting to say from Volusia as a good neighbor up here, is that environmentally least intrusive, as Senator Bill Nelson said last fall himself, is that State Road 3, you could have some -- we could have some companies up here in Volusia County, Oak Hill, Edgewater. We're all supportive of that. But sit it down State Road 3. Very, very less environmentally intrusive and all. So that's what we would like, again, as a good neighbor to mention.
But again, as I said, we're hearing more good things, last night and tonight, about the proposed alternative up there on your chart. We're glad to see Kennedy Space Center moving more towards commercial spacecraft as well. Thank you all for listening.

(Applause)

LEON KOLANKIEWICZ: G.G. Galloway?

G.G. GALLOWAY: Thank you all for allowing the public to come out and speak.

I've been in business in this community or this county for 32 years, and my main job is to bring new business into the community. You know, a lot of us don't realize is our greatest export today are our young people and they are leaving. We educate them at a very cheap way. We send them to college, but they leave because of lack of good paying jobs.

I'd like to commit to you as a small businessman within my community and as well as being a member of Team Volusia and being actively involved in selling property in this area, that the small business community and all of us support value-added jobs. That's what we need. We need value-added jobs. And we need to keep our brain trust here locally.
For example, my daughter has moved to, I mean, to Charleston, South Carolina and my son just took a job in Charlotte, North Carolina. No, they love it here but our combined household income, out of the six congressional districts, our combined household income is the least amount compared to Lake County, St. Johns County and Flagler County. We must change this and the way we do this is we create value-added jobs. Let's open some of this area up and most important, let's create that magnet, initiative so when one industry comes in, other industries will follow.

Thank you so much for allowing us to talk and we wish you the best of luck.

(Applause)

LEON KOLANKIEWICZ: Clay Henderson?

Most of you know I coordinated comments to the draftsman about two years ago on behalf of the Coalition of National, Environmental and Historic Preservation organizations representing several million members across our nation. And while I
find ways to take advantage locally of the economic opportunities presented by your plan, it is a reminder this is a national space program and the interests that are here are national interests, which is why our organization is very much concerned about it.

We are here to express our appreciation for you to be here. We'd also like to express our appreciation for your consideration of many of the comments that were raised by us at the hearing and pleased to see that most of those are addressed in Alternative 1, which we understand to be a preferred alternative.

I think Jim got me confused. I'm looking at Mario. Alternative 1 is the preferred alternative, right? He's not answering. But the preferred alternative, which would be Alternative 1, takes into consideration issues that -- many of the issues that we raised and are appreciative of that.

There are, and as we said two years ago, we would, in fact, say here tonight that we are appreciative of the long-range stewardship Kennedy Space Center and NASA has had for environmental resources in this area and that is to be applauded. It's based upon a lot of that activity that we do
have that trust.

There are a couple issues that we will probably follow up with written comments and just, if I could, address very quickly.

First of all, we, of course, support the fact that most of the Proposed Action here in the plan, deals with areas within the areas zoned for Kennedy Space Center. That's where we believe it should be. We're delighted that you're transforming to a multiple-use facility, and that should take place within the existing security zone. And that area primarily north of there should remain as buffer lands in the current management use with Canaveral National Seashore and the U.S. Fish and Wildlife Service.

We do think we'll continue to say over time that these lands have been managed for conservation and should, in fact, at some point in the future, be designated for conservation.

Lastly, you did indicate issues about the Indian River Lagoon and those of us that have been involved with Indian River Lagoon issues for decades know that lagoon is in trouble right now. NASA has a lot, in this report, a tremendous amount of data, tremendous amount of monitoring, and we continue to
invite NASA to cooperate with all the other management entities that at this time, are dealing with Indian River Lagoon issues. You have the opportunity to help a lot of different ways, and we seek your continuing help for that problem.

That the Indian River Lagoon is a national resource. It is in trouble right now. It needs all the help that we can get it to, attend to it.

And lastly, I would agree with my friend Kyle Denys, that the actions of KSC have been the model for our environment. The space program can exist together. It is, I think -- because we sometimes take for granted -- it is a partnership with the Fish and Wildlife Service, with the Canaveral National Seashore, which make this a great area. And whatever we do, we don't want to compromise the tremendous assets and significance that partnership exists. Thank you.

LEON KOLANKIEWICZ: Thank you.

(Appause)

LEON KOLANKIEWICZ: All right. That was all my cards, believe it or not. Lyn -- Lyn, did you want to speak now?

LYN SEDWARD: I'm okay.

LEON KOLANKIEWICZ: You can come up later.
If someone has a card that would like to come up and speak, come on up.

BILL MENOSKY: I don't have a card.

LEON KOLANKIEWICZ: If you don't have a card, we need to get your name for the record.

BILL MENOSKY: My name is Bill Menosky. My wife, Carol, is sitting here. We've been married 60 years in August. I speak as a common resident of New Smyrna Beach.

We researched all over Florida before we retired to find the best place to live and in our retirement. That was New Smyrna Beach. It's such a nice place and there's so many things to offer.

There's the beach -- in fact, our kids love it so much, we can't keep them from coming. Every year, all of our kids come. In fact, just one left and two more are coming next week. And this goes on and on.

So as a father, grandfather and great grandfather, I'm pleased to see such a beautiful place as New Smyrna Beach and how it's being taken care of by the park rangers, park ranger programs over there. Just wonderful. Having been there, they show you all around. They have a film there about the Timucuan Indians. Our kids are encouraged...
to go up the shell mounds. Did you know there are
so many shell mounds in New Smyrna Beach and in and
around the Indian River Lagoon they were used for
pavements on highways and are disappearing. But
there's a shell mound right there where the park
rangers are. You walk up the hill and you can see
for miles around, Indian River Lagoon.

The children in this area are benefited by the
wonderful environment we have; of the programs that
we have with the Canaveral Seashore and the kind of
environment that is there for us to enjoy. So I
appreciate the -- what you're doing here. Because
our New Smyrna Beach, we can't keep them from
coming. They are always coming down. Thank you.

(Applause)

LEON KOLANKIEWICZ: Could you go over here and
spell your name for her? Just off to the side.
We'd like to get it correct for the record.

Anyone else who would like to come up and have
a say?

Again, thank you for coming tonight. We're
here until 8. If you want to come down and talk
some more, please feel welcome. Thank you.

(Proceedings concluded at 7:30 p.m.)
STATE OF FLORIDA:

COUNTY OF ORANGE:

I, RITA G. MEYER, RDR, CRR, CBC, CCP, do hereby certify that I was authorized to and did stenographically report the foregoing proceedings and that the foregoing transcript is a true and correct record of my stenographic notes.

I FURTHER CERTIFY that I am not a relative, employee, attorney or counsel of any of the parties, nor am I a relative or employee of any of the parties, attorneys or counsel connected with the action, nor am I financially interested in the outcome of the action.

DATED on this 18th day of April, 2016.

RITA G. MEYER, RDR, CRR, CBC, CCP
COMMENTS AND RESPONSES

Table of Contents of Comments/Responses by Topic

- Air Quality (AQ) ... C-142
- Alternatives (ALT) .. C-142
- Biological Resources (BIO) ... C-145
- Climate Change (CC) ... C-148
- Cultural Resources (CR) ... C-148
- Cumulative Impacts (CUM) ... C-149
- General (GEN) ... C-151
- Hazardous Materials and Waste (HMW) C-153
- Land Use (LU) ... C-154
- Mitigation (MIT) ... C-158
- NEPA Process (NEPA) .. C-159
- Proposed Action (PA) ... C-161
- Purpose and Need (P&N) .. C-163
- Recreation (REC) ... C-164
- Socioeconomics (SE) ... C-167
- Soils and Geology (S&G) .. C-168
- Transportation (TR) ... C-168
- Utilities (UT) ... C-169
- Water Resources (WR) ... C-169
AIR QUALITY (AQ)

1. Noxious chemicals released during launches cause air pollution and damage air quality.

 Response: Section 3.6 of the Draft PEIS documents the localized, short-term impacts on air quality from launch activities at KSC. Overall, air quality in the region remains good and both Brevard County is in attainment for all criteria air pollutants (Section 3.6.1.1, p. 3-57 of the DEIS and the FEIS).

2. Table 3.6-7 is referencing data from a 2005 FAA document. This information may not reflect current launch data, consider using more up-to-date data.

 Response: Could not locate these specific updated data for all horizontal launch and landings.

ALTERNATIVES (ALT)

1. Alternative 1 has fewer environmental impacts than the proposed action.

 Response: Comment noted. NASA concurs with the commenter.

2. The No Action Alternative makes no sense.

 Response: It is a requirement of NEPA that every EIS consider the “No Action Alternative” as a baseline against which to compare one or more action alternatives.

3. I support the No Action plan.

 Response: Comment noted.

4. It is already too late for the No Action Alternative because changes are occurring at KSC even now.

 Response: It is a requirement of NEPA that every EIS consider the “No Action Alternative” as a baseline against which to compare one or more action alternatives. The No Action Alternative would result in KSC maintaining its existing land uses. KSC’s current state of developments still aligns much more closely with what is documented in the existing land use map than the future land use map at full build-out.

5. Support for Alternative 1.

 Response: Comment noted.

6. Why would the “No Action Alternative” necessarily mean that “no new construction would occur at both the south-field and mid-field sites along the SLF?” No Action for
this PEIS would appear to mean only that the CMP would not be implemented and that the status quo would be maintained. Presumably, under the No Action Alternative individual site-specific NEPA analyses would be conducted, as appropriate to consider proposed future development. Unless the construction at the south- and mid-field sites is being analyzed in this PEIS as part of the Proposed Action or Alternative 1, they should not be called out in the No Action Alternative. This issue is of particular concern to the FAA as an EA is currently under development, which would consider the environmental impacts of construction activities at the mid- and south-field sites and operation of the SLF by Space Florida. As written, if the No Action Alternative were selected for this PEIS, it would appear to eliminate future development at the SLF from consideration. In addition, the approach proposed in Section 2.3.8 is highly unusual for a Programmatic EIS and would appear to significantly limit NASA’s ability to conduct future operations at KSC.

Response: Section 2.3.8 has been modified to avoid conflict with the ongoing EA.

7. GLOBAL: Throughout the document, ensure that when references are made to having considered alternatives in detail in the PEIS, that Alternative 1 is referenced in addition to the Proposed Action and No Action.

Response: Mention of Alternative 1 added to these references as suggested.

8. There is contradictory language in Chapter 2 as to what the preferred alternative is.

Response: The contradictory language on p. 2-1 in Section 2.0 has been fixed.

9. Space Florida concurs that Alternative 1 and its corresponding Future Land Use Map (Figure 2.2-1) is an improvement over the Proposed Action Future Land Use Map (Figure 2.1-1) and incorporates several key comments and observations we made in our initial scoping written input of July 7, 2014. Notably, Alternative 1 eliminates the proposed new seaports and consolidates the two notional Launch Complexes 39C and 39D into a single notional LC-49 area to the north of existing LC-39B.

Response: Comment noted.

10. While concurring that Alternative 1 is an improvement over the Proposed Action, Space Florida continues to recommend that additional alternatives for Future Land Use should be considered, including the location of notional vertical launch areas to the north of Complex 39B and the Beach Road. Space Florida is concerned that KSC future land use planning has overly constrained and perhaps even precluded the consideration of NASA land north of the Beach Road for future development for Vertical Launch or possibly other categories. (See also LU-15.)

