ENVIRONMENTAL ASSESSMENT FOR GATEWAY TO SPACE EXHIBIT JOHN F. KENNEDY SPACE CENTER, FLORIDA

Prepared for:

National Aeronautics and Space Administration John F. Kennedy Space Center Environmental Program Office Kennedy Space Center, Florida 32899

Prepared by:

Jones Edmunds & Associates, Inc. 730 NE Waldo Road Gainesville, Florida 32641

December 2018

ENVIRONMENTAL ASSESSMENT FOR GATEWAY TO SPACE EXHIBIT JOHN F. KENNEDY SPACE CENTER, FLORIDA

Abstract

This Environmental Assessment (EA) addresses the Proposed Action to construct a new Gateway to Space Exhibit at the Kennedy Space Center (KSC) Visitor Complex (VC). Under the Proposed Action, the new exhibit will be constructed on an upland location on the northwest side of the VC and south of NASA Parkway West. Additional minor alternative configurations were reviewed during initial planning; however, only the No Action Alternative is included with this EA to evaluate the extent of potential impacts on the environment at KSC. The No Action Alternative would involve not constructing the new exhibit. Environmental impacts from the Proposed Action were classified as **negligible** or **minor**. **Minor environmental impacts will occur to the following categories: Transportation, Utilities, Air Quality, Vegetation, Cultural Resources, Geology, Noise, and Socioeconomics. All other categories will have negligible impacts. Design and permitting of the Proposed Action are proposed for completion by March 2019 with construction completion by May 2020.**

LEAD AGENCY:	National Aeronautics and Space Administration John F. Kennedy Space Center Environmental Program Office Kennedy Space Center, Florida 32899
POINT OF CONTACT:	Don Dankert Environmental Planning Mail Code S1-E3 Kennedy Space Center, Florida 32899 (321) 861-1196 donald.j.dankert@nasa.gov

Table of Contents

EXEC	UTIVE	SUMMARY	1
1.0	PURP	OSE AND NEED FOR ACTION	3
2.0	DESC	RIPTION OF PROPOSED ACTION AND ALTERNATIVES	5
	2.1	Proposed Action	5
	2.2	No Action Alternative	6
3.0	AFFE	CTED ENVIRONMENT	. 11
	3.1	Facilities and Infrastructure	. 11
		3.1.1 Transportation	. 11
		3.1.2 Wastewater Treatment	. 13
		3.1.3 Power	. 13
		3.1.4 Communications	. 13
		3.1.5 Potable Water	. 14
	3.2	Air Quality	. 14
	3.3	Biological Resources	. 14
		3.3.1 Habitats and Vegetation	. 14
		3.3.2 Wildlife	. 17
	3.4	Threatened and Endangered Species	. 18
		3.4.1 Listed Wildlife	. 18
		3.4.2 Listed Plants	. 22
	3.5	Cultural Resources	. 22
	3.6	Geology and Soils	. 24
	3.7	Noise	. 24
	3.8	Surface Water Quality	. 28
	3.9	Groundwater Quality	. 28
	3.10	Floodplains	. 29
	3.11	Socioeconomics	. 29
4.0	ENVIE	RONMENTAL CONSEQUENCES	. 33
	4.1	Summary and Status of Impacts	. 33
	4.2	Proposed Action	. 33
		4.2.1 Facilities and Infrastructures	. 33
		4.2.2 Air Quality	. 35
		4.2.3 Biological Resources	. 35
Deceml	ber 2018	Environmental Assessment for Gateway to Space Ex 8	hibit iii

		4.2.4	Threatened and Endangered Species	. 36
		4.2.5	Cultural Resources	. 37
		4.2.6	Geology and Soils	. 37
		4.2.7	Noise	. 38
		4.2.8	Surface Water Quality	. 38
		4.2.9	Groundwater Quality	. 39
		4.2.10	Floodplain	. 39
		4.2.11	Socioeconomics	. 39
	4.3	No Act	tion Alternative	. 39
5.0	CUMU	JLATIV	'E IMPACTS	. 41
	5.1	No Act	tion Alternative	. 41
	5.2	Propos	ed Action Alternative	. 41
6.0	ENVI	RONME	ENTAL JUSTICE	. 43
7.0	PREPA	ARERS	CONTRIBUTORS, AND CONTACTS	. 45
8.0	LITER	ATURI	E CITED	. 47

LIST OF ILLUSTRATIONS

LIST OF FIGURES

Figure 1.0	Site Location Map	
Figure 2.0	VC Aerial Map	7
Figure 2.1	Proposed Action – Site Location Map	
Figure 2.2	Conceptual Proposed Site Plan	9
Figure 3.0	Transportation Map	
Figure 3.1	Existing Land Use Cover – Proposed Action Site	
Figure 3.2	Wood Stork Core Foraging Area Map	
Figure 3.3	Bald Eagle Nesting Location	
Figure 3.4	Florida Scrub-Jay Habitat	
Figure 3.5	Soils Types Within the Proposed Action Site	
Figure 3.6	Topography Map for the Proposed Action Site	
Figure 3.7	100-Year Floodplain Map for the Proposed Action Site	

LIST OF TABLES

Table 3.1	Wildlife Species Known to Occur on KSC that are Protected Federally and/or by	
	the State of Florida	. 19
Table 3.2	Noise Levels (in Decibels, A-Weighted) Measured on KSC, Florida	
	(NASA, 2015)	. 26
Table 3.3	Measured Noise on KSC (KSC, 1978)	. 27
Table 4.1	Issues Matrix	. 34
Table 7.1	List of Individuals Who Prepared This Document	. 45

List of Appendices

- Appendix 1 KSC Record of Environmental Consideration (REC)
- Appendix 2 BRPH Civil Engineering Stormwater Pond Calculations
- Appendix 3 Lassiter Transportation Group, Inc. Traffic Impact Study (2017)

List of Abbreviations and Acronyms

AMF	Astronaut Memorial Foundation
AST	Aboveground Storage Tank
BMPs	Best Management Practices
CCAFS	Cape Canaveral Air Force Station
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
dBA	A-Weighted Decibels
DNC	Delaware North Companies Parks & Resorts at KSC, Inc.
EA	Environmental Assessment
EO	Executive Order
EPA	US Environmental Protection Agency
ERP	Environmental Resource Permit
FAS	Floridan Aquifer System
FLUCFCS	Florida Land Use, Cover and Forms Classification System
FPL	Florida Power & Light Company
ha	hectare
IRL	Indian River Lagoon
KSC	Kennedy Space Center
kV	Kilovolts
LC	Launch Complex
MINWR	Merritt Island National Wildlife Refuge
NASA	National Aeronautics and Space Administration
NEPA	National Environmental Policy Act
NPDES	National Pollutant Discharge Elimination System
OFW	Outstanding Florida Water
OSHA	Occupational Safety and Health Administration
REC	Record of Environmental Consideration
SAS	Surficial Aquifer System
SJRWMD	St. Johns River Water Management District

List of Abbreviations and Acronyms

USACE	US Army Corps of Engineers
USFWS	US Fish and Wildlife Service
VAB	Vehicle Assembly Building
VC	Visitor Complex
TIS	Traffic Impact Study
ZAP	Zone of Archaeological Potential

EXECUTIVE SUMMARY

This Environmental Assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969 as amended (42 USC §§ 4321-4370d) and according to the Procedures of Implementation of NEPA for the National Aeronautics and Space Administration (NASA) (Title 14, Code of Federal Regulations [CFR] Part 1216 Subparts 1216.1 and 1216.3), the Council on Environmental Quality (CEQ) NEPA implementing regulations (40 CFR Parts 1500 to 1508), and Federal Aviation Administration Order 1050.1E, Environmental Impacts: Policies and Procedures. Delaware North Companies Parks & Resorts at KSC, Inc. (DNC) operates the Kennedy Space Center (KSC) Visitor Complex (VC), which is just outside the controlled-access portion of KSC in Brevard County, Florida.

The KSC VC is the public visitor center at National Aeronautics and Space Administration (NASA) KSC in Florida. This complex features exhibits, displays, historic spacecraft, space memorabilia, and two IMAX theaters and supports tour buses that enter the KSC secured area, providing visitors with a personal experience of NASA's facilities and capabilities for space exploration. A primarily educational and historical experience is provided, which includes entertainment activities and restaurant options. The complex includes daily presentations from former astronauts.

This EA addresses the Proposed Action and No Action Alternative to construct a new Gateway to Space Exhibit at the KSC VC. The Proposed Action consists of providing cutting-edge space and simulator design capabilities that are reflective of the NASA story and immerse visitors in the VC with a uniquely themed interactive environment of NASA's past and future. The need for the Proposed Action is to design and construct this new exhibit that provides an enlightening, educational, inspiring, and entertaining experience for visitors of all ages coming to NASA KSC. The Proposed Action is consistent with the Public Outreach land use designation in the KSC Master Plan for the entire VC.

The No Action Alternative would involve not constructing the new exhibit.

The Proposed Action will require a permit modification to an existing Environmental Resource Permit (ERP) from the St. Johns River Water Management District (SJRWMD). Since the site is entirely uplands, no permit from the US Army Corps of Engineers (USACE) will be required.

This document describes those portions of the KSC environment that relate to each of the proposed alternatives. Potential impact issues identified are transportation, utilities, air quality, and biological resources including land use, threatened and endangered wildlife species, cultural resources, geology and soils, noise, surface water quality, groundwater quality, and socioeconomics.

Impacts resulting from implementing the alternatives were identified then classified into one of the following pre-determined categories: **negligible**, **minor**, or **major**.

Impacts from construction and operation of the Proposed Action and No Action Alternative vary from **negligible** to **minor** depending on the environmental issues evaluated. The results of the

December 2018

Environmental Assessment for Gateway to Space Exhibit

Executive Summary

assessment of environmental issues from constructing the Proposed Action Alternative indicate overall **negligible** impacts on vegetation due to the lack of wetland and jurisdictional surface water impacts proposed.

Impacts from the No Action Alternative are expected to have **negligible** impacts to all categories. Table 4.1 summarizes the results of the analyses showing the impacts on each environmental issue for each proposed action.

Based on available information, **negligible** to **minor** impacts will affect transportation, utilities, air quality, vegetation, wildlife, biodiversity, threatened and endangered species, cultural resources, geology, noise, surface water quality, groundwater quality, floodplains, or socioeconomics for the Proposed Action. Therefore, no monitoring or mitigation strategies are provided or recommended for these resource areas.

The No Action Alternative and Proposed Action are not expected to produce any consequences related to Environmental Justice, since all activities are away from population centers. The Proposed Action is not expected to affect the surrounding communities any differently than the current programs at KSC.

Design and permitting of the Proposed Action are proposed for completion by March 2019 with construction completion by May 2020.

1.0 Purpose and Need for Action

As a federal agency, the National Aeronautics and Space Administration (NASA) is required to consider environmental consequences resulting from its actions on any property. This is based on several regulatory mandates including the National Environmental Policy Act (NEPA) of 1969, as amended (42 USC 4321, et seq.), the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500-1508), Procedures for Implementing NEPA (14 CFR Part 1216 Subpart 1216.3), and NASA policy and procedures ([NPR] 8580.1, Implementing the National Environmental Policy Act). Since NASA has considered a plan to construct the Gateway to Space Exhibit at the Kennedy Space Center Visitors Center (KSC VC), this Environmental Assessment (EA) is necessary to support NASA's compliance with NEPA and related federal and state environmental regulations.

Under the authority of the National Aeronautics and Space Act of 1958, the Government, represented by the Contracting Officer, entered into a Concessions Agreement with Delaware North Companies Parks & Resorts at KSC, Inc. (DNC). In this agreement, the Government provided DNC preferential rights to conduct revenue-producing Concession Activities associated with the KSC Public Visitor Program (PVP). The Concessioner understands that the Concession Activity is intended to serve a public interest by facilitating affordable visitation to NASA KSC and, in connection therewith, to disseminate information concerning NASA and specifically KSC's activities, which shall be accomplished with an equal or greater emphasis on the public interest as on making a profit.

The planning, approval, approaches, documentation and associated processes are applicable to all projects funded through the Trust Accounts. The Concessioner understands the requirement to collaborate with the Contracting Officer in the identification, definition, and prioritization of projects on a recurring basis by compiling and submitting proposed projects for approval. NASA's action will be the Contracting Officers' approval of DNC's request to construct the Gateway to Space Exhibit at KSC VC.

As the landowner, NASA KSC is responsible for its real property assets and infrastructure in support of the Agency mission of human spaceflight and continued exploration of space. NASA is also responsible for managing other areas on KSC for space-related industry development and operations. KSC provides oversight for current commercial space and technology development-related uses and will be responsible for establishing and coordinating activities outlined in the Proposed Action. NASA is the lead agency for the Proposed Action and is responsible for ensuring overall compliance with applicable environmental statutes, including NEPA.

The VC complex features exhibits, displays, historic spacecraft, space memorabilia, and two IMAX theaters and supports tour buses that enter the KSC secured area, providing visitors with a personal experience of NASA KSC's facilities and capabilities for space exploration. The complex is primarily an educational and historical experience that includes entertainment activities and restaurant options, including daily presentations from former astronauts. Figure 1.0 presents the VC Site Location Map.

Chapter 1 Purpose and Need for Action

Environmental Assessment for Gateway to Space Exhibit 4

December 2018

2.0 Description of Proposed Action and Alternatives

The following actions were evaluated:

Proposed Action	Construct a Gateway to Space Exhibit on the northwest side of the VC and to the south of NASA Parkway West. This will include designing a new building, pedestrian and staff access to the exhibit, reconfigured utility connections, and stormwater conveyance improvements to capture runoff from the new exhibit.

No Action Do not construct the Gateway to Space Exhibit.

Several conceptual layouts were evaluated during the initial planning phase. However, each of these conceptual layouts use the same vacant upland site as the Proposed Action. They vary slightly to minimize conflicts with the lease line of the adjoining Astronaut Memorial Foundation (AMF) leased area and not to mitigate environmental impacts. Other potential locations for the new exhibit would require the developing natural or disturbed vegetation communities and likely result in wetland and wildlife impacts, all of which are avoidable with the Proposed Action location (see Figures 2.0 and 2.1). As a result, these conceptual design layouts and other DNC-leased areas were not deemed viable alternatives nor evaluated in this EA.

The Proposed Action was selected after considering the environmental, cost, schedule, and construction and operational impacts of the alternatives. Additionally, the No Action Alternative was considered in the analysis that follows.

The Proposed Action will require the following permits:

- An Environmental Resource Permit (ERP) from the St. Johns River Water Management District (SJRWMD) for modifying the existing stormwater management system. A US Army Corps of Engineers (USACE) dredge and fill permit **will not** be required since no wetland impacts are proposed.
- A National Pollutant Discharge Elimination System (NPDES) Permit through the Florida Department of Environmental Protection for stormwater discharges from construction activities greater than 1 acre and less than 5 acres will be required.

Design and permitting of the Proposed Action are proposed for completion by March 2019 with construction completion by May 2020.

2.1 Proposed Action

A critical action completed for any proposed new site development at KSC is for the project proponent to submit a KSC Environmental Checklist (KSC Form 21-608v2). This form is reviewed by KSC Environmental Management Branch (SI-E3) staff who then generate a Record of Environmental Consideration (REC) in response to the Checklist, which is provided to the project proponent. Appendix 1 provides this REC form.

Environmental Assessment for Gateway to Space Exhibit

December 2018

Chapter 2 Description of Proposed Action and Alternatives

The purpose of the proposed Gateway to Space Exhibit is to provide cutting-edge space and simulator design capabilities that are reflective of the NASA story and immerse visitors in the VC with a uniquely themed interactive environment of NASA's past and future. The need for the Proposed Action is to provide a new exhibit that provides an enlightening, educational, inspiring, and entertaining experience for visitors of all ages coming to NASA KSC. The Proposed Action is consistent with the VC Vision Statement that states the purpose of the VC is *to tell the NASA story and inspire all people to support the exploration of space*. The Proposed Action will include exhibits that not only share the story of NASA's achievements, but will include neverseen-before by the public artifacts and historical pieces that illustrate the transitional nature of KSC as a *Bridge to the Future* and its successful commercial space ventures with private aerospace companies. The Proposed Action is consistent with the VC.

Under the Proposed Action, the vacant northwest corner of the VC will be used for this experience (Figures 2.0 through 2.2).

2.2 No Action Alternative

The No Action Alternative would involve not constructing the new exhibit. This will result in no change to the existing layout of the VC. This alternative is not consistent with the VC Mission Statement.

Chapter 2 Description of Proposed Action and Alternatives

December 2018

Environmental Assessment for Gateway to Space Exhibit

Chapter 2 Description of Proposed Action and Alternatives

Environmental Assessment for Gateway to Space Exhibit $\ensuremath{\$}$

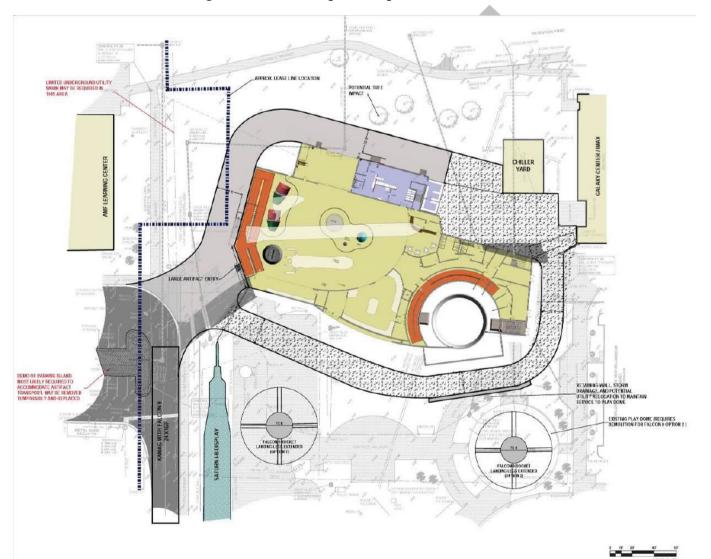


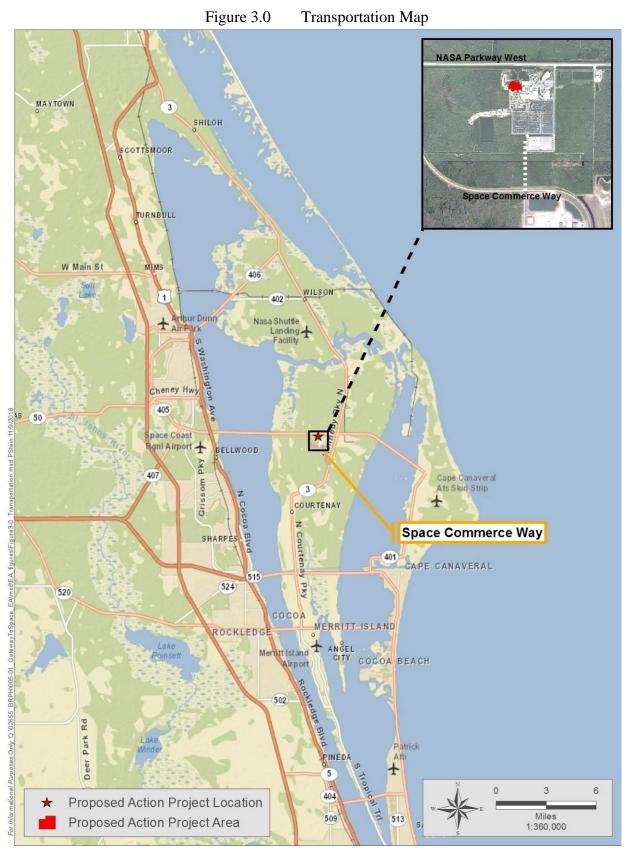
Figure 2.2 Conceptual Proposed Site Plan

Environmental Assessment for Gateway to Space Exhibit

3.0 Affected Environment

KSC encompasses nearly 56,000 hectares (ha) (140,000 acres) on the east coast of Central Florida. It is bordered on the west by the Indian River Lagoon (IRL), on the south by the Banana River Lagoon, on the north by US 1 and several private landowners in Volusia County, and on the east by the Atlantic Ocean. KSC is the primary launch and landing site for NASA's space mission operations. In addition to supporting the nation's space mission operations, KSC contains within its boundaries the Merritt Island National Wildlife Refuge (MINWR) and the Canaveral National Seashore, which are managed by the US Fish and Wildlife Service (USFWS) and the National Park Service, respectively. This unique relationship between space flight and preservation of the environment is carefully managed to ensure that both objectives are pursued with minimal conflict to the other.

This Section describes the existing conditions of the environment and resources that could be affected by the Proposed Action.


3.1 Facilities and Infrastructure

The Proposed Action will include the design of a new building, pedestrian and staff access to the exhibit, reconfigured utility connections, and stormwater conveyance improvements to capture runoff from the new exhibit. Any new utility connections will be coordinated with appropriate stakeholders including NASA, Space Florida, Florida Power & Light (FPL), AMF, and other stakeholders impacted by such connections.

3.1.1 Transportation

KSC is served by over 340 kilometers (211 miles) of roadways with over 263 kilometers (163 miles) of paved roads and 77 kilometers (48 miles) of unpaved roads. KSC also has approximately 64 kilometers (40 miles) of railroad. Of the four access roads onto KSC, NASA Parkway West serves as the primary access road for cargo, tourists, and personnel entering and leaving. This four-lane road originates in Titusville as State Road 405 and crosses the IRL onto KSC. After passing through the KSC Industrial Area, the road reduces to two lanes, crosses over the Banana River, and enters the Cape Canaveral Air Force Station (CCAFS). The second point of entry onto KSC is from the south via Kennedy Parkway North, which originates on north Merritt Island as State Road 3 (North Courtenay Parkway). This road is the major north-south artery for KSC. The third entry point is accessible from Titusville along Beach Road, which intersects Kennedy Parkway North. The fourth entry point is south of Oak Hill at the intersection of US Highway 1 and Kennedy Parkway North in Volusia County. The VC is accessed via NASA Parkway West and a new access road under construction that runs north off Space Commerce Way (Figure 3.0).

Environmental Assessment for Gateway to Space Exhibit 12

The only current access point for the VC is via NASA Parkway, adjacent and west of the Pass & ID Facility (KSC Badging Office). A new VC roadway entrance is being constructed to the south that will provide access to the VC via Space Commerce Way. This will provide additional roadway capacity and reduce traffic flow on NASA Parkway. Some additional traffic flow is expected to result from the Proposed Action increasing attendance at the VC.

3.1.2 Wastewater Treatment

Approximately 80 percent of the sanitary sewer service at KSC is provided by two collection/ transmission systems – one in the Industrial Area and one in the Vehicle Assembly Building (VAB) Area. These systems collect and transport raw wastewater to the Regional Plant at CCAFS. Several septic tank systems are also present throughout KSC that support small offices or temporary buildings (NASA, 2015).

For the Proposed Action, a new wastewater line will be installed and connected to the existing system at the VC. The existing system was designed to accommodate this additional connection. Pertinent building permits will be acquired to accommodate the addition of these lines.

3.1.3 Power

The electric power distribution system at KSC is provided by FPL, which transmits 115 kilovolts (kV) to KSC that are distributed to two major substations – the C-5 substation, which serves the Launch Complex (LC)-39 Area, providing 13.8 kV; and the Orsino substation, which serves the Industrial Area providing 13.2 kV. From 2001 through 2006, electricity usage on KSC ranged between 270,000 and 293,000 megawatt-hours. Electricity consistently provides 91 percent of KSC's total energy (NASA, 2015). The high-voltage power is distributed from the substations by over 434 kilometers (270 miles) of overhead and underground power lines to transformers and substations at various facilities. In late 2016, FPL installed a new substation on Space Commerce Way for the express purpose of serving private clients along this route and outside the KSC distribution system.

For the Proposed Action, a new electrical line will be installed and connected to the existing electrical system at the VC. The existing power distribution can provide the necessary power for these new facilities.

3.1.4 Communications

The KSC communications system provides a variety of services at KSC including conventional telephone service, transmission of large volumes of test data to central collection or reduction stations, transmission of timing information from operation centers to data-gathering instrumentation at widely scattered locations, transmission of weather and range safety data, and communication with satellites and other hardware in space. The major segments are the three distribution and switching stations in the Industrial Area (First Switch) and LC-39 Area (Second and Third Switches). These three stations provide service for over 18,500 telephones on KSC (NASA, 2007).

For the Proposed Action, necessary communications lines will be installed and connected to the existing system at the VC. The existing communications system can provide the necessary increased capacity for these new facilities.