Response: The PEIS is based on the current KSC Master Plan which does not include any proposed launch sites north of SR-402 due to the existing
infrastructure within KSC’s secured access area that could be utilized. Launch sites north of SR-402 were not considered to be within the range of reasonable alternatives because of their likely excessive impacts on Canaveral National Seashore and Merritt Island National Wildlife Refuge.

11. An additional alternative beyond Alternative 1 could include the designation of other notional future vertical launch sites. One of these could be at the location of the CVLC Site 2 identified and assessed by NASA in 2007-2008 in the same study that identified the area KSC now designates in the Draft PEIS as notional LC-48. An area of similar ground cover adjacent to the original CVLC Site 2 could be included in the notional site “bubble” of this Alternative similar to LC-49. This Alternative could also include on the Future Land Use Plan the notional site for Shiloh, as extensive site planning performed thus far for the FAA-led EIS clearly warrants its consideration in Future Land Use planning. (See also LU-16.)

Response: The PEIS is based on the current KSC Master Plan which does not include any proposed launch sites north of SR-402 due to the existing infrastructure within KSC’s secured access area that could be utilized and to minimize environmental impacts in the Merritt Island National Wildlife Refuge.

12. An additional alternative beyond Alternative 1 could include the re-definition of the 1,043 acres of land designated for “Renewable Energy” to a broader land use category allowing flexibility in use of these areas which are mostly comprised of former, now fallow, citrus groves. It is not at all clear that market conditions and demand for renewable energy production assets will require the designated land at the proposed 1,043-acre intensity. However, the availability of this developable land could be attractive to other “highest and best” uses that support or are ancillary to the spaceport. A future independent spaceport authority will need to employ a diversity of uses to help sustain the broad infrastructure required to support the spaceport’s primary uses. As “Renewable Energy” is essentially an industrial and commercial use for generating electricity or alternative fuels, an expansion of industrial and commercial use would not seem to greatly impact the disturbance of all of these acres for solar farms or other renewable energy enterprises. Perhaps a mixed-industrial/commercial use that includes renewable energy categories would provide the suggested flexibility. (See also LU-17.)

Response: The Master Plan amendment process provides an avenue for changing land uses if the demand for such industrial or commercial use were to arise, thus making it possible for some or all of this 1,043-acre area to be converted to another land use.

13. Reference paragraph 3 under Alternatives Considered section: the phrase "...controlled by an independent spaceport authority with fully integrated NASA Programs and non-NASA users" should also be included in the paragraphs describing the Proposed Action, Alternative 1, and any further Alternatives added prior to the Final PEIS – please include in all Alternatives.
Response: Comment noted. However, this operational model is beyond the planning horizon of the current CMP and thus beyond the scope of the PEIS. Accordingly, this text has been deleted from two places in the Final PEIS.

14. Re: discussion of Vertical Landing relocation (top of page 2-28) it would not appear based on location adjacent to the CNS accessible area that this repositioning would lessen impact to beach access at all. See Space Florida response to NASA AFP for conceptual location and access impacts.

Response: NASA does not concur. This document is a Programmatic EIS. This issue will be discussed in future site-specific NEPA documentation.

15. 2nd paragraph in Section 2.3.8 is inaccurate. Even under the No Action Alternative, new construction would occur at both the SLF south-field and mid-field sites in accordance with previous EA and the terms of the signed property management and development agreement.

Response: This paragraph is in error and has been deleted in the Final PEIS.

16. Paragraphs 2-5 on pg. 2-32 are read to apply to all alternatives and not just the “No Action Alternative” section they appear in. The assumption in paragraph 4 that the KSC workforce in excess of 2100 federal employees will be government contractor employees is already incorrect. Recommend a phrase at end of sentence to add “or employees of commercial or other non-NASA spaceport users and tenants.”

Response: Correction has been made.

BIOLOGICAL RESOURCES (BIO)

1. NASA must be a good steward of the land and wildlife at MINWR.

Response: NASA collaborates closely and will continue to collaborate closely with its partner the USFWS to manage and conserve habitats and wildlife at MINWR as the Center Master Plan and conversion to a multi-user spaceport are implemented.

2. The proposed project would impact many acres of wildlife habitat.

Response: The proposed project may result in impacts to many acres of wildlife habitat. Section 3.9 on Biological Resources in the Draft PEIS describes these habitat losses in some detail, as do other sections of the PEIS. NASA will attempt to minimize losses of natural habitat as the Center Master Plan and transition to a multi-user spaceport are implemented in the coming decades. Furthermore, upon identification of specific projects, additional NEPA documentation assessing impacts will be required.
3. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also CR-2, LU-9, REC-3, SE-9, and WR-6.)

Response: Under NASA’s preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.

4. Light pollution should be minimized to protect sea turtles. NASA’s planned actions to address this issue are satisfactory.

Response: Section 3.9.1.2.2.2 in the Draft PEIS states: “…the disorienting effects of artificial nighttime lights from NASA and U.S. Air Force facilities on nesting and hatchling sea turtles are a concern. NASA monitors this turtle disorientation annually. The refuge coordinates efforts with NASA and the Air Force to help reduce or eliminate the adverse effects of nighttime lighting on sea turtle nesting and hatchling disorientation.” These efforts will continue.

5. Please revise the sentence in Section 3.9.2.3.1.2 under Protected Species and Habitat to read: “In the FAA’s review of licenses for launch and reentry or review of applications for an experimental permit at KSC, the FAA would coordinate with NASA to determine whether there is a need to further consult with either USFWS or NMFS, based on any new activities proposed by the applicant.”

Response: Sentence revised as requested.

6. Revise text to reflect changes made to the sentence referenced in the previous comment.

Response: Text revised.

7. The full reference for “FAA, 2005” is missing.

Response: Full reference added.

8. The full reference for “FAA, 2015” is missing.

Response: Full reference added.

9. The Proposed Action and Alternative 1 would disrupt ongoing turtle and endangered species bird nesting monitoring/studies due to potential for increased operations and related beach closures. These impacts should be summarized in Table 2.6-2 and discussed in Section 3.9 of the Final PEIS.

Response: Summary and discussion added per NPS request.

10. NPS notes there are more recent wildlife studies and associated data available for the gopher tortoise, eagles, sea turtle and nesting predation, and Southeastern beach mouse.
The NPS would be happy to work with NASA and KSC to ensure these reports and studies make it into the Final PEIS for accurate descriptions of the affected environment and potential impacts to these resources.

Response: No additional studies are included in the Final PEIS but NASA’s management and action will nonetheless be informed by them and all future studies and monitoring during the planning horizon of the CMP and PEIS. New information is continually becoming available and will help inform management decisions and actions.

11. NPS and USFWS are currently responsible for invasive species management and control in our respective individual and joint managed areas. Would these agencies be responsible for eradicating invasive species that colonize due to construction and land disturbance activities as described in the Draft PEIS? This concern needs to be addressed in Section 4.0 - Summary of Mitigation Measures in the Final PEIS.

Response: The details of any specific mitigation programs associated with proposed development on jointly managed lands will be addresses individually as future partnerships are developed.

12. Biological Resources Section of the Executive Summary (p. ES-9) – This references a planned reduction of 4,406 acres of operational buffer to be used for development under the Proposed Action, with Alternative 1 resulting in a lower 3,305 acres being committed to more developed uses and facilities. The amount of planned future development proposed for either alternative uses only about half of the 8,000 acres of future development capacity identified as "developable areas" in the CMP, under Planning Conditions – Development Capacity. Space Florida does not recommend full use of all this capacity or that it should be programmed. But the lack of flexibility to increase the developed footprint above the limits of the current alternatives and the land use categories is of concern for accommodating future spaceport capacity and use demand over a 20-year period. An increased non-specific allocation of some additional share of the development capacity is recommended to support the CMP objectives. This would facilitate flexibility to amend the Future Land Use Map and area boundaries without requiring a new CMP and amended PEIS.

Response: For any proposed development. NASA will seek to minimize the impact to biological resources. All such projects would be subject to the appropriate permitting process.

13. Please correct, "CNS logs more than 4,000 sea turtle nests each season." to "CNS logs 4,000 - 8,000 sea turtle nests annually and has the highest recorded density of turtle nesting in the NPS." (See also REC-7.)

Response: Corrected per NPS suggestion in the FEIS.
CLIMATE CHANGE (CC)

1. A potential beneficial impact of the development of a Shiloh launch complex is mitigation against the risk of loss of one or more coastal launch sites by inundation resulting from climate change. This benefit extends to the risk exposure of CCAFS sites as well, thus mitigating a reduction of future launch capacity at Cape Canaveral Spaceport. (See also CUM-5.)

Response: The Shiloh Launch Complex is not part of KSC’s master plan and was thus not analyzed in any great detail beyond potential cumulative effects.

CULTURAL RESOURCES (CR)

1. Canaveral National Seashore park rangers do a marvelous job of protecting, and interpreting for the public, cultural resources such as the shell mounds. (See also REC-1).

Response: Thank you for your comment.

2. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also BIO-3, LU-9, REC-3, SE-9, and WR-6.)

Response: Comment noted. Under NASA’s preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.

3. Should this read “Surface Transportation Board (STB)?”

Response: Yes. State Transportation Authority (STA) changed to Surface Transportation Board (STB).

4. Cultural Resources assessments: All undeveloped areas of KSC have some potential for undiscovered and previously unrecorded cultural sites. There should be a consistent application of Section 106-required evaluations that does not discriminate between NASA projects and those to be carried out by non-NASA entities. The KSC Cultural Resources Plan should address methodologies and processes that support these investigations for both NASA-sponsored, and non-NASA proposed actions. This is advisable in light of the expectation that future projects will be funded, constructed, and operated by non-NASA entities. "Appropriate surveys and studies" should be determined based on objective and balanced criteria that can allow for a phased investigation to determine appropriate APE and cultural resource presence. Space Florida requests that NASA site-wide processes and study approaches be clarified and addressed in the PEIS for Center-Wide Operations.

Response: Noted. As stated in the referenced section, NASA will continue to comply with its obligations under Section 106 of the National Historic Preservation Act (NHPA) and the KSC Cultural Resources Management Plan.
5. The Buffer Area also contains significant historical resources including the Elliott Plantation Complex. The site encompasses 2585 acres within the Buffer Area and contains a sugar works factory, rum distillery, slave village, overseer's house, canals, and other agricultural remnants. The site is currently listed on the State Master Site Files, and according to review by the National Park Service, the site is eligible for both the National Register of Historic Places and as a National Historic Landmark. Due to the potential conflict with commercial launch operations, the Florida Trust for Historic Preservation has listed the site as among the eleven most endangered historic sites in Florida.

Response: Comment noted.

CUMULATIVE IMPACTS (CUM)

1. The proposed project should be considered in concert with the Shiloh proposal. The cumulative impact of these projects combined would be onerous.

Response: The proposed project was considered in concert with the Shiloh proposal in the Draft PEIS, in particular, in Section 3.9.2.1.1, on p. 3-150, where it was stated:

"While detailed impacts of both Shiloh and the rail extension are not yet available, both would require the clearing of non-trivial amounts of native upland vegetation and habitat. When all three projects (KSC master plan, Shiloh, rail extension) are considered in combination, cumulative impacts on upland vegetation may shift from minor and adverse to moderate and adverse (noticeable change in a resource occurs, but the integrity of the resource remains intact), but they would still not likely be major or significantly adverse (substantial impact or change in a resource area that is easily defined, noticeable, and measurable, or exceeds a standard)."