3.1.5 Potable Water

KSC uses potable water for a variety of purposes such as lawn and landscape irrigation, human consumption, fire suppression, air conditioning, and construction. KSC's potable water is supplied by the City of Cocoa, which obtains its water from artesian wells west of the St. Johns River in Orange County. Water enters KSC along State Road 3 from a 60-centimeter (24-inch) water main and extends north along Kennedy Parkway serving KSC. The average daily demand for water is 4.5 million liters per day (1.2-million gallons per day). Various aboveground storage tanks and secondary pump systems supply water throughout the KSC.

The VC is served by a 20-centimeter (8-inch) water main that connects to a KSC 30-centimeter (12-inch) water main on the south side of NASA Parkway West. For the Proposed Action, a new water service line will be installed that connects to this existing 20-centimeter (8-inch) main. The existing potable water system can provide the necessary increased capacity for the new facilities. Pertinent building permits will be acquired to accommodate the addition of these lines.

3.2 Air Quality

The ambient air quality at KSC is predominantly influenced by daily operations such as vehicle traffic, utilities fuel combustion, and standard refurbishment and maintenance operations. Air quality is also influenced to some extent by emission sources outside KSC, primarily two regional power plants within an 18.5-kilometer (10-mile) radius of KSC. In addition to these sources, other operations occurring infrequently throughout the year play a role in the quality of air at KSC. These include space launches and prescribed fire management practices that influence air quality as episodic events.

KSC is within an area classified as "in attainment" with respect to the National Ambient Air-Quality Standards established by the US Environmental Protection Agency (EPA) for all criteria pollutants (NASA, 2015).

3.3 Biological Resources

NASA KSC covers approximately 56,600 ha (140,000 acres), of which 91 percent remains undeveloped area including uplands, wetlands, mosquito-control impoundments, and open-water areas. Undeveloped areas, including abandoned citrus groves, are managed by USFWS MINWR. Due to its restricted access and lack of development, extensive areas of NASA KSC serve as important wildlife habitat.

3.3.1 Habitats and Vegetation

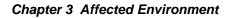
Vegetation on KSC can generally be categorized into upland and wetland communities. A "ridge and swale" topography that includes bands of uplands and wetlands oriented northeast-southwest

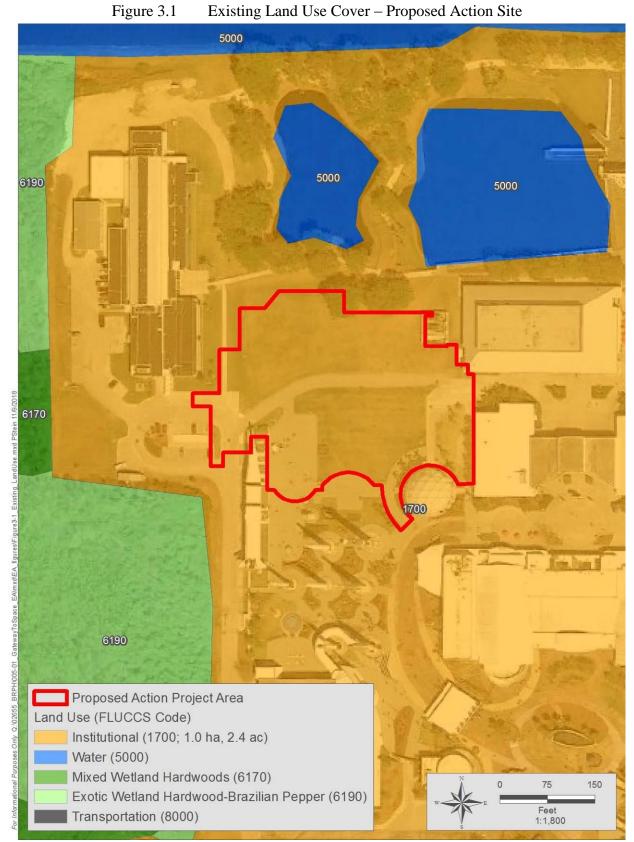
is found on KSC. Scrub and pine flatwoods are the common upland communities with freshwater marshes and wet prairies between the upland bands. Large areas of mangroves and salt marsh are adjacent to the estuaries on KSC.

Land cover near the proposed Gateway to Space Exhibit can generally be categorized into upland, wetland, and open-water communities. The area that will be developed consists of maintained bahia grass (*Paspalum notatum*) and landscaped ornamental plants. This area is not in a natural vegetative state and has been previously cleared as part of the VC.

The on-site land cover documented at the Proposed Action site was categorized according to the Florida Land Use, Cover and Forms Classification System (FLUCFCS) developed by the Florida Department of Transportation. Land cover within the Proposed Action site consists of one distinct upland vegetative community type.

3.3.1.1 Uplands


Approximately 36,206 ha (89,470 acres) of uplands are on KSC; these uplands are composed of several vegetation communities. Upland communities on KSC are found on well-drained, acidic, sandy soils that experience brief periods of standing water. Scrub and pine flat woods are the most common upland communities that rely on periodic fire for maintenance of habitat structure and vegetation composition. These upland communities support numerous upland-dependent listed wildlife species such as the Florida scrub-jay (*Aphelocoma coerulescens*) and gopher tortoise (*Gopherus polyphemus*).


The Proposed Action site consists of approximately 1.0 ha (2.4 acres) of uplands that are classified as Institutional (FLUCFCS Code 1700). Figure 3.1 shows these uplands are dominated by bahia grass, ornamental plantings, and impervious surfaces including sidewalks and exhibit foundations.

3.3.1.2 Wetlands

Approximately 14,642 ha (36,183 acres) of freshwater and saltwater wetlands are found on KSC and include diverse types such as mangrove swamps, salt marshes, shrub swamps, freshwater marshes, wet prairies, and cattail marshes (NASA, 2015). Impounded salt marsh waters are found throughout KSC and are managed by USFWS on MINWR. The wetlands and surrounding waters of KSC support large wintering populations of waterfowl as well as transient and resident wading bird populations.

The Proposed Action site contains no jurisdictional wetlands (Figure 3.1). The site is near lowquality wetlands to the west; however, the proposed design will not impact these wetlands.

Environmental Assessment for Gateway to Space Exhibit $16\,$

December 2018

3.3.1.3 Surface Water

KSC is bordered on the west edge by the IRL. The IRL has been nationally recognized for its quality and species diversity. The IRL is designated as an Outstanding Florida Water (OFW) and an Estuary of National Significance and has been nominated as an Estuary for National Research.

The Proposed Action site boundaries contain no surface waters (Figure 3.1). The site is near two SJRWMD-permitted stormwater wet detention ponds to the north. The proposed drainage design uses these stormwater ponds for treatment of the runoff from additional impervious surfaces associated with the Proposed Action. Engineering calculations were performed to demonstrate that the sub-basin in which the Proposed Action would take place has sufficient remaining capacity to treat the additional stormwater runoff in terms of volume and water quality in compliance with SJRWMD regulations. These calculations are presented in Appendix 2.

3.3.2 Wildlife

3.3.2.1 Birds

KSC and the surrounding coastal areas provide habitat for 318 bird species, and MINWR is considered one of the top 10 birding destinations in the U.S. Approximately 87 of these species are breeding residents, over 100 species have been documented to winter on KSC, and the remaining species are transients that regularly use KSC terrestrial and aquatic habitats for brief periods (NASA, 2015). Non-listed bird species that could utilize or be found near the Proposed Action project area include American robin (*Turdus migratorius*), Northern cardinal (*Cardinalis cardinalis*), Carolina wren (*Thryothorus ludovicianus*), Carolina chickadee (*Poecile carolinensis*), tufted titmouse (*Baeolophus bicolor*), grey catbird (*Dumetella carolinensis*), red-shouldered hawk (*Buteo lineatus*), and other common avian species. Cattle egret (*Bubulcus ibis*), great white heron (*Ardea herodias occidentallis*), snowy egret (*Egretta thula*), white ibis (*Eudocimus albus*), glossy ibis (*Eudocimus falcinellus*), great blue heron (*Ardea herodias*), American coot (*Fulica Americana*), and other common waterfowl occasionally forage in or adjacent to the existing roadside stormwater treatment swales and surface water ponds to the north. However, the Proposed Action site provides little to no cover for common passerine birds nor foraging habitat for the wading birds listed above.

3.3.2.2 Mammals

Thirty species of mammals inhabit KSC lands and waters (Ehrhart, 1976). Typical terrestrial species include the opossum (*Didelphis virginiana*), hispid cotton rat (*Sigmodon hispidus*), raccoon (*Procyon lotor*), river otter (*Lutra canadensis*), and bobcat (*Lynx rufus*). Due to the regional loss of large carnivores such as the Florida panther (*Puma concolor coryi*) and red wolf (*Canis rufus*), the bobcat, coyote (*Canis latrans*), and otter now hold the position of top mammalian predators on KSC.

In addition, a proliferation of mid-level predators such as the raccoon and opossum has resulted from an imbalance of predator/prey ratios. Opportunistic species such as the cotton rat and

Chapter 3 Affected Environment

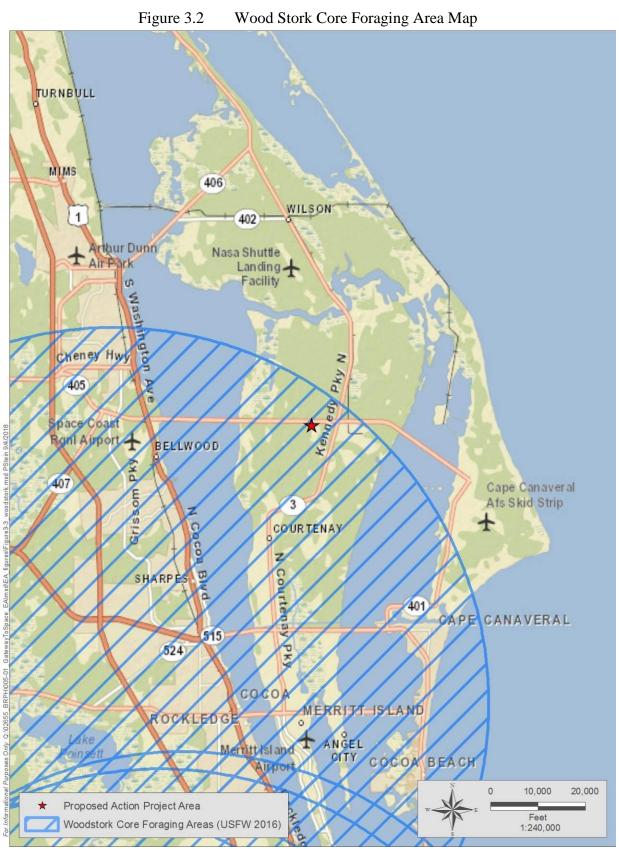
Eastern cottontail rabbit (*Sylvilagus floridanus*) account for a large portion of the small mammal biomass. At least three species of bats have been documented that occasionally use KSC facilities as roost sites and must be relocated and excluded from re-entry when conflicts with facility operations occur. Two mammal species common in the waters of the IRL are the Atlantic bottlenose dolphin (*Tursiops truncatus*) and the West Indian manatee (*Trichechus manatus*).

Terrestrial mammalian species that may use the low-quality uplands within the Proposed Action site include the raccoon, armadillo, feral hog, Eastern cottontail rabbit, hispid cotton rat, and opossum. However, the site is centered among other VC attractions and pedestrian access areas so the utilization by such species is unlikely. Due to the low quality of on-site habitats and presence of humans, most of these mammals would use native vegetation communities found off site and likely only be passing through the Proposed Action site on their way to higher quality habitat.

3.3.2.3 Herpetofauna

Fifty species of reptiles and 19 species of amphibians are known to occur at KSC (Seigel et al., 2002). Due to the lack of natural vegetation and high pedestrian traffic through this area, the gopher tortoise likely does not inhabit the Proposed Action site. Non-listed herpetofauna that could potentially inhabit or occasionally forage the Proposed Action site include green anole (*Anolis carolinensis*), brown anole (*Anolis sagrei*), green tree frog (*Hyla cinerea*), Cuban tree frog (*Osteopilus septentrionalis*), and black racer (*Coluber constrictor*).