2. These proposals would actually be the first stage of a series of logical future enhancements that would be more detrimental to the land, waterways, biodiversity, and human welfare.

Response: The commenter’s assertion that there is a predictable sequence of future environmentally harmful actions is unsubstantiated. These possible actions in a more distant future, beyond the planning horizon to 2032, are unforeseeable at the present time are not contemplated either in the Proposed Action or Alternative 1.

3. As of January 2016, Port Canaveral is no longer pursuing a railroad easement across the Banana River. Please revise the FEIS accordingly (removing Section 3.2.3 and revising Figure 2.2-1). (See also TR-1).

Response: Section 3.2.3 of the PEIS has been modified to accommodate this new information.
4. Paragraph 3 under Water Resources. This statement should be balanced with the potential positive impacts of economic growth and development from foreseeable projects, e.g. the installation of improved regional sanitary wastewater systems replacing septic fields in southeastern Volusia County and extension of municipal potable water service that could lessen shallow well impacts. An absence of economic growth and resources will likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters. (See also WR-9.)

Response: The following text has been inserted in the Executive Summary as a new paragraph under the above-cited paragraph 3 under Water Resources and in Section 3.4.2.1.4:

“These potential adverse cumulative impacts on water quality in the IRL and other water bodies from a likely increase in non-point source pollution associated with population growth and development in surrounding watersheds could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing the septic fields now used widely in southeastern Volusia County and the extension of municipal potable water service that could decrease impacts on shallow drinking water wells. An absence of economic growth and commensurate funding resources would likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters.”

5. A potential beneficial impact of the development of a Shiloh launch complex is mitigation against the risk of loss of one or more coastal launch sites by inundation resulting from climate change. This benefit extends to the risk exposure of CCAFS sites as well, thus mitigating a reduction of future launch capacity at Cape Canaveral Spaceport. (See also CC-1.)

Response: The Shiloh Launch Complex is not part of KSC’s master plan and was thus not analyzed in any great detail beyond potential cumulative effects.

6. We note with concern the acknowledgement within the PEIS that the Shiloh Launch Complex is “reasonably foreseeable” for the purposes of examination of cumulative impacts. We also note for concern that such reasonably foreseeable projects could contribute to the cumulative impairment of the Indian River Lagoon.

Response: KSC’s Draft PEIS included the proposed Shiloh Launch Complex as reasonably foreseeable because it is currently the subject of another EIS being prepared by the Federal Aviation Administration (FAA), a cooperating agency of NASA in the current PEIS for the Center Master Plan update. However, the Shiloh Launch Complex is not part of KSC’s master plan.
GENERAL (GEN)

1. National interests are at stake in the management of KSC.

 Response: Comment noted.

2. Expresses dissatisfaction with NASA operations and management at KSC.

 Response: Comment noted.

3. Space Florida believes a priority emphasis should be placed on ensuring future capacity for space transportation infrastructure and operations, long-term economic sustainability, and market-driven opportunities for environmentally-responsible development.

 Response: Comment noted. NASA KSC believes that our current master plan has been developed with these goals in mind.

4. Space Florida concurs with the Draft PEIS and CMP that KSC should evolve toward a multi-user spaceport controlled by an “independent spaceport authority.” We do not agree, however, with the timeframe suggested in the CMP of “beyond 2032.” Space Florida believes it is in the best interest of all Cape Canaveral Spaceport stakeholders to pursue an accelerated implementation of this concept along with interim bridge steps. Space Florida will be examining this in the preparation of its Cape Canaveral Spaceport Complex Master Plan and will soon engage NASA, the USAF, FAA and our other organizational and industry stakeholders in this conversation.

 Response: Comment noted and KSC looks forward to engaging in this discussion.

5. We support the concept of establishing areas that can be designated as commercial zones, in which application of state and local laws, coupled with commercial standards, can offer a commercial operating environment consistent with that which would be available on non-federal land. Space Florida would like to expand on this NASA-developed concept as well, maturing its definition, accelerating its implementation, and applying it to the broad territory of the Cape Canaveral Spaceport where it is found to be appropriate by our federal partners and landowners.

 Response: Comment noted.

6. Space Florida encourages and requests NASA to embrace a renewed collaborative planning initiative similar to that undertaken in KSC’s 2002 CMP performed in coordination with all of the principal stakeholder organizations comprising the Cape Canaveral Spaceport, in which all the participating federal agencies and Space Florida’s predecessor organization were in agreement that the optimum future for the spaceport would only be realized by planning it was a whole. We are concerned this principle is absent from the current proposed CMP and the PEIS that has assessed it.
Response: Comment noted.

7. Last paragraph, line 6: The State of Florida dedicated rights are subject to a definition of use and duration of use, with prioritization for space operations. Recommend factual clarification and citation of the dedication instruments of the Trustees of the Internal Improvement Fund (No. 23151-B Supplemental dated January 30, 1970 and No. 23151 Modification dated March 8, 1967).

Response: The last two sentences of paragraph 4 on page ES-1, and the last two sentences of the second full paragraph on page 1-2 have been deleted and replaced with:

“The State of Florida Trustees of Internal Improvement Fund granted the United States an additional 22,660 ha (56,000 ac) of state-owned submerged lands, wetlands, and uplands including the Mosquito Lagoon, and parts of the Indian and Banana Rivers) for primary use in the Space Program and secondary use as a Wildlife Refuge or for public park and recreation purposes upon a determination that such use was consistent with the property’s primary use in the Space Program. This total area of approximately 56,660 ha (140,000 ac), together with the adjoining water bodies, was considered extensive enough to meet future space program launch facility and operational needs while also providing adequate safety to the surrounding communities.”

8. Last paragraph, reference should be made to State-owned submerged land, wetlands, and uplands (see references item 1) and the parenthetical water bodies should also include Banana Creek and the Banana River (See figure 1.2-2).

Response: See response for GEN-7, which also applies to GEN-8.

9. Last sentence of paragraph 4 should be clarified as to the purpose of the property acquisition by adding the phrase "and to meet future space program launch facility and operational needs" (KSC 1964 facilities planning map; 1962 letter DoD Secretary McNamara to U.S. Sen. Jackson re: additional property acquisition).

Response: See response for GEN-7, which also applies to GEN-9.

10. Reference to KSC as "world's preeminent launch facility" should be modified to include the entire Cape Canaveral Spaceport as defined to include the launch facilities of Cape Canaveral Air Force Station. The previous 2002 CMP recognized the entire Cape Canaveral Spaceport and its collective capabilities.

Response: This is a KSC Master Plan and therefore does not include Cape Canaveral Air Force Station.

11. Most of the comments above to the Executive Summary will cascade into consistency revisions in the PEIS sections that these summaries were drawn from. Appropriate
amendment to text in those sections should also be made for comments that are accepted and incorporated into the final PEIS.

Response: Comment noted.

12. The labeling of this map as "Federal Jurisdictions" adds further confusion to the ambiguity of federal agency roles and land use (reference the PEIS narrative on 2-32 and the last paragraph of 1-12 regarding Section 4(f) review with NASA as the jurisdictional authority. NASA jurisdiction over all KSC land acquired for the space program is designated by Congress. We recommend a better description of this map. We suggest consideration of "Federal Administrative Responsibilities" or "Federal Management Responsibilities."

Response: Comment noted.

13. Reference the "new Central Master Plan" said here to be under development. Is this the published CMP already approved and online? Should it be Center Master Plan?

Response: This language has been corrected.

14. Groups signing this comment letter represent millions of members across the U.S. who expect our national parks and national wildlife refuges, such as CNS and MINWR, to be managed for protection of the natural resource values and cultural resources found within them for the benefit of current residents and future generations. Some commenters at the public hearings endorsed economic development projects that are clearly at odds with the mission of the USFWS and NPS, whose duty it is to protect these resources.

Response: Comment noted.

HAZARDOUS MATERIALS AND WASTE (HMW)

1. Hazardous, toxic materials generated and used at KSC are a threat to soils and groundwater. (See also WR-1 and G&S-1.)

Response: NASA is committed to working with the U.S. EPA and the State of Florida in the management and cleanup of all hazardous and toxic materials at KSC. NASA has developed an ongoing program of managing and handling hazardous and controlled wastes at KSC and there is every intention that this will continue to be funded and implemented in the decades ahead. Section 3.4.1.2.2.1 of the Draft PEIS notes that: "Point source contamination to the KSC Surficial aquifer has occurred at certain facilities" (p. 3-41). However, that same section of the Draft PEIS also indicates that ongoing water quality monitoring shows that: "The baseline data indicate that widespread contamination of the Surficial aquifer on KSC has not occurred."
LAND USE (LU)

1. All dangerous activities should be confined to existing areas.

 Response: As reflected in the proposed alternatives, planning and zoning at KSC is endeavoring to do this as much as possible.

2. KSC is an example or model for the nation of how the environment and commercial aerospace cannot only coexist but thrive.

 Response: NASA concurs.

3. Site future development in the least environmentally sensitive areas.

 Response: The Center Master Plan, the Draft DEIS, and NASA have adopted this approach. Generally speaking, future development will occur in the least environmentally sensitive areas and areas that are already developed. The CMP also strives to consolidate existing and new facilities and infrastructure as much as possible.

4. The area north of the existing security zone should remain as buffer lands within Canaveral National Seashore and Merritt Island National Wildlife Refuge.

 Response: NASA’s preferred Alternative 1 aims to do just this.

5. Under either proposal [Proposed Action or Alternative 1], the loss of conservation land and public use land is unacceptable.

 Response: Comment noted. NASA is making every attempt to minimize any further loss of conservation and public use lands while still pursuing its mission and KSC’s transition to a multi-user spaceport.

6. The additional seaports for the proposed action would inflict substantial injury to the environment.

 Response: As a result of concerns raised by stakeholders in the 2014 PEIS scoping meetings and comment period, NASA developed a preferred Alternative 1, which among other things, eliminates the two new seaports and their associated impacts.

7. Proposed project should not feature an additional runway or fill any wetlands. (See also WR-3).

 Response: It is uncertain whether an additional runway for horizontal launch and landing will be necessary. KSC will attempt to avoid filling any jurisdictional wetlands and will comply with the substantive requirements of Section 404 of the
8. Support development within the existing complex.

Response: Generally speaking, future development, redevelopment, and repurposing, especially under Alternative 1, will occur in the least environmentally sensitive areas and areas that are already developed. The CMP also strives to consolidate existing and new facilities and infrastructure as much as possible.

9. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also BIO-3, CR-2, REC-3, SE-9, and WR-6.)

Response: Comment noted. Under NASA’s preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.

10. Recommend permanent transfer of lands north of SR 402 to USDOI for management as part of the Merritt Island National Wildlife Refuge and Canaveral National Seashore.

Response: All lands at the Kennedy Space Center managed by the U.S. Fish and Wildlife Service as the Merritt Island National Wildlife Refuge and by the National Park Service as Canaveral National Seashore are owned by NASA and managed by these two federal agencies. This arrangement is unlikely to change in the foreseeable future as, among other things, such a change would likely require Congressional action. Further, the current arrangement can still result in effective conservation of the natural resources on the lands north of SR 402.