3.4 Threatened and Endangered Species


3.4.1 Listed Wildlife

Numerous federal and state laws deal directly with the conservation and preservation of flora and fauna in Florida. The primary objectives of these laws are to establish the listing and de-listing processes for endangered and threatened species, maintain data on current populations of species, identify and maintain critical habitat, and protect those species that have been identified as threatened or endangered. KSC and the adjacent CCAFS provide habitat for more threatened and endangered species than any other federal property in the continental United States (Breininger et al., 1984 and 1994). Thirty Florida or federally listed wildlife species regularly use the lands or waters of KSC (NASA, 2015). Of the 30 listed wildlife species, 13 are federally listed (Table 3.1). Only the Southeastern American kestrel, State of Florida listed as Threatened, could potentially use the land of the Proposed Action site. Most of the listed bird species such as the wood stork (*Mycteria americana*) would likely not use the site since no surface waters are present for foraging. In addition, regarding the wood stork, the project area falls within a 15-mile radius from a wood stork nest and is therefore considered a core wood stork foraging area (Figure 3.2). The closest bald eagle (*Haliaeetus leucocephalus*) nest is 3.9 kilometers (2.4 miles) to the east (Figure 3.3).

Florida gopher frog American alligator Loggerhead Atlantic green turtle	STATE Delisted	FEDERAL
American alligator Loggerhead	Delisted	
American alligator Loggerhead	Delisted	
Loggerhead		
		T(S/A)
Atlantic green turtle		Т
manne green turne		Е
Leatherback sea turtle		Е
Gopher tortoise	Т	С
Eastern indigo snake		Т
Florida pine snake	Т	
Brown pelican	Delisted	
Little blue heron	TC	
Reddish egret	TC	
Snowy egret	Delisted/C	
Fricolored heron	TC	
Wood stork		Е
White ibis	TC	
Roseate spoonbill	TC	
Bald eagle		Р
Southeastern American kestrel	Т	
impkin	Delisted/C	
Florida sandhill crane	Т	
Piping plover		Т
	TC	
Rufa red knot		Т
Least tern	Т	
Roseate tern		Т
Black skimmer	TC	
Florida scrub-jay		Т
~ -	·	
Southeastern beach mouse		Т
Florida mouse	Delisted	
West Indian manatee		Е
	Florida pine snake Brown pelican Little blue heron Reddish egret Snowy egret Fricolored heron Wood stork White ibis Roseate spoonbill Bald eagle Southeastern American kestrel impkin Florida sandhill crane Piping plover American oystercatcher Rufa red knot Least tern Roseate tern Black skimmer Florida scrub-jay Southeastern beach mouse Florida mouse West Indian manatee T(S/A) = threatened because of simila	Florida pine snakeTBrown pelicanDelistedLittle blue heronTCReddish egretTCSnowy egretDelisted/CFricolored heronTCWood storkWhite ibisWhite ibisTCRoseate spoonbillTCBald eagleBoutheastern American kestrelSoutheastern American kestrelTFlorida sandhill craneTPiping ploverTAmerican oystercatcherTCRufa red knotTLeast ternTBlack skimmerTCFlorida scrub-jaySoutheastern beach mouseFlorida mouseDelisted

Table 3.1Wildlife Species Known to Occur on KSC that are Protected Federally and/or by
the State of Florida

Chapter 3 Affected Environment

Environmental Assessment for Gateway to Space Exhibit $20\,$

December 2018

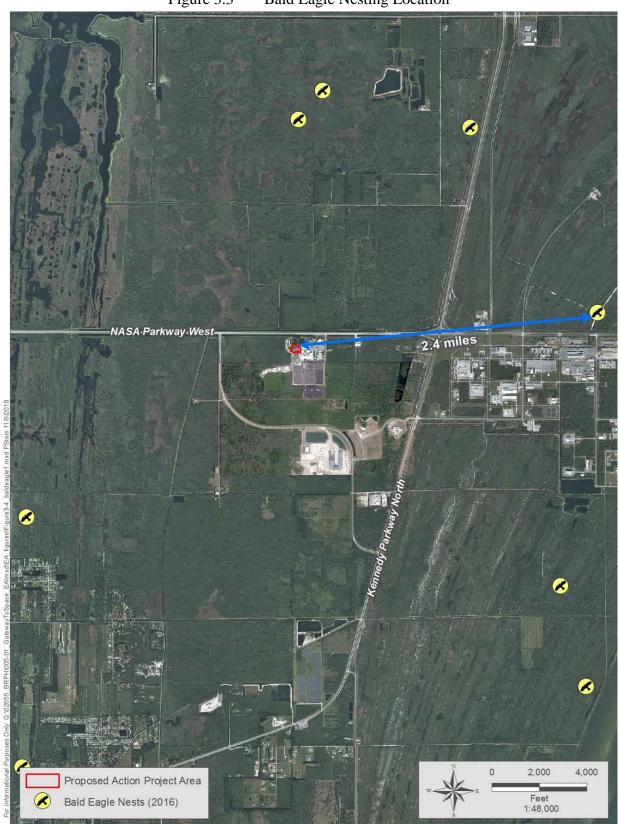


Figure 3.3 Bald Eagle Nesting Location

December 2018

Environmental Assessment for Gateway to Space Exhibit 21

Chapter 3 Affected Environment

Although KSC has one of three remaining core Florida scrub-jay populations across the species range, the closest suitable habitat for this species is 1.3 kilometers (0.8 mile) to the east (Figure 3.4). Habitat in the Proposed Action site is mowed, low-quality, poorly drained upland dominated by bahia grass and ornamental plants. Thus, the Proposed Action site does not provide suitable habitat for this species.

3.4.2 Listed Plants

Forty plant species occurring on KSC are listed as threatened, endangered, or of special concern on state lists. For some of these species, KSC populations appear to be important to their regional and global survival (NASA, 2015). These species are identified by agencies as being rare or restricted to sensitive habitats with many of them occurring in coastal dune areas that are not found on the Proposed Action site. There are no regulatory implications for the occurrences of listed plant species on the Proposed Action site. Although a formal intensive vegetation survey was not completed, listed plant species are not expected to occur within the Proposed Action site due to the following:

- The Proposed Action site does not contain or is within several miles of coastal dune habitat.
- The Proposed Action site is not expected to have listed plant species because this area was cleared of native vegetation when the VC was constructed.
- The Proposed Action site is dominated by maintained bahia grass and ornamental plantings.

3.5 Cultural Resources

Sites containing potential archaeological and/or historical resources on KSC are protected under the National Historic Preservation Act and the Archaeological Resources and Protection Act, which require that every federal agency consider how each undertaking could affect historical properties. NASA has executed a Programmatic Agreement among NASA KSC, the Advisory Council on Historic Preservation, and the Florida State Historic Preservation Office regarding management of historical properties at KSC. This agreement outlines roles, responsibilities, and protocols for cultural resources at KSC.

Between 1990 and 1996, Archaeological Consultants, Inc. (ACI) conducted background research and archaeological field surveys within all areas of KSC to establish differential zones of archaeological potential (ZAPs). These ZAPs were defined as having "low," "medium," or "high" probability of containing pre-contact (prehistoric) archaeological sites. In 2008 to 2009, ACI conducted additional surveying to identify historical ZAPs, as described in the *Historic Context and Historic Period Archaeological Site Location Predictive Model for KSC, Volusia County, and Brevard County* (2009). Areas that have low potential and/or no known archaeological sites within the Area of Potential Effect generally do not require a Phase I or II archaeological survey.

Environmental Assessment for Gateway to Space Exhibit 23

Chapter 3 Affected Environment

The Proposed Action site is in the developed area of the VC, within an area that has no known archaeological sites, and is identified as a "low" ZAP (ACI, 2009). However, there are historical artifacts of significance within or near the Proposed Action project boundary (Figure 2.0). A NASA Saturn V rocket and one other rocket are on display and occur within the Proposed Action project boundary. These artifacts will remain in place and will not be negatively affected because of the Proposed Action.

Remediation or construction activities have contract clauses that state when any archaeological material (e.g., artifacts and/or cultural features or human remains) is found, work must stop immediately and the KSC Cultural Resources Manager must be contacted. Materials and remains will need to be identified in accordance with the Native American Graves Protection and Repatriation Act.

3.6 Geology and Soils

KSC is on the east region of peninsular Florida, which gradually rose above a much larger feature called the *Florida Plateau*. Four distinct geologic units lie beneath KSC and are characteristic of the coastal area of East-Central Florida. In descending order, these are Pleistocene and Recent Age sands with inter-bedded shell layers, Upper Miocene and Pliocene silty or clayey sands, Central and Lower Miocene compacted clays and silts, and Eocene limestones (NASA, 2015).

The Natural Resources Conservation Service mapped two soil series within the project site – Copeland (0.1 ha; 0.2 acre) and Urban Land (0.9 ha; 2.2 acres) (Figure 3.5). The Copeland series is found on the west portion of the Proposed Action site and is described as moderately deep, very poorly drained, and moderately permeable soils in depressions and flats in peninsular Florida. The Copeland soil series is classified as hydric soils. The Urban Land series is the most common soil found at the site and is described as areas that have been impacted by development.

3.7 Noise

Noise generated at KSC originates from five primary sources: launches, aircraft movements, industrial operations, construction, and traffic (NASA, 2015). Tables 3.2 and 3.3 present typical values for noise levels for activities occurring at construction sites and for activities conducted routinely at KSC. The effects of noise on wildlife have been studied at KSC during the launch of spacecraft (American Institute of Biological Sciences, 1982; NASA, 2014). These studies have shown that other than an initial startle response to launches, birds and other wildlife return to their normal activities soon after and appear to show no adverse effects.

Figure 3.5 Soils Types Within the Proposed Action Site

December 2018

Environmental Assessment for Gateway to Space Exhibit 25

Chapter 3 Affected Environment

	NOISE DISTANCE FROM			OM SOURC	A SOURCE*	
SOURCE	LEVEL (Peak)	50 feet	100 feet	200 feet	400 feet	
Construction						
Heavy Trucks	95	84–89	78–83	72–77	66–71	
Pickup Trucks	92	72	66	60	54	
Dump Trucks	108	88	82	76	70	
Concrete Mixer	105	85	79	73	67	
Jackhammer	108	88	82	76	70	
Scraper	93	80–89	74–82	68–77	60–71	
Dozer	107	87-102	81–96	75–90	69–84	
Paver	109	80–89	74–83	68–77	60–71	
Generator	96	76	70	64	58	
Shovel	111	91	85	79	73	
Crane	104	75–88	69–82	63–76	55-70	
Loader	104	73–86	67–80	61–74	55-68	
Grader	108	88–91	82–85	76–79	70–73	
Caterpillar	103	88	82	76	70	
Shovel	110	91–107	85-101	79–95	73–95	
Ditcher	104	99	93	87	81	
Fork Lift	100	95	89	83	77	
Vehicles		1				
Mack Truck	91	84	78	72	66	
Bus	97	82	76	70	54	
Compact Auto	90	75–80	69–74	63–68	57–62	
Passenger Auto	85	69–76	63–70	57–64	51-68	
Motorcycle	110	82	76	70	64	

Table 3.2Noise Levels (in Decibels, A-Weighted) Measured on KSC, Florida
(NASA, 2015)

* Assumes a 6-dBA decrease for every doubling of distance.

SOURCE	PEAK	REMARKS
Re-Entry Sonic Boom*		
Orbiter		101 N/m ² max. (2.1 pounds per square foot [psf])
SRB casing		96 to 144 N/m ² (2 to 3 psf)
External tank		96 to 192 N/m ² (2 to 4 psf)
Launch Noise		-
Titan IIIC	94	21 Oct 1965 (9,388 meters)
Saturn I	89	Average of 3 (9,034 meters)
Saturn V	91	15 Apr 1969 (9,384 meters)
Atlas	96	Comstar (4,816 meters)
Space Shuttle*	90	1.4 dBA Down from Saturn V (9,384 meters)
Aircraft		
F4 Jet	107	18 km From Ground Zero
F4 Jet	158	Calculated at Ground Zero
NASA Gulfstream	109	Takeoff (Marker 14)
NASA Gulfstream	100	Landing (Marker 14)
Industrial Activities		
Complex 39A	78	Transformers
LETF	92	Hydraulic Charger Unit
Machine Shop	112	Base Support Building M6-486
Computer Room	88	VAB – Room 2K11
Snack Bar	60	CIF – Room 154
Laboratories	58	CIF – Rooms 139 and 282
Elevator	62	Central Instrumentation Fac.
VAB High Bay	108	Welding, Cutting, etc.
VAB High Bay	116	Chipping
Hangar AE	77	Room 125 During Test
Headquarters office	75	Room 2637 and Printers
O&C Office	57	Room 2063
Mobile Launcher Platform	94	Main Pump Operating
Mobile Launcher Platform	100	2 Pumps Operating 5K Load
Industrial Area	66	15 meters from Traffic Light
Undisturbed Areas		
Seashore	69	Medium Waves (Nice Day)
Riverbank	48	Light Gusts (No Traffic)
150 m Tower	64	Light Gusts of Wind

Table 3.3Measured Noise on KSC (KSC, 1978)

*Estimated.

Note: $N/m^2 =$ Newtons per square meter.

Other studies conducted on wading bird colonies subjected to military overflights (at 152 meters [500 feet] of altitude) with noise levels up to 100 decibels (dBA) observed no productivitylimiting responses and only a short-term interruption of their daily routine (Dynamac, 2000). The Occupational Safety and Health Administration (OSHA) has established permissible noise exposure limits for humans and 29 CFR Section 1019.95 states personnel exposed to an 8-hour

December 2018

Chapter 3 Affected Environment

time-weighted average of 85 dBA or greater must be issued hearing protection (NASA 2015). Noise related to the Proposed Action site will be limited to temporary noise associated with construction activities, vehicular noise, attraction noise, and typical pedestrian noise associated with the VC, which is significantly lower than noise associated with launches and other noise-creating activities that occur at KSC.

3.8 Surface Water Quality

The surface waters in and surrounding KSC are best described as shallow estuarine lagoons and include portions of the IRL, Banana River, Mosquito Lagoon, and Banana Creek. The area of Mosquito Lagoon within the KSC boundary and the northern-most portion of the IRL north of the Jay Railway spur crossing are designated by the state as Class II, Shellfish Propagation and Harvesting. All other surface waters at KSC have been designated as Class III, Recreation and Fish and Wildlife Propagation. All surface waters adjacent to and within the MINWR have the distinction of being designated as an OFW as required by Florida Statutes for waters within National Wildlife Refuges. Several entities, including NASA, USFWS, and Brevard County, maintain water quality monitoring stations at surface water sites within and around KSC. The data collected are used for long-term trend analyses to support land use planning and resource management. Surface water quality at KSC is generally good, with the best areas of water quality being adjacent to undeveloped areas of the lagoon such as Mosquito Lagoon and the northern-most portions of the IRL and Banana River.

The Proposed Action site contains no surface waters. The surface waters near the Proposed Action site consist of upland cut stormwater treatment ponds, canals, or ditches that were dug to treat and convey stormwater associated with the VC and NASA Parkway West. These surface waters drain west into the IRL.

3.9 Groundwater Quality

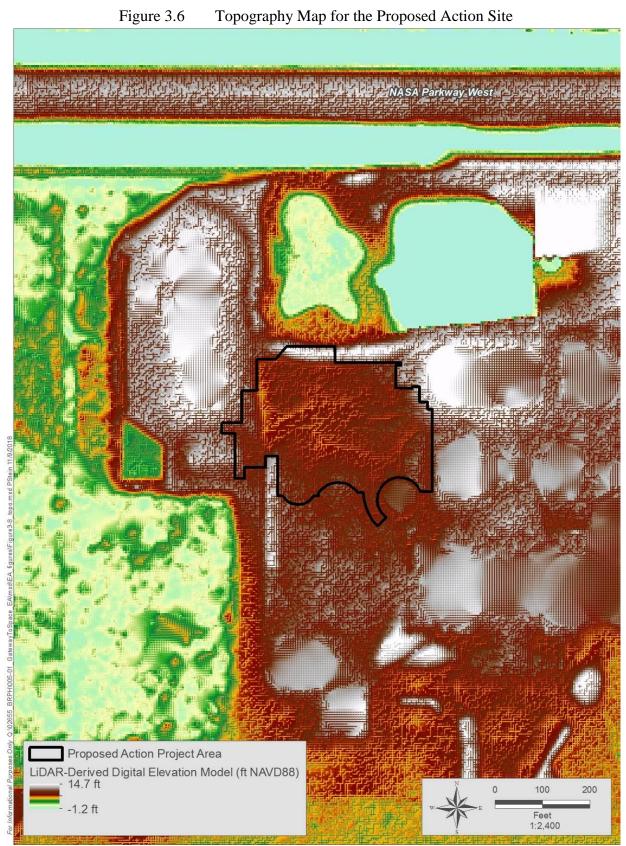
Three aquifer systems underlie KSC – the surficial aquifer, intermediate aquifer, and Floridan Aquifer. The surficial aquifer system (SAS) contains freshwater but is less extensive than the Floridan Aquifer, the principal artesian aquifer in East-Central Florida. The surficial and Floridan Aquifers are separated by nearly impermeable confining units that contain three shallow aquifers referred to as the intermediate aquifer system (NASA, 2015).

Recharge to the SAS is primarily due to infiltration of precipitation. However, the quality of water in the aquifer beneath KSC is influenced by intrusion of saline and brackish surface waters from the Atlantic Ocean and surrounding lagoon systems. In addition, surficial aquifers are subject to contamination from point sources and from general land use. Point-source contamination to the KSC surficial aquifer has occurred at certain facilities. The SAS is monitored under permit at two KSC locations – the KSC landfill and the Seawater Immersion Facility at the Beach Corrosion Test Site (NASA, 2015).

The groundwater quality in the intermediate aquifer system varies from moderately brackish to brackish due to upward leakage from the highly mineralized and artesian Floridan Aquifer System (FAS) and in some cases from lateral intrusion from the Atlantic Ocean (NASA, 2015). Environmental Assessment for Gateway to Space Exhibit 28 December 2018

The FAS at KSC contains highly mineralized water with high concentrations of chlorides due to connate seawater in the aquifer, lateral seawater intrusion due to inland pumping, and a lack of flushing due to distant freshwater recharge areas (NASA, 2015).

3.10 Floodplains


The topography in and around the Proposed Action site is relatively flat with lower elevations to the west and surface water ponds to the north (Figure 3.6). The Proposed Action site has no 100-year floodplain (Zones A or AE) on site, based on the May 2017 FEMA Flood Insurance Rate Map (FIRM) for the area (Figure 3.7). The 100-year floodplain, which assumes a 1-percent chance of water rising in a certain area to a certain height during any given year, is outside the area. However, areas to the north and west of the Proposed Action site are within a coastal AE Zone that is subject to storm surge flooding resulting from hurricane or tropical storm activity.

3.11 Socioeconomics

KSC is Brevard County's largest single employer and a major source of revenue for the local economy. KSC operations create a chain of economic effects throughout the region. Other large employers in the County are Patrick Air Force Base, the Brevard County School District, and Health First. Approximately 15,200 personnel were employed at KSC in 2003, which includes contractor, construction, tenant, and permanent civil service employees. Civil service employees account for approximately 12 percent of the total KSC workforce. The highest employment levels at KSC were recorded during the Apollo Program. In 1968, KSC recorded a peak workforce population of 25,895, with an estimated one in four workers in Brevard County employed at KSC. Employment levels dropped precipitously following the Apollo Program conclusion to a historical low in 1976 when 8,441 personnel were employed. Employment levels rose sharply in 1979 when KSC was designated as the launch and operations support center for the Space Shuttle Program (NASA, 2007). In 2010, an 11.6-percent decrease in the contractor workforce resulted from downsizing as the Space Shuttle Program ended (NASA, 2010).

As of September 2017, the total KSC workforce population was 8,824, which includes NASA civil servants and interns, contractor employees, tenant staff, and construction workers (KSC, 2017). This workforce is employed in ground and base support, unmanned launch programs, crew training, engineering, and administrative positions.

Chapter 3 Affected Environment

Environmental Assessment for Gateway to Space Exhibit $_{\rm 30}$

Figure 3.7 100-Year Floodplain Map for the Proposed Action Site

December 2018

Environmental Assessment for Gateway to Space Exhibit 31

4.0 Environmental Consequences

4.1 Summary and Status of Impacts

Impacts resulting from implementing the alternatives were identified and then classified in one of the following pre-determined categories:

- Negligible impacts are not expected to be measurable or are too small to cause any discernable degradation to the environment.
- Minor impacts that would be measurable but not substantial, because the impacted system can absorb the change or mitigation measures to compensate for potential degradation.
- Major environmental impacts that individually or cumulatively could be substantial (greater than 10-percent impact on KSC).

Impacts from construction and operation at the Proposed Action site vary from negligible to minor depending on the environmental issues evaluated. Table 4.1 summarizes the results of the analyses, showing the impacts on each media for each action.

Comparing the results of the assessment of environmental issues for the two alternatives, the Proposed Action has similar impacts on the environment as No Action. There are no expected major environmental impacts from the Proposed Action. Therefore, the Proposed Action is a viable alternative for this project.

This matrix can be used to review the overall impacts of implementation of this project for each site. The following discussion provides details of the scope and type of impacts. This Section is organized by alternative so that cumulative impacts of each action can be seen as a whole.

4.2 Proposed Action

4.2.1 Facilities and Infrastructures

4.2.1.1 Transportation

4.2.1.1.1 Construction

Construction of the Proposed Action is expected to have **minor** impacts on transportation within KSC. Increased construction traffic would occur during normal working hours and may cause increased traffic delays.

Т	Table 4	I.1 Issues Matrix	
Issues		Proposed Action	No Action
Tuon on out of i on	С	Minor	Negligible
Transportation	0	Minor	Negligible
T 14:1:4:	С	Minor	Negligible
Utilities	0	Minor	Negligible
Air Quality	С	Minor	Negligible
Air Quality	0	Negligible	Negligible
Vegetation	С	Minor	Negligible
vegetation	0	Negligible	Negligible
Wildlife	С	Negligible	Negligible
whame	0	Negligible	Negligible
Diadivarsity	С	Negligible	Negligible
Biodiversity	0	Negligible	Negligible
Threatened &	С	Negligible	Negligible
Endangered Species	0	Negligible	Negligible
Cultural	C	Negligible	Negligible
Resources	0	Minor	Negligible
Geology	С	Minor	Negligible
Geology	0	Negligible	Negligible
Noise	С	Minor	Negligible
INDISC	0	Negligible	Negligible
Surface Water	С	Negligible	Negligible
Quality	0	Negligible	Negligible
Groundwater	С	Negligible	Negligible
Quality	0	Negligible	Negligible
Floodplains	С	Negligible	Negligible
1 1000prains	0	Negligible	Negligible
Socioeconomic	С	Minor	Minor
Socioeconomic	0	Minor	Negligible

Table 4.1Issues Matrix

4.2.1.1.2 Operation

Operation of the Proposed Action may increase traffic on Space Commerce Way and NASA Parkway West due to higher attendance at the VC; however, this impact will have a **minor** impact on Space Commerce Way and NASA Parkway West.

4.2.1.2 Utilities

4.2.1.2.1 Construction and Operation

Construction of the Proposed Action will include installing new and connecting to existing utilities. Construction of the Proposed Action will include connecting to the existing potable water, wastewater, electrical, or communications utilities. As a result, construction and operation

of the Proposed Action are expected to have a **minor** impact on existing utilities at the VC since the capacity of the systems will be decreased.

4.2.2 Air Quality

4.2.2.1 Construction

Site preparation and construction of the Proposed Action would produce **minor** impacts on surrounding air quality. Clearing of the land and other construction activities would generate airborne particulates from earth moving, as well as hydrocarbon exhaust from heavy equipment. Such activities are expected to be small in scope and of short duration. Best management practices (BMPs) would also be employed to mitigate for emissions due to earth movement and burning. These BMPs include water spraying, placement of hay bales, and other forms of dust control.

4.2.2.2 Operation

Operation of the Proposed Action is expected to have a **negligible** impact on surrounding air quality resulting from the potential increase in automobile trips per weekday.

4.2.3 Biological Resources

4.2.3.1 Vegetation

4.2.3.1.1 Construction

Construction activities at the Proposed Action site would result in removing 1.0 ha (2.4 acres) of turf grass-dominated uplands. No wetland or surface water impacts are expected.

Construction is expected to have a **minor** impact on upland vegetation on KSC due to the small impact acreage, low quality of vegetation impacted, and the vast acreage of higher quality upland communities at KSC.

4.2.3.1.2 Operation

Negligible impacts on vegetation are expected from the operation of the Proposed Action.

4.2.3.2 Wildlife

Potential impacts on wildlife by the Proposed Action construction and operation are based on habitats removed by typical construction activities for clearing, road construction, and the expected long-term use of the proposed site. Effects from the construction phase of the project would undoubtedly occur and are expected to be temporary except for those caused by habitat removal and alteration. However, on-site natural habitats are composed of low-quality disturbed uplands that provide little to no habitat value compared to the vast acreage of natural vegetation communities found on KSC.