11. Section 2.1.1.2 - Future Land Use - This section outlines a development framework that would support the growth of the multi-use spaceport model. The Draft PEIS fails to identify the siting criteria that were used to identify the Proposed Action locations of Launch Complexes 39C and 39D as well as the Vertical Landing Area. For example, why wasn’t a Launch Complex proposed between Launch Complexes 39A and 39B? There appears to be adequate open space in the vicinity of these already developed areas that could support the anticipated new infrastructure. The NPS recommends that KSC consider in the Final PEIS relocating one or both of these complexes further south in areas more removed from the southern boundary of CANA.

Response: The location of the proposed launch areas north of 39B were developed based on the clear zone requirements for the existing LC 39 A and B. Based on the class of launch vehicles proposed for LC 39A and B there is inadequate space to site a medium or heavy class launch pad.

12. General Land Use Map (Figure 3.11-1) inaccurately depicts NPS areas. This should be corrected in the Final PEIS.
Response: Figure 3.11-1 has been replaced.

13. Land Use is Space Florida’s area of greatest concern with the CMP and Draft PEIS. In general, the Future Land Use Plan of both the Proposed Action and Alternative 1, together with the CMP Land Use category definitions, lack flexibility to adapt to evolving space industry and market needs.

Response: Comment noted.

14. Space Florida concurs with the designation of notional LC-48, located on both Future Land Use Map alternatives, as a “Small Vehicle Launch Site Area” (Figure 2.1-4) and the corresponding small vehicle weight and thrust limits identified in 2.1.3.1.2. Space Florida concurs LC-48 is too close in proximity to existing LC-41 and LC-39A to support a vehicle class heavier than “small.”

Response: Comment noted.

15. While concurring that Alternative 1 is an improvement over the Proposed Action, Space Florida continues to recommend that additional alternatives for Future Land Use should be considered, including the location of notional vertical launch areas to the north of Complex 39B and the Beach Road. Space Florida is concerned that KSC future land use planning has overly constrained and perhaps even precluded the consideration of NASA land north of the Beach Road for future development for Vertical Launch or possibly other categories. (See also ALT-10.)

Response: The PEIS is based on the current KSC Master Plan which does not include any proposed launch sites north of SR-402 due to the existing infrastructure within KSC’s secured access area that could be utilized. Launch sites north of SR-402 were not considered to be within the range of reasonable alternatives because of their likely excessive impacts on Canaveral National Seashore and Merritt Island National Wildlife Refuge.

16. An additional alternative beyond Alternative 1 could include the designation of other notional future vertical launch sites. One of these could be at the location of the CVLC Site 2 identified and assessed by NASA in 2007-2008 in the same study that identified the area KSC now designates in the Draft PEIS as notional LC-48. An area of similar ground cover adjacent to the original CVLC Site 2 could be included in the notional site “bubble” of this Alternative similar to LC-49. This Alternative could also include on the Future Land Use Plan the notional site for Shiloh, as extensive site planning performed thus far for the FAA-led EIS clearly warrants its consideration in Future Land Use planning. (See also ALT-11.)

Response: The PEIS is based on the current KSC Master Plan which does not include any proposed launch sites north of SR-402 due to the existing infrastructure within KSC’s secured access area that could be utilized and to minimize environmental impacts in the Merritt Island National Wildlife Refuge.
17. An additional alternative beyond Alternative 1 could include the re-definition of the 1,043 acres of land designated for “Renewable Energy” to a broader land use category allowing flexibility in use of these areas which are mostly comprised of former, now fallow, citrus groves. It is not at all clear that market conditions and demand for renewable energy production assets will require the designated land at the proposed 1,043-acre intensity. However, the availability of this developable land could be attractive to other “highest and best” uses that support or are ancillary to the spaceport. A future independent spaceport authority will need to employ a diversity of uses to help sustain the broad infrastructure required to support the spaceport’s primary uses. As “Renewable Energy” is essentially an industrial and commercial use for generating electricity or alternative fuels, an expansion of industrial and commercial use would not seem to greatly impact the disturbance of all of these acres for solar farms or other renewable energy enterprises. Perhaps a mixed-industrial/commercial use that includes renewable energy categories would provide the suggested flexibility. (See also ALT-12.)

Response: The Master Plan amendment process provides an avenue for changing land uses if the demand for such industrial or commercial use were to arise, thus making it possible for some or all of this 1,043-acre area to be converted to another land use.

18. It does not appear the Draft PEIS analysis of potential impacts from the identified Vertical Launch areas, in particular LC-49, took advantage of data provided by NASA’s internal Ground Systems Development and Operations study of the area, or Space Florida’s submission in response to the KSC Announcement for Proposals (AFP). The cited studies would inform PEIS assessment of the wetlands disturbance and other impacts of this site’s potential development. In addition, the CMP and Draft PEIS have not addressed the issue of allowable range of flight azimuths from Notional LC-49 with respect to LC-39B. Space Florida recommends the PEIS include a more detailed but high-level discussion of the environmental issues that may be associated with Notional LC-49 being developed in the future, including conformity with the elevation-based policies of the CMP.

Response: This detailed level of environmental analysis will be conducted if/when KSC develops a partnership for the proposed launch site. A tiered NEPA document will be prepared for any proposed launch complex.

19. See Land Use comments in attached letter. Recommend describing land use budget as "Acreages of planned land uses" as opposed to "designated" to address flexibility for future land use amendments and the dynamic planning environment confronting all stakeholders in the Cape Canaveral Spaceport. This is a 20-year planning document. See comment 10 for further recommendations regarding the developable land budget.

Response: NASA maintains the ability as land owner to modify land uses as it sees fit.
20. Land Use: Consistent with the Future Development Concept and CMP, there should be a notation in this section that public use of KSC land is a conditional use as defined in the CMP. Areas designated for Recreational Use (161.36 acres) and areas labeled as Operational Buffer in which recreation "may" be a use will likely lead to confusion. This ambiguity also complicates the application of the U.S. DOT section 4f matters for projects requiring an action by the FAA. Space Florida recommends greater clarity on NASA's intent, as jurisdictional agency for all of KSC per Congressional designation. The issues related to 4f as a requirement on Transportation Projects can apply broadly to all areas of KSC and could have significant impact on KSC's goals for the CMP and as a multi-user spaceport. This is less of a concern if it is legally clarified or otherwise determined that 4f does not apply to the lands acquired for and under the jurisdiction of NASA at Kennedy Space Center.

Response: FAA has responsibility for determining 4(f)'s applicability and does so on a project-by-project basis.

21. Land Use Plan Overview: See and consider incorporating earlier comments regarding flexibility, overall land use budget for development, flexibility among categories, capacity to transfer development allocations among categories. As currently structured, the CMP and the PEIS does not promote the highest, best, and most efficient use of land area resources or provide the needed balance with development suitability and capacity to promote commercial use of space and encourage future non-NASA opportunities.

Response: NASA maintains the ability as a federal land manager to modify land uses consistent with its authorities.

22. Recommend the addition of the SLF Property Agreement entered into between NASA and Space Florida as this area is extensively covered in portions of the PEIS.

Response: Recommendation adopted. Mention of SLF Property Agreement has been added. New paragraph inserted.

23. We strongly support continued protection of all areas north of SR 402 as Operational/Buffer Public Use and further support their active management by the USFWS and NPS for habitat conservation and public enjoyment. We specifically oppose calls to utilize this property for commercial space launches or to accommodate commercial and industrial development.

Response: Comment noted.

MITIGATION (MIT)

1. Mitigation to date at KSC has been inadequate.

Response: Comment noted.

2. All future development of natural habitat should be fully mitigated.
Response: Future development will be addressed in project specific environmental reviews and may include mitigation of habitat impacts.

3. The most appropriate, long-term programmatic mitigation for potential environmental impacts is the permanent transfer of lands north of SR 402 to USDOI for management as part of the Merritt Island National Wildlife Refuge and Canaveral National Seashore. The PEIS acknowledges that several commenters made reference to this idea but the PEIS does not address the comment with any degree of specificity.

Response: Comment noted.

NEPA PROCESS (NEPA)

1. The PEIS adequately assesses impacts, assessing pros and cons of the various alternatives.

Response: Comment noted.

2. Public communication on important environmental matters at KSC should be provided in forms that are shareable via social media.

Response: NASA appreciates this suggestion. Notification for the public meetings on the Draft Programmatic EIS was provided via a variety of modes, including online notifications shareable by social media.

3. FAA Order 1050.1F is now in force and has replaced FAA Order 1050.1E. Revise references throughout the PEIS to reflect FAA Order 1050.1F.

Response: References to FAA Order 1050.1E revised as noted.

4. The FAA will make a determination of applicability of DOT Act Section 4(f) on a project-by-project basis. Revise reference throughout the document accordingly.

Response: References to DOT Act Section 4(f) revised as noted. Included note that “applicability of section 4(f) will be determined by the FAA on a project-by-project basis” when referenced.

5. Text on p. 1-12 of the DEIS should be revised to reflect that future NEPA analyses prepared in support of FAA licensing actions would tier from this PEIS, if appropriate. However, there may be instances where the FAA determines that the required NEPA document should not tier from the PEIS.

Response: Text revised as suggested. “If appropriate” added: “Projects that require FAA licensing, and U.S. DOT Section 4(f) review at KSC, with NASA as the jurisdictional authority, would be covered in more specific detail in NEPA documentation EAs that tiers from off-of this PEIS, if appropriate.”
6. Spell out all propellant acronyms in Section 2.1.3.1.

Response: Acronyms have been spelled out. RP-1: Rocket Propellant-1; LOX: Liquid Oxygen; MMH: Monomethylhydrazine; N2O4: Dinitrogen tetroxide; N2H4: Hydrazine; IPA: isopropyl alcohol; LCH4: Liquid Methane; LH2: Liquid Hydrogen; A-50: Aerozine 50; N2H2: Diazene.

7. Provide key at the bottom of table 2.1-1 [sic] on p. 20 to spell out acronyms to ensure compliance with plain language guidance.

Response: Table 2.1-2 in the final PEIS has been revised to provide the recommended key.

8. The following sentence is not clear and should be revised “Under the Proposed Action, for example, as a multiuser spaceport, future commercial space customers would be subject to FAA licensing, including Order 1050.1E, as well as Section 4(f) eventually.” The FAA would issue launch operator and/or launch site operator licenses or experimental permits to applicants desiring to conduct commercial launches or to operate a commercial launch site. The issuance of these licenses or permits would be in compliance with FAA’s regulations. The issuance of licenses or permits constitutes a major Federal Action under NEPA. NEPA documents prepared to support these application decisions must be prepared to comply with NEPA, CEQ Regulations implementing NEPA and FAA’s NEPA Implementing Regulations i.e., FAA Order 1050.1F.

Response: Sentence revised per this and prior suggestions. Entire paragraph appears in Final PEIS as:

“Some of these partnering agencies have permitting authority. Under the Proposed Action, for example, as a multiuser spaceport, future commercial space customers would be subject to FAA licensing, including Order 1050.1E Order 1050.1F, as well as Section 4(f) eventually. Projects that require FAA licensing, and U.S. DOT Section 4(f) review at KSC, with NASA as the jurisdictional authority, would be covered in more specific detail in EAs that tier off of this PEIS, if appropriate. Applicability of section 4(f) will be determined by the FAA on a project-by-project basis."

9. The EPA acknowledges that three programmatic alternatives outlined in this PDEIS are described with their potential environmental effects in general terms. At such time, as specific project details and proposed locations become available, the EPA recommends that specific future NEPA documents be tiered from this programmatic document as the principal NEP-A document.