4.2.3.2.1 Construction

Construction noise and activities of the Proposed Action would have **negligible** impacts on wildlife due to the absence of wildlife habitat within the project area. The majority of habitat within the project area is turf grass-dominated uplands and impervious surfaces (sidewalks, rocket garden foundation, etc.) that provide little to no habitat value. Thus, **negligible** impacts on wildlife are expected due to habitat loss and would not be significant to the species' continued existence. Wide-ranging species such as large mammals and the indigo snake should not be impacted by habitat removal since this area is within a previously developed area, and disruption of their previous movement patterns due to the new facilities should not occur. The impacted species are typically sensitive to human activity and will move away from disturbance, thereby causing at least a temporary shift in the population structure.

4.2.3.2.2 Operation

Long-term use of the proposed site would have minimal impact on wildlife species and is expected to have **negligible** effects on wildlife populations.

4.2.3.3 Biodiversity

4.2.3.3.1 Construction

Impacts on local biodiversity from land clearing and construction of the Proposed Action site is expected to be **negligible**. Some habitat for locally common herpetofauna such as brown anoles species would be removed or altered during the construction phase. However, construction impacts are not expected to cause major changes in the overall population size or structure of any of these species on KSC.

4.2.3.3.2 Operation

The Proposed Action is expected to have **negligible** impacts on the biodiversity of the area.

4.2.4 Threatened and Endangered Species

4.2.4.1 Construction

On-site habitat is composed of low-quality disturbed uplands that provide little to no habitat compared to the natural communities found on KSC. These existing habitats are low quality and dominated by bahia grass and impervious surfaces that provide very limited value and are not necessary for the survival of any threatened or endangered species.

Construction impacts are not expected to cause changes in the overall population size or structure of any of listed species on KSC. Impacts on local threatened and endangered species from land clearing and construction of the Proposed Action are expected to be **negligible**.

4.2.4.2 Operation

Due to the distance from the ocean, it is unlikely that disorientation impacts will occur to nesting and hatching marine turtles from facility lighting. Nevertheless, lighting will have to comply with the KSC exterior lighting requirements located in the KNPR 8500.1, Rev. E (NASA, 2018). Long-term operation of the Proposed Action should not have an impact on any threatened and endangered species. **Negligible** impacts on threatened or endangered species are expected due to the operation of the Proposed Action.

4.2.5 Cultural Resources

4.2.5.1 Construction

The Proposed Action project area contains historical artifacts such as the Saturn V rocket and others found in the Rocket Gardens. Construction fence and a gate separating construction activities from the rest of the VC will be installed to protect existing historical artifacts such as the Saturn V Rocket. As a result, these artifacts will not be disturbed because of the construction of the Proposed Action since they will remain important artifacts for visitor viewing.

The grounds to be disturbed to construct the Gateway to Space Exhibit have a low probability of containing significant or potentially significant archaeological sites, and further archaeological surveys are not warranted. Therefore, **negligible** impacts on historical or archaeological properties are expected resulting from the construction of the Proposed Action. Nevertheless, construction activities on KSC have contract clauses that state that when any archaeological material (e.g., artifacts and/or cultural features or human remains) is found, work must stop immediately and the KSC Cultural Resources Manager must be contacted. Materials and remains will subsequently be identified in accordance with the Native American Graves Protection and Repatriation Act.

4.2.5.2 Operation

The on-site artifacts will not be disturbed resulting from the operation of the Proposed Action since they will remain important artifacts for visitor viewing. However, the operation of the Proposed Action will have a **minor** (**positive**) impact on cultural resources since it will serve as a very valuable additional location where important NASA and commercial space artifacts will be displayed for visitor viewing. This new exhibit will allow the VC to display both NASA and commercial space achievements in cooperation with private aerospace companies such as SpaceX and Boeing.

4.2.6 Geology and Soils

4.2.6.1 Construction

Proposed Action preparation activities would present the only potential impact on the geology and soils within the project area and are considered **minor**. Land clearing and excavation for building foundations, utility installation, and roadway foundations would require that the upper soil strata layers be removed and re-graded. This may temporarily affect shallow subsurface

December 2018

Chapter 4 Environmental Consequences

flows of water from rainfall events. However, this would be mitigated with site grading and modifying the existing State-required stormwater management system.

4.2.6.2 Operation

Operation of the Proposed Action would be expected to produce **negligible** impacts on the geologic strata or soils of the local area or region.

4.2.7 Noise

4.2.7.1 Construction

Ambient noise levels are expected to increase during construction activities and daily operations resulting from the Proposed Action site construction. Noise generated by construction vehicles is expected to be below all noise thresholds and would occur for a brief period. To ensure the protection of employees' hearing, OSHA has outlined permissible noise exposures. 29 CFR Section 1019.95 states personnel exposed to an 8-hour time-weighted average of 85 dBA or greater must be issued hearing protection. Impacts on noise receptors due to construction of the Proposed Action are expected to be **minor**.

4.2.7.2 Operation

Traffic will increase on Space Commerce Way and NASA Parkway West due to operation of the Proposed Action since some increase in attendance is expected. Noise levels will increase marginally near Space Commerce Way and NASA Parkway West. Operation of the Proposed Action is expected to have a **negligible** impact on noise levels locally and a **negligible** impact on the noise levels regionally.

4.2.8 Surface Water Quality

4.2.8.1 Construction

Construction of the Proposed Action would have **negligible** effects on local surface water quality. During construction activities, impacts on surface waters would be minimized by ensuring that stormwater BMPs are implemented, inspected, and maintained to control erosion and sedimentation for the duration of construction.

4.2.8.2 Operation

Operation of the Proposed Action is expected to have a **negligible** impact on surface water quality since runoff from the Proposed Action will be routed to an existing stormwater management system for treatment before being discharged to downstream surface waters.

4.2.9 Groundwater Quality

4.2.9.1 Construction

Construction of the Proposed Action could temporarily increase the amount of sedimentation and pollutants that could migrate into the groundwater system. However, maintaining stormwater BMPs during construction will minimize this occurrence. Therefore, construction of the Proposed Action would have a **negligible** impact on groundwater quality.

4.2.9.2 Operation

Operation of the Proposed Action could generate pollutants typically created by runoff from impervious surfaces. The existing stormwater management system would prevent migration of contaminants downward into the Surficial Aquifer because it would promote their transport into the surface water management system that is present to the north. Therefore, operation of the Proposed Action is expected to have a **negligible** impact on groundwater quality.

4.2.10 Floodplain

4.2.10.1 Construction

Construction of the Proposed Action site will not impact the 100-year floodplain and will have a **negligible** impact to floodplains at KSC (Figure 3.9).

4.2.10.2 Operation

Operation of the Proposed Action will result in **negligible** impacts to floodplains.

4.2.11 Socioeconomics

4.2.11.1 Construction

Several hundred construction workers are expected during construction of the Proposed Action. These workers would be drawn from the local workforce with an expected positive impact on the local economy. Construction of the Proposed Action is expected to have **minor** impacts on socioeconomics and the workforce at KSC.

4.2.11.2 Operation

Operation of the Proposed Action is expected to have a **minor** (**positive**) impact on the socioeconomics of KSC as additional permanent staff will be required to support the operation of the Gateway to Space Exhibit.

4.3 No Action Alternative

Based on the Traffic Impact Study (TIS) from Lassiter (2017) (Appendix 3), the VC expects a 202-percent increase in visitors from 2018 to 2035. Additional facilities and new exhibits are

required to adequately support this projected increase and provide new user experiences as KSC transitions to a commercial spaceport. If the No Action Alternative is selected, the VC would not provide new exhibits that provide an enlightening, educational, inspiring, and entertaining experience for visitors of all ages coming to NASA KSC.

For the No Action Alternative, **negligible** impacts are expected to utilities, air quality, vegetation, wildlife, biodiversity, threatened and endangered wildlife species, cultural resources, geology, noise, surface water quality, groundwater quality, or floodplains. **Minor** impacts are expected for the socioeconomics due to the loss of construction employment for construction of the facility.

5.0 Cumulative Impacts

5.1 No Action Alternative

Based on the TIS from Lassiter (2017), the VC expects a 202-percent increase in visitors from 2018 to 2035. If no action is taken, the VC would not provide new exhibits that provide an enlightening, educational, inspiring, and entertaining experience for visitors of all ages coming to NASA KSC. **Negligible** impacts to other resource categories will occur if the No Action Alternative is selected (Table 4.1).

5.2 Proposed Action Alternative

In accordance with the Council on Environmental Quality's *Considering Cumulative Effects Under NEPA* (1997), the *levels of acceptable change used to determine the significance of effects will vary depending on the type of resource being analyzed, the condition of the resource, and the importance of the resource as an issue.* Also, *this change is evaluated in terms of both the total threshold beyond which the resource degrades to unacceptable levels and the incremental contribution of the proposed action to reaching that threshold.* In practice, *the analyst must determine the realistic potential for the resource to sustain itself in the future and whether the proposed action will affect this potential.* Accordingly, for a proposed action to have a cumulatively significant impact to an environmental resource, two conditions must be met. First, *the combined effects of all identified past, present, and reasonably foreseeable projects, activities, and processes on a resource, including the effects of the proposed action, must be significant.* Second, a proposed action must make a measurable or meaningful contribution to *that significant cumulative impact.*

The VC has several current and future projects such as the 50th Anniversary Apollo 11, IMAX and Play Dome Renovations, and Moon Tree Garden projects. However, all of these are taking place within the footprint of the existing VC. There are potential long-term future projects such as a parking lot expansion in undeveloped areas adjacent to existing facilities that may be required as visitation grows. However, the long-term incremental expansions to the VC are not anticipated to result in significant cumulative impacts to any of the resource categories analyzed in this EA due to their construction in disturbed areas (abandoned citrus grove), small size, and operational uses that have minimal environmental impacts.

6.0 Environmental Justice

On February 11, 1994, the President of the United States signed Executive Order (EO) 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*. The general purposes of the EO are to (1) focus the attention of federal agencies on the human health and environmental conditions in minority communities and low-income communities with the goal of achieving environmental justice; (2) foster non-discrimination in federal programs that substantially affect human health or the environment; and (3) give minority communities and low-income communities greater opportunities for public participation in and access to public information on matters relating to human health and the environment.

The EO directs federal agencies, including NASA, to develop environmental justice strategies. Further, EO 12898 requires NASA, to the greatest extent practicable and permitted by law, to make the achievement of environmental justice part of NASA's mission by identifying and addressing, as appropriate, disproportionately high adverse human health or environmental effects on minority or low-income populations in the United States and its territories and possessions, the District of Columbia, the Commonwealth of Puerto Rico, and the Commonwealth of the Mariana Islands.

In accordance with EO 12898, NASA established an agency-wide strategy, which in addition to the requirements set forth in the EO, seeks to (1) minimize administrative burdens, (2) focus on public outreach and involvement, (3) encourage implementation plans tailored to the specific situation at each center, (4) make each center responsible for developing its own Environmental Justice Plan, and (5) consider normal operations and accidents. In turn, KSC has developed a plan to comply with the EO and NASA's agency-wide strategy (NASA, 2017). As part of that plan, the impacts on low-income and minority populations in the KSC area were addressed as part of this EA. This project and the alternatives addressed would be implemented within the boundaries of KSC. The closest residential areas are 3 kilometers (1.8 miles) to the south on Merritt Island and 12 kilometers (7.6 miles) to the west in Titusville. The distances of these areas from the Proposed Action precludes any direct impacts from construction or operation. Economic impacts are not expected to adversely affect any particular group. Construction personnel would be drawn from the local workforce and provide a short-term economic benefit to the local area.

7.0 Preparers, Contributors, and Contacts

Table 7.1 lists the individuals who provided detailed data or analyses and prepared this document. The table provides information concerning which section(s) each person was involved in writing or assembling.