Response: NASA intends to follow precisely this approach. That was the intent of preparing a Programmatic EIS.
10. As a Participating Agency in this PEIS, Space Florida requests an opportunity to review and comment further on the Comment Response Document prior to its publication in the Final PEIS.

Response: Comment noted but request denied.

PROPOSED ACTION (PA)

1. We support the development of a multi-user spaceport. (See also SE-3.)

 Response: Comment noted.

2. Support the Proposed Action.

 Response: Comment noted.

3. Should the small launch pad 39C (?) be included here as well? How will 39C be incorporated throughout this PEIS? Is this PEIS intended to address impacts from launches at 39C?

 Response: 39C is covered since it falls within the same vertical launch land use as 39B. Specific impacts from 39C will be addressed outside of the PEIS.

4. The text in this section [2.1.1.2.2] references pads north of 39B as “39C and D” should this instead refer to LC49? Here and throughout the document, to avoid confusion, ensure that all launch pads and notional launch pads are consistently named.

 Response: The text in Section 2.1.1.2.2 (p. 2-10 of the Draft PEIS) refers to the vertical launch land use description contained in the proposed action which includes two vertical launch pads. LC-49 is only mentioned in the context of Alternative 1.

5. Does NASA have a definition for “horizontal spaceport?” This is not a term that is defined in the FAA regulations. If referring to a runway from which launch vehicles are launched horizontally, suggest rewording.

 Response: First mention of “horizontal spaceport” (with regard to launches) in Section 2.1.3.2 is reworded to “runway from which launch vehicles are launched horizontally.” Second mention of “horizontal spaceport” in next paragraph is reworded to “runway on which vehicles land horizontally.”

6. The text and table refer to potential “types” (plural) of horizontal launch vehicles that could operate from KSC; however, it appears that only one type of horizontal launch vehicle is described, are there other types that should be included as well? Please see FAA NEPA documents for descriptions of other types of horizontal launch vehicles.
Response: Just one example is used since the horizontal launch vehicle market is still in its early stages.

7. How does LC 39-C fit into the discussion of vertical launch pads? Is this pad included in the PEIS?

Response: LC 39-C is covered as part of the vertical launch land use.

8. The NPS has long standing concerns with the development of additional privatized launch facilities within and immediately adjacent to CANA. The impacts to our visitor experiences and public enjoyment of our resources could be severely compromised. (Also see REC-4.)

Response: Comment noted. Any future development north of LC 39B will be carefully evaluated and potential impacts to CANA will be identified. KSC has a longstanding relationship with the local CANA staff and will continue to work together on identifying potential future impacts and mitigation measures.

9. Absent additional information in the Final PEIS to substantiate the need for these competing facilities and why they can't be accommodated with existing infrastructure in different locations, NPS does not support the Proposed Action (Preferred Alternative) as we understand it to be.

Response: The Proposed Action is not NASA’s Preferred Alternative. Alternative 1 is NASA’s Preferred Alternative. Alternative 1 eliminates much of the proposed facilities north of SR 402 and much of the activity that would impact Playalinda Beach in CANA. In Alternative 1, a greater share of the NASA and commercial launches and landings would be on already developed sites.

10. Overall, the EPA has rated the Preferred Action in the DPEIS as 'LO', or lack of objections, which indicates that the review has not identified any potential environmental impacts requiring substantive changes to the preferred action (alternative).

Response: Comment noted.

11. In Section 2.1.1.2 2, for accuracy, the following words (in italics) should be inserted in the last sentence under Future Development: "...also concluded that vertical launch pads could be sited to the northwest of 39B and the Beach Road and sited to the south of 39A..." Cite reference RS&H 2007.

Response: Suggested change to text made and recommended reference cited inserted in Section 2.1.1.2.2.

12. The thrust characteristics for HCLV in this table [Table 2.1-2] appears to be in error, or too low. A more appropriate number should be 4,000,000 (the Falcon Heavy for example is 3.9 million lbf). Same issue is in 2.1.3.1.4 description of Heavy Class.
Response: Suggested corrections made to Table 2.1-2 and Section 2.1.3.1.4.

13. Recommended additional criterion in 2.1.6.2.3: 3. Divestiture would not diminish the existing transportation network and spaceport accessibility for non-NASA programs and users of the Cape Canaveral Spaceport.

Response: Suggestion accepted and inserted into Section 2.1.6.2.3 as a third criterion.

PURPOSE AND NEED (P&N)

1. The Draft PEIS fails to make the argument that the proposed additional privately operated leased facilities are required to meet the needs of the space and defense programs of the Nation, especially given concerns about impacts to the adjacent CANA and Merritt Island National Wildlife Refuge. The NPS recommends that this be addressed in the Final PEIS.

Response: Comment noted.

2. In Section 1.3.1, recommend addition of the word "land" after [sic] "facilities" on line 4 of paragraph 2 to read "land, facilities, experienced workforce…"

Response: Text revised as suggested. “Land” inserted in front of “facilities.”

3. In Section 1.3.1 on p. 1-8 of the Draft PEIS, for the last bullet: Recommend addition of the phrase "controlled in the coming years by an independent spaceport authority" for the sake of consistency with alternatives description and CMP.

Response: Comment noted but text not incorporated per suggestion. Congress has not authorized NASA KSC to be "controlled in the coming years by an independent spaceport authority."

4. In reference to last CMP in 2002: This should be identified as the Cape Canaveral Spaceport Master Plan, with acknowledgement that it had established a principle for collaborative planning for the entirety of the spaceport, including both KSC and CCAFS. It is understood that the updated KSC CMP has a need to be more institutional-specific to NASA, but the focus on that need to "right size" NASA and its KSC institutional footprint should not abandon the previously agreed to need of planning for the entire Cape Canaveral Spaceport. This is especially valid in light of the anticipated reliance on new users for a multi-user spaceport. Those commercial providers will have facilities and use land across the federal jurisdictional boundaries. We recommend and request that this aspect of the 2002 CMP, and the need for collaborative planning of the entire spaceport complex, be acknowledged in this section.

Response: This is the KSC Master Plan. This plan was developed in collaboration and consultation with federal, state and commercial stakeholders (of which, Space Florida was a participant).
RECREATION (REC)

1. Canaveral National Seashore park rangers do a marvelous job of protecting, and interpreting for the public, cultural resources such as the shell mounds. (See also CR-1).

 Response: Thank you for your comment.

2. I strongly oppose any KSC development that could potentially impact access to Playa Linda Beach. This is a national seashore. (See also TR-2.)

 Response: Comment noted. In contrast to the Proposed Action, NASA’s preferred alternative, Alternative 1, would avoid most additional impacts to Playalinda Beach. NASA acknowledges the importance of the national seashore.

3. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also BIO-3, CR-2, LU-9, SE-9, and WR-6.)

 Response: Comment noted. Under NASA’s preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.

4. The NPS has long standing concerns with the development of additional privatized launch facilities within and immediately adjacent to CANA. The impacts to our visitor experiences and public enjoyment of our resources could be severely compromised. (Also see PA-8.)

 Response: Comment noted. Any future development north of LC 39B will be carefully evaluated and potential impacts to CANA will be identified. KSC has a longstanding relationship with the local CANA staff and will continue to work together on identifying potential future impacts and mitigation measures.

5. Need to update with current economic data.

 Response: Table 3.15-6 updated using current economic data furnished by NPS.

6. In Section 3.15.1.2, please correct, "Congress created Canaveral National Seashore ... " to "Congress established Canaveral National Seashore ... "

 Response: Corrected in the FEIS.

7. In Section 3.15.1.2, please correct, "CNS logs more than 4,000 sea turtle nests each season." to "CNS logs 4,000 - 8,000 sea turtle nests annually and has the highest recorded density of turtle nesting in the NPS." (See also BIO-13.)

 Response: Corrected per NPS suggestion in the FEIS.
8. There appears to be little if any difference between the potential impacts of the Proposed Action and Alternative 1, as the identified projects for launch and landing (both horizontal and vertical) "might not be constructed" under either alternative, whether projects are designated as notional or not. Impacts on wetlands in these areas should be contemplated as potential impacts of the PEIS that could occur, as well as impacts to beach access.

Response: Potential wetland impacts and potential impacts to passive and active recreation are addressed in the PEIS. The Proposed Action includes two seaports and their environmental impacts, which were eliminated from Alternative 1.

9. The characterization of adverse long term effects on outdoor recreation opportunities is not balanced with the referenced beneficial impacts mentioned in the first sentence under Recreation on ES-13. These beneficial impacts could include increased awareness and utilization of natural resources on and near the KSC as a direct result of increased space program activities of a multi-user spaceport. There is a conflict in defining adverse impacts of Recreation by projects that might reduce access to CNS and MINWR, and also defining adverse impacts to Recreation by projects increasing area population and otherwise driving an increased visitation to the CNS and MINWR.

Response: The comment is correct that there may be beneficial impacts from the Proposed Action and Alternative 1, as alluded to in the first sentence under the Recreation heading. These could, as noted in the comment, take the form of increased awareness and appreciation of CNS's and MINWR's wildlife and other natural resources, in addition to increased visitation on a year-round basis (if not during closures, which would also likely increase due to increased launching and landing activities) at both the national wildlife refuge and the national seashore.

Increasing area population, due partially to a thriving commercial space industry and partially to growth that may occur regardless, would tend to drive increasing visitation, which is considered beneficial in and of itself. However, increased visitation may also compromise the quality of the visitor experience if greater overcrowding and traffic occur at parking lots, beaches, trails, population fishing sites, etc. In other words, the effects may be both beneficial and detrimental. In any case, officials of both the National Park Service and U.S. Fish and Wildlife Service have expressed serious concerns about the impacts and encroachment on both CNS and MINWR of increased activity and closer facilities contemplated under the Proposed Action, and to a lesser extent, under Alternative 1.

10. Last sentence of first paragraph in Section 3.15.2.1.2.1 undermines the principle that public access is conditional. Is NASA committing that the area north of old Haulover Canal would always remain open to the public? Only for NASA-operated launches?

Response: Comment noted.
11. There is no objective basis or supporting rationale for the statement that "total annual visitation to CNS would decrease considerably." There is every likelihood that total annual visitation will increase due to increased launch activity, even if Shiloh is built as proposed. Elsewhere in the PEIS, there is concern that visitation to the CNS and MINWR will increase due to the proposed and alternative action, and considering potential cumulative effects, resulting in adverse impacts to the experience at CNS and to resources. It can't be both ways, or we should conclude that decreased visitation may be a good thing, even though it is not substantiated that decreased visitation is a consequence. NASA launches are assessed to only be 5-7 over a 20 year period.

Response: The referenced text in Section 3.15.2.1.2.5 on p. 3-252, in the discussion of cumulative impacts on recreation, does not state that "total annual visitation to CNS would decrease considerably," but rather that "total annual visitation to CNS could decrease considerably" [italics added], which connotes less certainty in the predicted possible impact. The prediction is admittedly somewhat speculative.

Be that as it may, Space Florida makes a credible argument that increased launch activity alone, even were Shiloh to be built and operated as proposed, is likely insufficient to result in an absolute decrease in the annual level of visitation to CNS due to more launch-related closures. However, if the public perceives that the overall quality of the outdoor recreation experience at CNS has been compromised or diminished, this may lead to an absolute decline in average annual visitation.

Moreover, the fact is that those with the great knowledge of the particulars, namely NPS staff at CNS, in internal comments submitted during development of the preliminary draft PEIS, as well as the Southeast Regional Office of the National Park Service, in its formal comment letter submitted for this Draft PEIS, are quite concerned about potential impacts to this unit of the National Park System. The NPS comment letter states, in part: “The NPS has had long standing concerns with the development of additional privatized launch facilities within and immediately adjacent to CANA [CNS]….NPS has resource and operational concerns given the close proximity of the proposed launch sites and the number of potential new launches. Our primary concerns given the above are over the long term viability of CANA given the theoretical number of closures that could occur for both proposals. The impacts to our visitor experiences and public enjoyment of our resources could be severely compromised.”

12. Discussion in Section 3.15.2.2 should be limited to Alternative 1. There would likely be greater impacts to Playalinda Beach resulting from either the Proposed Action or Alternative 1 than Shiloh's cumulative effects. The Shiloh proposal has identified areas of expected temporary closure and would not affect Playalinda Beach due to more than adequate safety margins from either proposed site. Some of the potential Shiloh alternatives, such as Notional LC-49, may have impacts, as they would under Alternative
1. The speculation that any project may or may not actually be constructed is not relevant to assessing its potential impact on affected resources in the event that it is constructed.

Response: Cumulative impacts are included here because they are discussed briefly (one sentence) and do not warrant their own section. Taking into account Space Florida’s information, the sentence in question is revised in the Final PEIS to: “Some cumulative adverse impacts on recreation at CNS and Playalinda Beach may still occur because of the Shiloh proposal.”

SOCIOECONOMICS (SE)

1. Volusia County and its various communities wish to partner with the Spaceport to encourage job creation in the county.

Response: NASA welcomes this collaborative spirit and looks forward to working with Volusia County officials as the Center Master Plan is implemented.

2. Volusia County and its communities have the assets needed to attract jobs in the space industry.

Response: Comment noted.

3. We support the development of a multi-user spaceport. (See also PA-1.)

Response: Comment noted.

4. Growth is inevitable and the proposed project will encourage good growth.

Response: Comment noted.

5. NASA’s proposed multi-user spaceport will benefit both Florida and local communities.

Response: Comment noted. The Draft EIS reached this conclusion as well.

6. I support the space program and associated commerce.

Response: Comment noted.

7. There must be a balance between commerce and the environment.

Response: NASA concurs.

8. The local community needs value-added jobs.

Response: Comment noted.
9. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also BIO-3, CR-2, LU-9, REC-3, and WR-6.)

Response: Comment noted. Under NASA's preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.

SOILS AND GEOLOGY (S&G)

1. Hazardous, toxic materials generated and used at KSC are a threat to soils and groundwater. (See also HMW-1 and WR-1.)

Response: NASA is committed to working with the U.S. EPA and the State of Florida in the management and cleanup of all hazardous and toxic materials at KSC. NASA has developed an ongoing program of managing and handling hazardous and controlled wastes at KSC and there is every intention that this will continue to be funded and implemented in the decades ahead. Section 3.4.1.2.2.1 of the Draft PEIS notes that: "Point source contamination to the KSC Surficial aquifer has occurred at certain facilities" (p. 3-41). However, that same section of the Draft PEIS also indicates that ongoing water quality monitoring shows that: "The baseline data indicate that widespread contamination of the Surficial aquifer on KSC has not occurred."

TRANSPORTATION (TR)

1. As of January 2016, Port Canaveral is no longer pursuing a railroad easement across the Banana River. Please revise the FEIS accordingly (removing Section 3.2.3 and revising Figure 2.2-1). (See also CUM-3).

Response: Section 3.2.3 of the PEIS has been modified to accommodate this new information.

2. I strongly oppose any KSC development that could potentially impact access to Playa Linda Beach. This is a national seashore. (See also TR-2.)

Response: Comment noted. In contrast to the Proposed Action, NASA’s preferred alternative, Alternative 1, would avoid most additional impacts to Playalinda Beach. NASA acknowledges the importance of the national seashore.

3. The Draft PEIS notes Beach Road has been identified as a candidate for future divestiture. NPS currently maintains Beach Road. Given our commitment, NPS continues to program and request funding to ensure this access to CANA. It's unclear in the document on what would be the process for moving forward with this divestiture and what NPS' future role would be. This should be explained in the Final PEIS.
Response: Noted. In the Final PEIS, this section now specifies that only Beach Road west of State Rte. (SR) 3 would be a candidate for divestiture.

4. The roads and bridges identified in Section 2.1.6.2.3 remain essential transportation components of the Cape Canaveral Spaceport, its linkages with offsite support capabilities, and connection to regional assets that service both federal and commercial users. Space Florida recommends strongly that this highway infrastructure must be maintained and sustained as part of the spaceport infrastructure whether retained by NASA or divested as proposed. Space Florida requests NASA ensure the principle of “divesting without diminishing” is applied to the transportation network that supports the entirety of the Cape Canaveral Spaceport, including all land within the boundaries of the Kennedy Space Center. Space Florida recommends a third criterion be added in the PEIS: Divestiture would not diminish the existing transportation network and spaceport accessibility for non-NASA programs and users of the Cape Canaveral Spaceport.

Response: Comment noted.

UTILITIES (UT)

1. The Draft PEIS notes additional utility corridors would be established as needed. NPS is concerned impacts associated with potential utility systems would detract from CANA’s natural setting. This section in the Final PEIS should provide some clarification on how these concerns would be addressed.

Response: In considering and assessing new utility corridors, NASA KSC would work closely with its partners NPS and USFWS to avoid and minimize impacts to natural settings on both CNS and MINWR.

2. Utilities: Recommend confirming KSC’s intent beyond expectation it will itself be a retail customer for listed utilities to address and clarify how utilities will be furnished to non-NASA users and tenants on the spaceport. Also, recommend a clarifying sentence that "KSC, however, does not preclude the provision of commercial utility services, including power, to portions of KSC and to non-NASA users of the multi-user spaceport."

Response: The Center Master Plan is clear about NASA’s intent.

WATER RESOURCES (WR)

1. Hazardous, toxic materials generated and used at KSC are a threat to soils and groundwater. (See also HMW-1 and G&S-1.)

Response: NASA is committed to working with the U.S. EPA and the State of Florida in the management and cleanup of all hazardous and toxic materials at KSC. NASA has developed an ongoing program of managing and handling hazardous and controlled wastes at KSC and there is every intention that this will continue to be funded and implemented in the decades ahead.
3.4.1.2.2.1 of the Draft PEIS notes that: "Point source contamination to the KSC Surficial aquifer has occurred at certain facilities" (p. 3-41). However, that same section of the Draft PEIS also indicates that ongoing water quality monitoring shows that: "The baseline data indicate that widespread contamination of the Surficial aquifer on KSC has not occurred."

2. The Indian River Lagoon (IRL) is a national resource that is in trouble now, and we seek KSC's continuing support in addressing this problem.

Response: KSC intends to collaborate with public and private sector partners in addressing the serious challenges affecting water quality and aquatic life in the IRL.

3. Proposed project should not feature an additional runway or fill any wetlands. (See also LU-7).

Response: It is uncertain whether an additional runway for horizontal launch and landing will be necessary. KSC will attempt to avoid filling any jurisdictional wetlands, in keeping with the substantive requirements of the Clean Water Act Section 404.

4. Oppose further expansion into the KSC buffer area due to adverse impacts to the Indian River Lagoon system and other sensitive wetlands.

Response: Comment noted. Alternative 1, NASA's preferred alternative, would minimize the amount of encroachment into the watershed of the IRL and sensitive wetlands in particular.

5. Studies should be conducted on iron-based effluents from KSC, and a moratorium should be placed on iron-based effluents flowing to the IRL.

Response: In future years, and as the CMP is being implemented, KSC staff and NASA will make efforts to collaborate with the St. Johns River Water Management District and other federal, state, and local government, and NGO partners to study, monitor, and address the serious water quality problems faced by the Indian River Lagoon. IRL is a natural resource of national significance whose aquatic ecosystem, plant and animal communities are being severely impacted by ongoing and worsening water pollution.

6. Support a Buffer Designation to protect wetlands and submerged lands, species, historic resources, recreation, and economics. (See also BIO-3, CR-2, LU-9, REC-3, and SE-9.)

Response: Comment noted. Under NASA's preferred Alternative 1, about 93 percent of existing lands in the designated operational/conservation zone will remain as natural habitat.
7. Requests NASA open the locks for several months to support lagoons.

Response: The Port Canaveral Locks are controlled by the US Army Corps of Engineers and NASA has no authority or control over the operation of the locks.

8. Under the Section 404 Clean Water Act permitting authority, the U.S. Army Corps of Engineers would require the applicant to avoid and minimize and then provide compensatory mitigation for unavoidable impacts resulting from construction (dredging and filling) in jurisdictional wetlands. The impacts and specific details required for potential permitting should be provided in these subsequent NEPA documents. The EPA recommends that any proposed actions (including cumulative actions) in the future having adverse direct or indirect impacts on wetlands or other jurisdictional waters of the U.S. must seek avoidance and minimization first before making a determination for compensatory mitigation.

Response: NASA will fulfill its obligations under Section 404 of the Clean Water Act.

9. Paragraph 3 under Water Resources. This statement should be balanced with the potential positive impacts of economic growth and development from foreseeable projects, e.g. the installation of improved regional sanitary wastewater systems replacing septic fields in southeastern Volusia County and extension of municipal potable water service that could lessen shallow well impacts. An absence of economic growth and resources will likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters. (See also CUM-4.)

Response: The following text has been inserted in the Executive Summary as a new paragraph under the above-cited paragraph 3 under water resources:

“These potential adverse cumulative impacts on water quality in the IRL and other water bodies from a likely increase in non-point source pollution associated with population growth and development in surrounding watersheds could theoretically be offset by positive impacts of economic growth and development from foreseeable projects, such as the installation of improved regional sanitary wastewater systems replacing the septic fields now used widely in southeastern Volusia County and the extension of municipal potable water service that could decrease impacts on shallow drinking water wells. An absence of economic growth and commensurate funding resources would likely perpetuate areas of environmentally undesirable infrastructure and retard local efforts to improve regional drainage improvements to limit runoff into surface waters.”
APPENDIX D: NOTICE OF AVAILABILITY

The Notice of Availability for the Draft Programmatic EIS on the Kennedy Space Center Master Plan Update was published in the Federal Register on March 4, 2016.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Notice of Intent To Grant a Partially Exclusive License

AGENCY: National Aeronautics and Space Administration.

ACTION: Notice of intent to grant partially exclusive license.

SUMMARY: This notice is issued in accordance with 35 U.S.C. 209(e) and 37 CFR 404.7(a)(11)(i). NASA hereby gives notice of its intent to grant a partially exclusive license in the United States to practice the invention described and claimed in U.S. Patent No. 7,168,935 B2 titled “Solid Freeform Fabrication Apparatus and Methods,” NASA Case No. MSC–23518–1; U.S. Patent No. 8,344,281 B2 titled “Use of Beam Deflection to Control an Electron Beam Wire Deposition Process,” NASA Case No. LAR–17245–1; U.S. Patent No. 8,452,073 B2 titled “Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes,” NASA Case No. LAR–17766–1. to COSM Advanced Manufacturing Systems LLC, having its principal place of business in Peabody, Massachusetts. The fields of use may be limited to, but not necessarily limited to, aerospace. The patent rights in these inventions have been assigned to the United States of America as represented by the Administrator of the National Aeronautics and Space Administration. The prospective partially exclusive license will comply with the terms and conditions of 35 U.S.C. 209 and 37 CFR 404.7.