Preparers	Affiliation	Professional Title	Contribution
Berry, Stephen	Jones Edmunds	Project Manager/ Senior Consultant	Document Preparation and Review
Bukata, B.J., MS, PWS, AA	Jones Edmunds	Senior Scientist	Biological Resources, Data and Text
Stein, Philip	Jones Edmunds	Scientist	Biological Resources, Data and Text, Figures
Nickel, Walt, PE	Jones Edmunds	Project Engineer	Transportation
Clark, Mike, PE	Jones Edmunds	Senior Project Engineer	Utilities
Koller, Rich, PE, LEED AP	Jones Edmunds	Managing Director	Document Review
Schmid, Joe	Jones Edmunds	Editor	Document Preparation and Review
Phillips, Lynne	NASA/KSC	Environmental Scientist	Document Review
Dankert, Don	NASA/KSC	KSC NEPA Coordinator	Document Review
Brooks, James	NASA/KSC	KSC NEPA Project Manager	Document Review
Berrios, Luis	NASA/KSC	Senior Design Specialist for the DNC VC	Document Review
Ferris, Tim	NASA/KSC	NASA VC Program Manager	Document Review
Natasha Darre	NASA/KSC	Cultural Resources Specialist	Document Review
Venuto, Charlie	Delaware North	Director, Environmental, Health and Safety	Document Review
Grey, Stacey	Delaware North	DNC Project Development	Document Review
Parrish, Gina	Delaware North	DNC Environmental	Document Review
Taylor, Keith	BRPH	Project Manager for Construction Services	Document Review
Gigante, Nick	BRPH	Project Manager for Design Services	Document Review
Valletta, Priyanka	BRPH	Civil Engineer	Document Review
Zenker, Tom	BRPH	Civil Engineer/Stormwater	Document Review

Table 7.1List of Individuals Who Prepared This Document

8.0 Literature Cited

- American Institute of Biological Sciences. 1982. *Evaluation of the Environmental Effects of the Space Shuttle Program: August 3, 1978 to October 29, 1982.* Final Report. Contract No. NAS10-9454, NASA, KSC, Fl.
- Archaeological Consultants Inc. (ACI). 2009. *Historic Context and Historic Period Archaeological Site Location Predictive Model for KSC, Volusia, and Brevard Counties*. Report for Kennedy Space Center, Archaeological Consultants, Inc.
- Breininger, D.R.; P.A. Schmalzer; and R.C. Hinkle, 1984. *Comprehensive List of Endangered and Potentially Endangered Plants and Animals at John F. Kennedy Space Center, Florida*.
- Breininger, D.R., M.J. Barkaszi, R.B. Smith, D.M. Oddy, and J.A. Provancha. 1994. *Endangered* and potentially endangered wildlife on John F. Kennedy Space Center and faunal integrity as a goal for maintaining biological diversity. NASA Technical Memorandum 109204.

Council on Environmental Quality. 1997. Considering Cumulative Effects Under NEPA.

- The Dynamac Corporation (Dynamac). 2000. Environmental Assessment for the Space Experiments Research and Processing Laboratory. March 2000.
- Ehrhart, L.M. 1976. A study of diverse coastal ecosystem on the Atlantic Coast of Florida: Mammal studies. Final report to NASA KSC. Grant No. NGR10-019-004. Kennedy Space Center, Florida.
- Kennedy Space Center (KSC). 1978. National Aeronautics and Space Administration, Washington, D.C. Environmental Impact Statement: Space Shuttle Program. Washington, D.C.
- Kennedy Space Center (KSC). 2017. *Kennedy Space Center Environmental Justice Plan*. KSC-PLN-1917 Rev B. Kennedy Space Center, FL.
- Lassiter Transportation Group, Inc. 2017. Space Commerce Way at KSC VIC, Brevard County, Florida, Traffic Impact Study (TIS). Prepared for Jones Edmunds & Associates, Inc.
- National Aeronautics and Space Administration. 2007. Environmental Assessment for the Construction, Modification, and Operation of Three Facilities in Support of the Constellation Program, John F. Kennedy Space Center, Florida. Final Draft.
- National Aeronautics and Space Administration. 2010. Kennedy Space Center's Annual Report FY2010, Kennedy Space Center, Florida. NP-2011-02-029-KSC. 2010. http://www.nasa.gov/centers/kennedy/pdf/534076main_annrpt10.pdf

Chapter 8 Literature Cited

- National Aeronautics and Space Administration. 2014. *Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida*. NASA/TM-2014–216639. InoMedic Health Applications, Inc. for Kennedy Space Center, Florida.
- National Aeronautics and Space Administration. 2015. Environmental Resources Document, Kennedy Space Center. KSC-PLN-1911, Revision F. Kennedy Space Center, Florida. March 2015.
- National Aeronautics and Space Administration. 2017. *Kennedy Space Center Annual Report* FY2017. NP-2018-04-378-KSC. Kennedy Space Center, Florida.
- National Aeronautics and Space Administration. 2018. Kennedy NASA Procedural Requirements (KNPR) 8500.1 Rev. E, in publication.
- Seigel, R.A., R.B. Smith, J. Demuth, L.M. Ehrhart, and F.F. Snelson, Jr. 2002. Amphibians and reptiles of the John F. Kennedy Space Center, Florida: A long-term assessment of a large protected habitat (1975-2000). Florida Scientist 65:1-12.
- United States Executive Order (EO) 12898. 1994. Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.

Appendix 1 KSC Record of Environmental Consideration (REC)

	Avoid Ve	rbal Ord	ers	
TO: DNPS/Gina Parrish				DATE: 07/26/2018
FROM: SI-E3/Environmental Manage	ement Branc	h		
SUBJECT: KSC Record of Environme	ental Conside	eration (RE	C)	REC #: 10371
1. PROJECT INFORMATION				
Project Title: KSC Ride and Exhibit Hall				
Project Lead: Stacey Grey, DNPS, 321-44	19-4429		Project No.: 992	16
Project Description:KSC Ride and ExhibitKSC Visitor Complex Rocket Garden.The bartifacts, and it will also house a dome theateEPB Reviewer:LPHFacility No.	ouilding will con	itain an exhib	it hall for NASA to displ	-
2. NEPA DETERMINATIONS				
a. Categorical Exclusions per 14 CFR	Part 1216.304	(d)	e. Centerwide EIS	3
☑ b. Environmental Assessment (EA) Re	equired		f. AF Project on F	(SC/813
C. Environmental Impact Statement (E	IS) Required		g. NASA Project	on CCAFS/813
d. Existing FONSI or ROD				
3. ENVIRONMENTAL REQUIREMENTS				
a. Non-Permit Requirements	VES			
b. Permit Requirements	VES			

2.b.1. ENVIRONMENTAL ASSESSMENT (EA): This project cannot be categorically excluded (CATEX) as defined in 14 CFR 1216.305 from further NEPA review. An Environmental Assessment will be required for construction of the KSC Ride and Exhibit Hall (Gateway to Space Project) at the KSC Visitor Complex. For additional information, please contact Don Dankert of the NASA Environmental Management Branch (SI-E3, 861-1196).

3.a.1. POTENTIAL RELEASE (PRL) SITE: The proposed project is within PRL #128, Visitor Complex. A PRL means that the site has had historical operations with the potential to impact the environment. This areas has been deemed No Further Action (NFA) status and, therefore, this project may proceed as proposed. There is no knowledge of any existing environmental contamination at this location.

3.a.2. HAZARDOUS/NON-HAZARDOUS WASTE: All hazardous and non-hazardous wastes generated on KSC must be managed, controlled and disposed of per the KSC Waste Management requirements outlined in KNPR 8500.1. A Process Waste Questionnaire (PWQ), KSC Form 26-551 along with any supporting documentation (MSDS, product formulation, lab analyses) must be submitted to the KEMCON Waste Management Office for each waste stream generated. That office will then generate a Technical Response Package (TRP) which will give direction on proper handling, storage, and disposal of the waste stream. Please contact KEMCON Waste Management Services at 867-8640 if assistance is required.

3.a.3. HAZARDOUS AND CONTROLLED WASTE (ASBESTOS CONTAINING MATERIAL): Asbestos is a regulated substance which was incorporated into many building products and most commonly found in floor tiles, roofing materials, caulking compounds, and insulation media. If asbestos will be disturbed, regulations from 62-257 F.A.C. must be followed and notification to the NASA Environmental Assurance Branch (Zach Hall, SI-E2, 867-5178) is required for any regulated asbestos removal in order that annual reporting requirements are fulfilled. If less than 260 linear feet, or less than 160 square feet of regulated asbestos containing material (RACM) is to be removed, there are no fee or reporting requirements to the FDEP, unless there is demolition of any load-supporting structural member. If the removal trips these thresholds, or is greater than 1 cubic meter, or 35 cubic feet, regulations require notification to FDEP. The "Notice of Asbestos Renovation or Demolition" (FDEP Form Number 62-257.900(1)) can be found at: http://dep.state.fl.us/air/rules/forms/asbestos.htm. The Permitting and Compliance Group within SI-E2 Environmental Assurance Branch must be copied on all reports submitted to FDEP. For asbestos disposal, KEMCON/IMSS Waste

Avoid Verbal Orders

TO: DNPS/Gina Parrish

FROM: SI-E3/Environmental Management Branch

SUBJECT: KSC Record of Environmental Consideration (REC)

Management can supply directions on proper handling, storage, and disposal of the waste stream through the Process Waste Questionnaire/Technical Response Package (PWQ/TRP) process. Please contact KEMCON/IMSS Waste Management Services at 867-8642 for assistance.

NOTE: Friable asbestos/RACM is not authorized for disposal at the KSC Landfill. For disposal of non-friable asbestos containing materials there, please coordinate with Zach Hall (SI-E2, 867-5178).

Ensure that a project specific asbestos survey has been performed per KNPR 1840.19 and EPA 40 CFR 61.145 requirements by a Florida Licensed Asbestos Consultant (FLAC) and that survey report is provided as part of project submittals prior to start of work.

The Asbestos Management Information System (AMIS) Database is a tool that may be used in conjunction with a survey by the FLAC and contains records on facilities that have been assessed for the presence of asbestos in a limited survey of the facility <u>http://amis.ksc.nasa.gov/</u>. Limited surveys typically do not include destructive sampling or exterior sampling. Check AMIS for the most recent information on the location and form(s) of asbestos at the site. Contact your company's Safety and Health Office or KEMCON Industrial Hygiene (IH) for recommendations on personal protective equipment (PPE). KEMCON/IMSS IH can be contacted at 867-2400 or at KSC-DL-EnvHealth/(KSC-DL-EnvHealth@mail.nasa.gov).

3.a.4. HAZARDOUS AND CONTROLLED WASTE (DEMOLITION OF FACILITIES): This project may include the deconstruction/demolition of load-bearing structures. All demolition activities that destroy the functionality of any load-supporting structural member of a facility, no matter of the size of the facility or the amount of material disturbed, must submit a "Notice of Asbestos Renovation or Demolition" (FDEP Form Number 62-257.900(1)) to the Florida Department of Environmental Protection. NOTE: This form must be submitted regardless of whether Asbestos-Containing Material (ACM) is identified. The FDEP must be notified at least 10 days prior to any demolition activity. The Environmental Assurance Branch Permitting and Compliance Group (Zach Hall, SI-E2, 867-5178) must be copied on all reports submitted to FDEP. Please contact Zach if clarification of this requirement is necessary.

3.a.5. HAZARDOUS AND CONTROLLED WASTE (PAINT): This project may/will involve the application of paint coatings. All practical precautions must be taken to eliminate the possibility of a release of material or waste into the environment (primers/paints) from the paint surface preparation and painting operation. Paint chips, rust, debris, blast media, wastewater, etc. generated during preparation of surfaces will be contained and disposed of according to waste management guidelines given in Item 3.a.2. Please contact KEMCON Waste Management Services at 867-8640 for assistance. There are special handling and waste management requirements for inorganic zinc (IOZ) coatings. When placed in a sealed container, IOZ paint can produce hydrogen and other gases from chemical reactions that occur during the curing process. The gas production builds pressure in the container and can cause the container to bulge and/or rupture thus creating a safety hazard. To meet environmental requirements and mitigate safety concerns, users of IOZ paint must physically separate IOZ paint related waste streams from other waste streams at the job site and manage their IOZ paint related waste streams according to the three categories below:

1) Leftover or unusable IOZ paint

Leftover or unusable IOZ paint must be stored in the original product containers supplied by the manufacturer with a loosely secured lid. Original product containers must then be placed into a larger closed drum or container that meets hazardous waste storage requirements and prevents any possible release to the environment. The larger closed drum or container must have a 5 psi pressure relief vent to avoid potential safety hazards. Cleaning solvents may NOT be placed into these containers.