DATES: The prospective partially exclusive license may be granted unless, within fifteen (15) days from the date of this published notice, NASA receives written objections including evidence and argument that establish that the grant of the license would not be consistent with the requirements of 35 U.S.C. 209 and 37 CFR 404.7. Competing applications completed and received by NASA within fifteen (15) days of the date of this published notice will also be treated as objections to the grant of the contemplated partially exclusive license.

Objections submitted in response to this notice will not be made available to the public for inspection and, to the extent permitted by law, will not be released under the Freedom of Information Act, 5 U.S.C. 552.

ADDRESSES: Objections relating to the prospective license may be submitted to Patent Counsel, Office of Chief Counsel, MS 30, NASA Langley Research Center, Hampton, VA 23681; (757) 864–3230 (phone), (757) 864–9190 (fax).

FOR FURTHER INFORMATION CONTACT: Jennifer L. Riley, Patent Attorney, Office of Chief Counsel, MS 30, NASA Langley Research Center, Hampton, VA 23681; (757) 864–5057; Fax: (757) 864–9190. Information about other NASA inventions available for licensing can be found online at http://technology.nasa.gov.

Mark P. Dvorscak, Agency Counsel for Intellectual Property, [FR Doc. 2016–04705 Filed 3–3–16; 8:45 am]

BILLING CODE 7510–13–P

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Notice of Intent To Prepare the Programmatic Environmental Impact Statement

AGENCY: National Aeronautics and Space Administration.

ACTION: Notice of Intent to Prepare the Programmatic Environmental Impact Statement (PEIS) for the Center Master Plan (CMP) Update covering Center-wide Operations, Kennedy Space Center (KSC), Titusville, Florida.

SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq.), the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 CFR parts 1500–1508), and NASA’s NEPA policy and procedures (14 CFR part 1216, subpart 1216.3), NASA has prepared and issued a PEIS for its continued operation of the Kennedy Space Center, located near Titusville, Florida. The U.S. Fish and Wildlife Service (USFWS), National Park Service (NPS), Federal Aviation Administration (FAA), and Space Florida have served as Cooperating Agencies in preparing the PEIS.

The purpose of this notice is to apprise interested agencies, organizations, tribal governments, and individuals of the availability of the PEIS and to invite comments on the document. In cooperation with USFWS and NPS, NASA will hold public meetings as part of the PEIS review process. The meeting locations and dates are provided under SUPPLEMENTARY INFORMATION below.

DATES: Interested parties are invited to submit comments on environmental issues and concerns, preferably in writing, within forty-five (45) days from the date of publication in the Federal Register of the U.S. Environmental Protection Agency’s Notice of Availability of the PEIS. Once known, this date will be published on the project Web site: http://environmental.ksc.nasa.gov/projects/peis.htm.

ADDRESSES: Comments submitted by mail should be addressed to National Aeronautics and Space Administration, Kennedy Space Center, ATTN: Donald Dankert, Environmental Management Branch, SI–E3, Kennedy Space Center, FL 32899. Comments may be submitted via email to ksc-dl-centerwide-eis@mail.nasa.gov.

The PEIS may be reviewed at the following locations:

(a) Titusville Public Library, 2121 S. Hopkins Avenue Titusville, Florida 32780 (321–264–5026)
(b) Cape Canaveral Public Library, 201 Polk Avenue, Cape Canaveral, Florida 32920 (321–868–1101)
(c) Cocoa Beach Public Library, 550 North Brevard Avenue, Cocoa Beach, Florida 32931 (321–868–1104)
(d) Merritt Island Public Library, 1195 North Courtenay Parkway, Merritt Island, Florida 32953 (321–455–1369)
(e) Port St. John Public Library, 6500 Carole Avenue, Port St. John, Florida 32927 (321–633–1867)
(f) New Smyrna Beach Public Library, 1001 S. Dixie Freeway, New Smyrna Beach, FL 32168 (386–424–2910)
(g) NASA Headquarters Library, Room 1J20, 300 E Street SW., Washington, DC 20546 (301–201–0168)

A limited number of hard copies and compact discs of the PEIS are available, on a first request basis, by contacting the NASA point of contact listed under FOR FURTHER INFORMATION.

FOR FURTHER INFORMATION CONTACT: Mr. Donald Dankert, Environmental Management Branch, NASA Kennedy Space Center, Mail Code: SI–E3, Kennedy Space Center, FL 32899, Email: Donald.J.Dankert@nasa.gov, Telephone: (321) 861–1196.

SUPPLEMENTARY INFORMATION: The PEIS has been prepared to evaluate the potential environmental impacts from proposed Center-wide KSC operations,
activities, and facilities for a two-decade planning horizon. These operations, activities, and facilities are described in the 2012 CMP, which has a planning horizon of 2012–2032. The CMP considers a range of future scenarios for repurposing existing facilities, recapitalizing infrastructure, reorganizing the management of KSC and its land resources, and various kinds of partnerships (some of which are already in place).

In the coming years, KSC will remain the world’s preeminent launch facility for Government and commercial space access. KSC will support NASA, and ultimately our Nation’s competitiveness, by investing in next-generation technologies and encouraging innovation. KSC will foster partnerships—intergovernmental, commercial, academic, and international—to expand its ability to support both public and private space initiatives. These institutional efforts and initiatives necessitate changes to the infrastructure, facilities, and operations at KSC over the coming decades which are identified in a new CMP Update that has been developed by the Center Planning and Development Office.

Alternatives

The DPEIS evaluates the environmental consequences of three alternative means of managing KSC for the coming two decades:

(1) Proposed Action—KSC would continue to transition to a multi-user spaceport. A number of new facilities would be constructed, including two seaports and horizontal and vertical launch and landing facilities. There would be changes in the acreage of designated land-use categories at KSC.

(2) Alternative 1—This was added as a direct response to concerns expressed in comments received during the PEIS public scoping period in June 2014, as well as other observations and data acquired from stakeholders and other agencies during the scoping process. Alternative 1 is similar to the Proposed Action in many regards, but is differentiated in several key respects: Primarily, differences in the siting and size of vertical and horizontal launch and landing facilities. Also, the two new seaports would not be constructed. At this time, Alternative 1 is NASA’s preferred alternative.

(3) No Action Alternative—KSC management would continue its emphasis on dedicated NASA programs and would not maximize its transition in the coming years towards a multi-user spaceport with fully-integrated NASA programs and non-NASA users.

Rather, each NASA program would continue to operate as an independent entity to a significant degree, to be funded separately, and to manage activities and buildings in support of its own program. Under this scenario there would continue to be a non-NASA presence at KSC.

Public Meetings

NASA and its Cooperating Agencies plan to hold two public meetings in Florida to solicit comments on the DPEIS.

The public meetings are currently scheduled for:

—Tuesday, March 29, 2016, 5:00 p.m. to 8:00 p.m. at the at the Eastern Florida State College Titusville Campus, John Henry Jones Gymnasium;

—Wednesday, March 30, 2016, 5:00 p.m. to 8:00 p.m. at the New Smyrna Beach High School Gymnasium, 1015 Tenth Street New Smyrna Beach.

The meeting format will include an open-house workshop from 5:00 p.m. to 6:00 p.m. KSC staff and the Environmental Impact Statement (EIS) contractor will provide an overview of the DPEIS findings from 6:00 p.m. to 6:15 p.m., followed by a public comment period from 6:15 p.m. to 8:00 p.m. The open-house workshop will consist of poster stations describing the proposed project, the NEPA process, and the DPEIS findings. NASA KSC and cooperating agencies’ staff will be present during the open-house workshop portion to accept comments.

NASA will consider all comments received during the comment period in developing its Final EIS and comments received and responses to comments will be included in the final document. In conclusion, written public input on the proposed project, the NEPA process, and the DPEIS findings is hereby requested.

Cheryl E. Parker,
Federal Register Liaison Officer.

[FR Doc. 2016–04454 Filed 3–3–16; 8:45 am]

BILLING CODE 7510–13–P

NUCLEAR REGULATORY COMMISSION

[Docket No. 030–28641; NRC–2015–0054]

Department of the Air Force; Hill Air Force Base, Utah

AGENCY: Nuclear Regulatory Commission.

ACTION: Environmental assessment and finding of no significant impact; issuance.

SUMMARY: The Nuclear Regulatory Commission (NRC) is considering an amendment to Master Materials License 42–23539–01AF, Docket No. 030–28641, issued to the Department of the Air Force (the licensee). This amendment will allow the licensee to decommission a former magnesium-thorium alloy disposal trench at Hill Air Force Base, Utah, in accordance with instructions provided in an NRC-approved decommissioning plan. The NRC conducted an environmental impact assessment in support of this licensing action. Based on the results of this assessment, the NRC concluded that a Finding of No Significant Impact (FONSI) is appropriate.

DATES: The license amendment will be issued on March 4, 2016.

ADDRESSES: Please refer to Docket ID NRC–2015–0054 when contacting the NRC about the availability of information regarding this document. You may obtain publicly-available information related to this document using any of the following methods:

• Federal Rulemaking Web site: Go to http://www.regulations.gov and search for Docket ID NRC–2015–0054. Address questions about NRC dockets to Carol Gallagher; telephone: 301–415–3463; email: Carol.Gallagher@nrc.gov. For technical questions, contact the individual listed in the FOR FURTHER INFORMATION CONTACT section of this document.

• NRC’s Agencywide Documents Access and Management System (ADAMS): You may obtain publicly available documents online in the ADAMS Public Documents collection at http://www.nrc.gov/reading-rm/adams.html. To begin the search, select “ADAMS Public Documents” and then select “Begin Web-based ADAMS Search.” For problems with ADAMS, please contact the NRC’s Public Document Room (PDR) reference staff at 1–800–397–4209, 301–415–4737, or by email to pdr.resource@nrc.gov. The ADAMS accession number for each document referenced in this document (if that document is available in ADAMS) is provided the first time that a document is referenced.

• NRC’s PDR: You may examine and purchase copies of public documents at the NRC’s PDR, Room O1–F21, One White Flint North, 11555 Rockville Pike, Rockville, Maryland 20852.

SUPPLEMENTARY INFORMATION:
APPENDIX E: PUBLIC MEETINGS PRESENTATION FOR DRAFT PEIS

Public meetings to present the findings of the Draft PEIS on the KSC CMP, and to receive comments from stakeholders, were held in Titusville on March 29, and New Smyrna Beach on March 30, 2016.

Appendix E contains the PowerPoint presentation made by Don Dankert and Mario Buscara of NASA KSC and contractor Leon Kolankiewicz of Solv LLC.
NASA Kennedy Space Center
Center-Wide Operations

Draft Programmatic Environmental Impact Statement
Public Meetings
March 29th and March 30th, 2016
Welcome

Kennedy Space Center

Center-Wide Operations
Draft Programmatic Environmental Impact Statement

Don Dankert
KSC Environmental Management Branch
Kennedy Space Center

Purpose of Today’s Meeting

Explain the National Environmental Policy Act (NEPA) process and the public involvement portion of that process

Explain the content and the background of the KSC Master Plan and the rationale for the development of the Programmatic Environmental Impact Statement (PEIS)

Provide an overview of the PEIS to facilitate your review

Solicit public comment and input on the PEIS
What is NEPA?

The National Environmental Policy Act (NEPA) requires all Federal agencies to prepare environmental impact statements (EISs) for major Federal actions that significantly affect the quality of the human environment.
Environmental Impact Statement (EIS): A full disclosure document that details the process through which a project was developed, includes consideration of a range of reasonable alternatives, analyzes the potential impacts resulting from the alternatives, and demonstrates compliance with other applicable environmental laws and executive orders. An EIS can be prepared for a specific project or for a broad Federal action.
Programmatic Environmental Impact Statement (PEIS): A general study of the potential effects on the environment from a Federal program. Agency can then tier Environmental Assessments (EAs) or EISs from the PEIS.
We Are Here

1. Notice of Intent – May 2014
2. Perform Public Scoping – June 2014
6. Publish Record of Decision – September 2016
Public Involvement

Comments are one of the most important contributions from citizens.

Effective Comments:

- Clear, concise and relevant to the analysis
- Solution oriented, provide specific examples
- Identify any areas of environmental concern that are important to you
- Suggest additional alternatives
- Suggest sources of relevant data or information for consideration
Master Plan Update

Mario Busacca
KSC Spaceport Planning
March 2016
KSC’s Mission

NASA Space Launch System (SLS)
- Five to seven flights over next 20 years

Commercial Crew Program
- Two commercial providers to ISS

Launch Services Program
- Payloads to earth orbit and beyond

Extended ISS Mission to 2024

Support commercial space industry
- Per NASA 2010 Authorization Act
- Leasing of assets and land
KSC’s Master Plan

KSC Master Plan has been in work since 2010

- First major update since 2002

The first product was the Future Development Concept (FDC) in 2012

- Charrette with attendees from industry, federal, state, local partners
- KSC first Center to develop an FDC and get approval
- Provides the basis for the Plan in the Draft PEIS

This KSC Master Plan provides the tools and analyses to support future decisions regarding development and asset utilization

- Approved in 2014
- Planned Background
- Existing Conditions
- Future Development
KSC’s Master Plan Core Strategies

<table>
<thead>
<tr>
<th>Supporting NASA Mission and Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure that the Space Launch System (SLS), Orion, Commercial Crew Program (CCP), International Space Station (ISS), and Launch Services Provider (LSP) activities are fully operational and have fully capable facilities, assets, and resources.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divesting without Diminishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divesting of assets without eliminating capability to serve both critical government missions and programs while encouraging the growth of commercial space transportation market needs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Going Leaner and Greener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve operational, fiscal and environmental sustainability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enhancing the Multi-User Spaceport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancing the NASA program field installation to a Multi-User Spaceport of Federal property.</td>
</tr>
</tbody>
</table>
Provides for functional areas and zones of activity

- Government only
- Industrial
- Commercial

Web-enabled platform

Overview of the Draft PEIS

Kennedy Space Center

Center-Wide Operations
Draft Programmatic Environmental Impact Statement

Leon Kolankiewicz
PEIS Project Manager
Solv
Public Review Period

EPA published the Draft PEIS itself on the Web on March 18, 2016.

Written comments are due by May 2, 2016.
Availability of the Draft PEIS

The Draft PEIS is available online at:

1. NASA’s project website

2. The EPA’s website
Availability of the Draft PEIS

The Draft PEIS is also available at the following public libraries in the area:

• Titusville Public Library
• Cape Canaveral Public Library
• Cocoa Beach Public Library
• Merritt Island Public Library
• Port St. John Public Library
• New Smyrna Beach Public Library
The NEPA Process

Notice of Intent – May 2014

Perform Public Scoping – June 2014

Issue Draft EIS/PEIS – March 2016

Public Review – March 2016

Issue Final EIS/PEIS – July 2016

Publish Record of Decision – September 2016
Major Contents of an EIS

1. Purpose & Need
 - What are you trying to achieve?

2. Alternatives
 - How can you achieve it?

3. Affected Environment/Environmental Consequences
 - What resources will be affected?
 - What effects would each alternative have?
 - What could be done about them?
Purpose: To facilitate KSC’s 20-year transformation from a government and program-focused, single-user launch complex to a more capability-centric and cost-effective multi-user spaceport.

Need: To update KSC’s Center Master Plan in a manner that supports achievement of NASA’s programmatic mission objectives, while also maximizing the provision of excess capabilities and assets in support of non-NASA access to space.
2. Alternatives

As a result of comments received during public scoping, NASA developed three alternatives that were assessed in this PEIS:

No Action Alternative
Each NASA program would continue to be operated as an independent entity, funded separately, and manage activities and buildings in support of its own program. No change to land use acreages would occur.

Proposed Action
KSC would transition to a multi-user spaceport. A number of new facilities would be constructed, including two seaports and horizontal and vertical launch and landing facilities.

Alternative 1
Similar to the Proposed Action in many regards, this alternative includes differences in siting and the size of vertical and horizontal launch and landing facilities. The two seaports would not be constructed.
3. Environmental Consequences

- Magnitude – How much?
- Duration or frequency – How long?
- Extent – How far?
- Likelihood – What’s the probability?
- Precedence/uniqueness – How novel?
Water Quality/Wetlands
No Action Alternative

• Existing uses would continue at current levels
• No additional impacts
• Overall impacts (such as from launch site construction) would be adverse but minor-to-moderate, depending on project extent, location, and proximity to surface water.

• Vertical and horizontal launches may cause impacts from:
 • Deposition associated with rocket engine emissions
 • Deposition of spent launch vehicle equipment
 • Landing of re-entry vehicle or equipment
 • Hydrogen chloride (adjacent to launch pad only)

• No substantial impacts on surface waters of nearby lagoons, oceans, large water bodies, due to buffering capacities
Future development projects may contribute indirectly to cumulative impairment of the Indian River Lagoon complex, as a result of increases in impervious surfaces and non-point source loadings of sediments, nutrients, and contaminants.
No change from current impacts of planned activities
Biological Resources
Proposed Action

• Under the Proposed Action, 4,406 acres of native vegetation communities (upland and wetland) converted or lost to development (=10% of operational buffer/conservation lands)

• Two proposed seaports would eliminate 286 acres of wetlands habitat

• Launches would have minor-to-moderate adverse impacts on aquatic habitats for the duration of the Plan
The potential impacts would be qualitatively similar to those of the Proposed Action, but quantitatively somewhat less.

The two seaports would not be constructed, avoiding the elimination of 286 acres of wetlands vegetation/habitat that would occur under the Proposed Action.
Combining habitat loss and fragmentation could produce significant adverse impacts to Florida scrub-jay.

Overall cumulative impacts from climate change and (climate change-related) sea level rise on existing native terrestrial and aquatic wildlife will likely be substantial, adverse, widespread or large extent, and possibly significant, even under the No Action Alternative.
Federal guidance advises that actions subject to NEPA compliance should be evaluated along two dimensions relative to climate change impacts:

1. **Project Greenhouse Gas Emissions**
2. **Climate Change**

- **Climate Change**
 - **Project function, adaptability, environmental factors**
Climate Change
No Action Alternative

• KSC would not implement elevation-based zoning and development controls to ensure that any future development is constructed at an elevation of six feet above mean sea level.

• KSC operations would be at somewhat greater risk from the impacts of climate change than they would be if the additional actions were taken.
• Both would add a negligible amount to U.S. emissions contributing to global climate change.

• Hardening, improving, or moving facilities in adaptation to potential climate change impacts will require financial investment and funding.

• Consolidation of KSC operations into smaller geographic footprint would reduce facilities’ energy use, thereby reducing greenhouse gas emissions and producing beneficial impacts to climate change.

• Continued and increased efforts to power NASA’s activities using renewable sources of energy will have a beneficial impact on climate change by reducing greenhouse gas emissions.
Climate Change
Cumulative Impacts

• Sea level rise may cause loss of usable land and inundation of coastal ecosystems.

• More frequent and extreme high temperatures and humidity may cause increased risk of heat-related ailments among outdoor workers; higher cooling costs; decreased utility reliability; damage to buildings.
The level of air emissions and ambient air quality would remain unchanged.
Minor, adverse impacts from:

- Airborne dust and other pollutants generated during construction
- Introduction of new sources, such as heating boilers and backup generators
- Increases in transportation-based emissions (launches, automotive traffic)
- Combustion products, including aluminum oxide, hydrogen chloride, N₂, CO₂, water

All components of the action are within attainment area
The cumulative short and long-term adverse impacts would be minor.
Land Use
No Action Alternative

No changes to existing land uses; no additional impacts.
Minor-to-moderate impacts to land use and cover:

- KSC acreage currently used for administration, open space, operational buffer, and support services would decrease

- No change to acreage associated with water or recreation

- Acreages for launches and landings, operations support, R&D, renewable energy, and Assembly, Testing, Processing would increase

- **Alternative 1** would result in similar impacts, but less pronounced without two new seaports.
Overall impacts would likely be moderate, since the only impacts to KSC land use are those resulting from the CMP.
No socioeconomic changes to Brevard or Volusia counties
Socioeconomics

Proposed Action and Alternative 1

- Potential for minor-to-moderate beneficial impacts from creation of jobs and labor income, most of which would occur as part of the Development Program

- Long-term indirect economic benefits from KSC’s transformation to multi-user spaceport, which is expected to attract new tenants (potentially significant)

- Future employees from non-NASA projects would represent new purchasing power to support additional regional jobs and payroll (multiplier effect)

- Impacts from Alternative 1 would be similar, but on a smaller scale, since two new seaports and other facilities would not be built
The multiplier effect of additional jobs and payrolls would increase over time, producing potentially significant economic benefits in employment, payroll, and economic activity to the area.
Recreation
No Action Alternative

• No additional impacts from CMP activities, although over time, the continued increase in visitor numbers, as well as urban development of the area surrounding the national seashore, will likely degrade visitor experience and the uncrowded beach and lagoon experience at CNS.

• Sea level rise and erosion from climate change, or the need to protect certain areas or species, may alter visitor access to certain parts of CNS and MINWR.
• Development of horizontal launch infrastructure could hinder or delay access to Playalinda Beach, adversely affecting the visitor experience (intermittent closures).

• Development north of Beach Road (vertical & horizontal L & L) would have long-term adverse impacts on recreation at Playalinda and Canaveral National Seashore.

• Development of two seaports could include removal of saltwater marsh or mangroves, impacting boating and fishing by degrading finfish and shellfish spawning grounds and nurseries.
Alternative 1 would likely have fewer impacts on Playalinda Beach and recreation impacts from seaport development would be avoided.
Recreation
Cumulative Impacts

- Additional launches and other development could cause annual visitation to CNS to decrease.

- Increases in water runoff, sedimentation, and potential spills could cumulatively impact water-based recreation around Mosquito Lagoon.
Hazardous Materials and Waste
No Action Alternative

There would be no increase or decrease in the amount of hazardous materials that would be handled, transported, stored or disposed at KSC.
Hazardous Materials and Waste Proposed Action and Alternative 1

- In general, increase in quantity of hazardous materials

- It is anticipated that the same types of solvents, surface coatings, propellants, fuels may be used

- Handling procedures would not be affected, but increased exposure leads to increased risk

- Higher likelihood of accidental release, mitigated by training and adherence to best management practices
No cumulative impacts expected.
Tell us what you think!

1. Fill out a comment form and leave here with us tonight.

2. Mail comment to: Mr. Donald Dankert
 Environmental Management Branch, SI-E3
 Kennedy Space Center, FL 32899

3. Email comments to:
 ksc-dl-centerwide-eis@mail.nasa.gov
Tell us what you think!

4. Dictate your comment to court reporter.

5. Come up to the microphone and make comments for the record.