2) Spent cleaning solvents

Waste cleaning solvent containers must have 5 psi pressure relief vents to avoid potential safety hazards 3) Solids from IOZ paint mixing and painting operations

Includes rags, brushes, rollers, empty cans, empty buckets, liners, stirring sticks, personal protective equipment, masking paper/tape, and any other waste materials that have contacted IOZ paint - Solid waste containers must have 5 psi pressure relief vents to avoid potential safety hazards - Empty paint cans and buckets can be disposed as

DATE: 07/26/2018

Avoid Verbal Orders

TO: DNPS/Gina Parrish

FROM: SI-E3/Environmental Management Branch

SUBJECT: KSC Record of Environmental Consideration (REC)

unregulated waste provided that all paint is wiped out of them. The spent rags/wipes used to wipe paint out of the cans or buckets shall be managed as waste under this category. Contractors are responsible for contacting the KSC Waste Management Office (867-8640) to arrange pickups of leftover/unusable paints, and to remove solvent or regulated paint waste when the containers are full. Contact Al Gibson (SI-E2, 861-0863) if you have any questions.

3.a.6. THREATENED AND ENDANGERED SPECIES: This project has the potential to affect the protected gopher tortoise. Measures must be taken to minimize impacts to their habitat. A biological survey will be required to identify potential impacts prior to disturbances. Please contact Becky Bolt (IMSS-200, 867-7330), 14 days prior to beginning work to schedule a biological survey. If vegetation clearing or any disturbance of vegetated areas is necessary, a biological survey will be required to identify potential impacts to habitat and wetlands prior to disturbances. Please contact Becky Bolt (IMSS-200, 867-7330) to schedule a biological survey as soon as locations of vegetation impacts are known.

3.a.7. EXTERIOR LIGHTING: The installation/modification and use of any lighting that is visible from the exterior of a facility or structure must be in compliance with the requirements in the KSC Exterior Lighting Guidelines in Chapter 24 of KNPR 8500.1 Rev. E, and requirements of the US Fish and Wildlife Service Biological Opinion for KSC regarding dark skies and artificial lighting. Safety and hazardous operations can apply for a waiver to allow for use of non-compliant lighting; however, justification must be provided to the NASA Environmental Management Branch (EMB). Development of a lighting operations manual (LOM) that meets these criteria is required for all new construction or major modification of structures or facilities. Please contact the NASA EMB (Lynne Phillips, SI-E3, 867-4817) for additional information, and for guidance on development of a LOM or for a copy of the referenced documents.

NOTE: A LOM has been submitted for the KSC Visitor Complex and is under review by the EMB. The LOM must be updated to include construction of the proposed KSC Ride and Exhibit Hall.

3.a.8. EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES (BMPs): Precautions must be made to eliminate or reduce to the greatest extent possible any discharge of sediments outside established project boundaries. This can be accomplished by initiating proactive erosion control BMPs. Installation and maintenance of appropriate erosion/sediment control devices (such as wattles, turbidity screens, silt fences, inlet protectors, floating turbidity booms, etc.) must be completed prior to initial land disturbance where the possibility of sediment discharge could impact surrounding stormwater conveyances and other surface waters. The BMPs must be maintained so they remain functional until such time that the newly exposed soils are stabilized with sod or natural vegetation.

3.a.9. CONCRETE WASHOUT: Water used to rinse out concrete trucks and other equipment used for concrete work must not be allowed to discharge to surface waters. Concrete washout water shall be diverted to a settling pond where suspended material will settle out and the water can percolate into the ground. Contact Doug Durham (SI-E2, 867-8429) with any question on this requirement.Remove and dispose of hardened concrete waste consistent with your handling of other construction wastes. After drying/settling, the residue may be disposed of at the Diverted Aggregate Reclamation and Collection Yard (DARCY); and the ground restored. Clean, unstained, unpainted concrete residue is accepted at the DARCY without any sampling and analysis. Contact Zach Hall (SI-E2, 867-5178) with any questions on this requirement.

3.a.10. RECYCLING: The contractor must make every practical effort to reclaim and segregate materials that have the ability to be recycled. All reclaimed concrete (see Item X.X.X) must be segregated from other wastes and transported to the KSC Landfill (L7-0071) on Schwartz Road. All reclaimed scrap metal, not being recycled by contractor outside of KSC, must be transported to the Reutilization, Recycling and Marketing Facility (RRMF) with a KSC Form 7-49. Please turn these items and the KSC Form 7-49 in to RRMF personnel to ensure the proper disposition of the materials prior to leaving the recycling area. For any other information regarding materials that can be recycled or other general information regarding recycling policies at KSC, please contact the Environmental Management Branch (Alice Smith, SI-E3, 867-8454).

DATE: 07/26/2018

TO: DNPS/Gina Parrish

FROM: SI-E3/Environmental Management Branch SUBJECT: KSC Record of Environmental Consideration (REC)

3.a.11. GREEN PURCHASING/SUSTAINABLE ACQUISITION: Federal agencies and their contractors are required to purchase products made from recycled or recovered materials and other environmentally preferable products whenever possible. The Green Compilation Tool found at https://sftool.gov/greenprocurement provides information and useful links and tools to identify applicable green/sustainable acquisition requirements for products and services (Ref. FAR subpart 23.1 and NPR 8530.1). A Request for Waiver Form (KSC 28-825 NS) must be submitted when a product or service meets the green/sustainable requirements but is not procured. Please contact Alice Smith (SI-E3, 867-8454) with any questions on this requirement.

3.b.1. EXCAVATION PERMIT: A KSC Excavation Permit will be required for any digging proposed by this project. Please contact the Utility Locate/Excavation Permit Request Customer Helpline at 867-2406 or go to website at <u>http://epr.ksc.nasa.gov/Home/</u> for an underground utility scan and dig permit. NOTE: If a trench or pit is to be left open all day or overnight, the trench/pit must be checked for trapped animals at the beginning and end of each work shift. If an animal is observed trapped, contact Becky Bolt (IMSS-200, 867-7330) or the Duty Office (861-5050, email KSC-ISC-DutyOffice@mail.nasa.gov) to arrange removal/release. Do not handle the animal(s).

3.b.2. PERMITTED STORMWATER ERP: The project area is covered under an existing Environmental Resource Permit (ERP) stormwater system (INSERT PERMIT NUMBER) issued by the St. Johns River Water Management District (SJRWMD) and is subject to periodic inspection by the regulator. Ensure the final configuration of the stormwater system swales/slopes/berms, etc., and final dimensions of the structures meet the engineering requirements of the permitted stormwater facility. For more information, contact Doug Durham (SI-E2, 867-8429).PERMITTED STORMWATER ERP: There are existing Environmental Resource Permit (ERP) stormwater systems (INSERT PERMIT NUMBER) issued by the St. Johns River Water Management District (SJRWMD) in the general area of the (INSERT LOCATION/FACILITY). If this project proposes changes (increase or decrease) in ground cover, stormwater flow patterns, or impervious area, the information should be provided to Doug Durham (SI-E2, 867-8429) at the design phase for a permit modification determination.

3.b.3. FDEP NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) CONSTRUCTION ACTIVITY PERMIT: This project may require an NPDES Phase II construction permit. If 1 acre or more of land will be disturbed, a NPDES Construction Activity Permit from the Florida Department of Environmental Protection (FDEP) is required under F.A.C. 62-621.300(4), Notice of Intent to Use Generic Permit for Stormwater Discharge from Large (If over 5 Acres) and Small (1 Acre To 5 Acres) Construction Activities. <u>http://www.dep.state.fl.us/water/stormwater/npdes/forms/cgp_noi.pdf</u>. This includes construction activity which will disturb less than one acre of land area that is part of a larger common plan of development that will ultimately disturb equal to or greater than one acre of land. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of the site. A condition of this permit is to provide a Stormwater Pollution Prevention Plan (SWPPP) detailing erosion and turbidity controls for the site. Information on completing the permit application and development of the SWPPP can be obtained by contacting Doug Durham (SI-E2, 867-8429).

3.b.4. DEWATERING: Construction dewatering is exempted from permitting under conditions of Rule 40C-2.051 (7) providing the conditions of exemption are met including: limiting withdrawal methods, limiting withdrawal to less than 300,000 gpd and limiting withdrawal to 30 days. Additional limitations are placed on discharge of produced water to prevent harm to the environment. If conditions of the exemption cannot be met, a construction dewatering general permit is required from SJRWMD using Form 40C-2.900(12). No dewatering may begin until 10 days after submittal of the complete form.If the dewatering activity does not qualify for a general permit by rule under Rule 40C-2.042(9), F.A.C., you must complete and submit a SJRWMD application for an individual Consumptive Use Permit pursuant to Rule 40C-2.041, F.A.C. Approval of the application must be obtained before starting the dewatering activity.If produced water discharge will reach surface waters, an FDEP permit may be required under Rule 62-621.300-2. Contact Doug Durham (SI-E2, 867-8429) with questions related to these requirements.

DATE: 07/26/2018

Avoid Verbal Orders

TO: DNPS/Gina Parrish

FROM: SI-E3/Environmental Management Branch SUBJECT: KSC Record of Environmental Consideration (REC)

3.b.5. WATER RESOURCE PERMITTING (Domestic Wastewater): The proposed project may require a permit for the alteration or installation of utilities for transport of domestic wastewater. Please submit data and drawings required for permit determination to the NASA Permitting and Compliance Group. Additionally, any work done will be per standards and criteria set forth in the permit requirements, and not jeopardize the health and safety of personnel due to effects of the construction/modification on the KSC wastewater system. The organization responsible for the work will ensure that best engineering practices, codes, specifications and standards are followed. Contact Doug Durham (SI-E2, 867-8429) for permit requirement determination and if further assistance is required.

3.b.6. WATER RESOURCE PERMITTING (Potable Water): The proposed project may require a permit for the alteration or installation of utilities for transport of potable or FIREX water. Please submit data and drawings required for permit determination to the NASA Permitting and Compliance Group. Additionally, any work done will be per standards and criteria set forth in the permit requirements, and not jeopardize the health and safety of personnel due to effects of the construction/modification on the KSC potable water system (i.e. disinfection and verification prior to use). The organization responsible for the work will ensure that best engineering practices, codes, specifications, and standards are followed. Pressure and leak tests as well as disinfection are also required. Contact Doug Durham (SI-E2, 867-8429) for permit requirement determination and if further assistance is required.

3.b.7. INDUSTRIAL WASTEWATER: Depending on the chiller type installed, the proposed project may generate industrial wastewater. State of Florida regulations define industrial wastewater as any wastewater that is not classified as domestic wastewater. An Industrial Wastewater Permit may be required for discharge. The initiating organization or contractor shall follow FDEP's Guide to Permitting Wastewater Facilities or Activities under Chapter 62-620 when preparing the application package and submit the draft application package (five copies) to the NASA Environmental Assurance Branch (EAB) for review and comment. The designs, site plans, specifications, drawings, documents, or forms required by FAC 62-620 must be signed and sealed by a P.E. registered in the state of Florida. Permit applications must be submitted to FDEP from NASA EAB at least 180 days before a discharge occurs and at least 90 days prior to commencing construction. Contact Doug Durham (SI-E2, 867-8429) for additional assistance.

3.b.8. AIR CONDITIONER CONDENSATE (including retrofits): Condensate may not be discharged to the stormwater system. The air conditioner condensate must be discharged to sanitary sewer (see item 3.b.2), or above grade, but not below grade. If below grade, this discharge may be considered an Industrial Wastewater/Underground Injection Control (UIC) discharge and may require FDEP permit. Contact Doug Durham (SI-E2, 867-8429) for additional information on this requirement.

3.b.9. RADIATION: Use of ionizing or non-ionizing radiation sources on KSC must comply with KNPR 1860.1 and 1860.2. This project may involve the generation of a radiation source which must be evaluated by the Health Physics Group. A Radiation Use Authorization is required before operations begin. Information describing work to be performed and use of x-ray machine must be submitted to the KEMCON/IMSS Health Physics Office. Contact KEMCON/IMSS Health Physics (IMSS-023, 867-2400) with questions.

No other environmental issues were identified based upon the information provided in the KSC Environmental Checklist. This Record of Environmental Consideration (REC) does not relinquish the project lead from obtaining and complying with any other internal NASA permits or directives necessary to ensure all organizations potentially impacted by this project are notified and concur with the proposed project.

Due to potential changes in regulations, permit requirements and environmental conditions, statements in this REC are

DATE: 07/26/2018

Avoid Verbal Orders

TO: DNPS/Gina Parrish

FROM: SI-E3/Environmental Management Branch

SUBJECT: KSC Record of Environmental Consideration (REC)

valid for 6 months, and subject to review after this period. It is the responsibility of the project lead to submit current project information for a REC update prior to project commencement if REC is older than 6 months; and also to notify the Environmental Management Branch (SI-E3) if the scope of the project changes at any time after the REC is issued.

G. Parrish/DNPS

CC:

S. Grey/DNPS

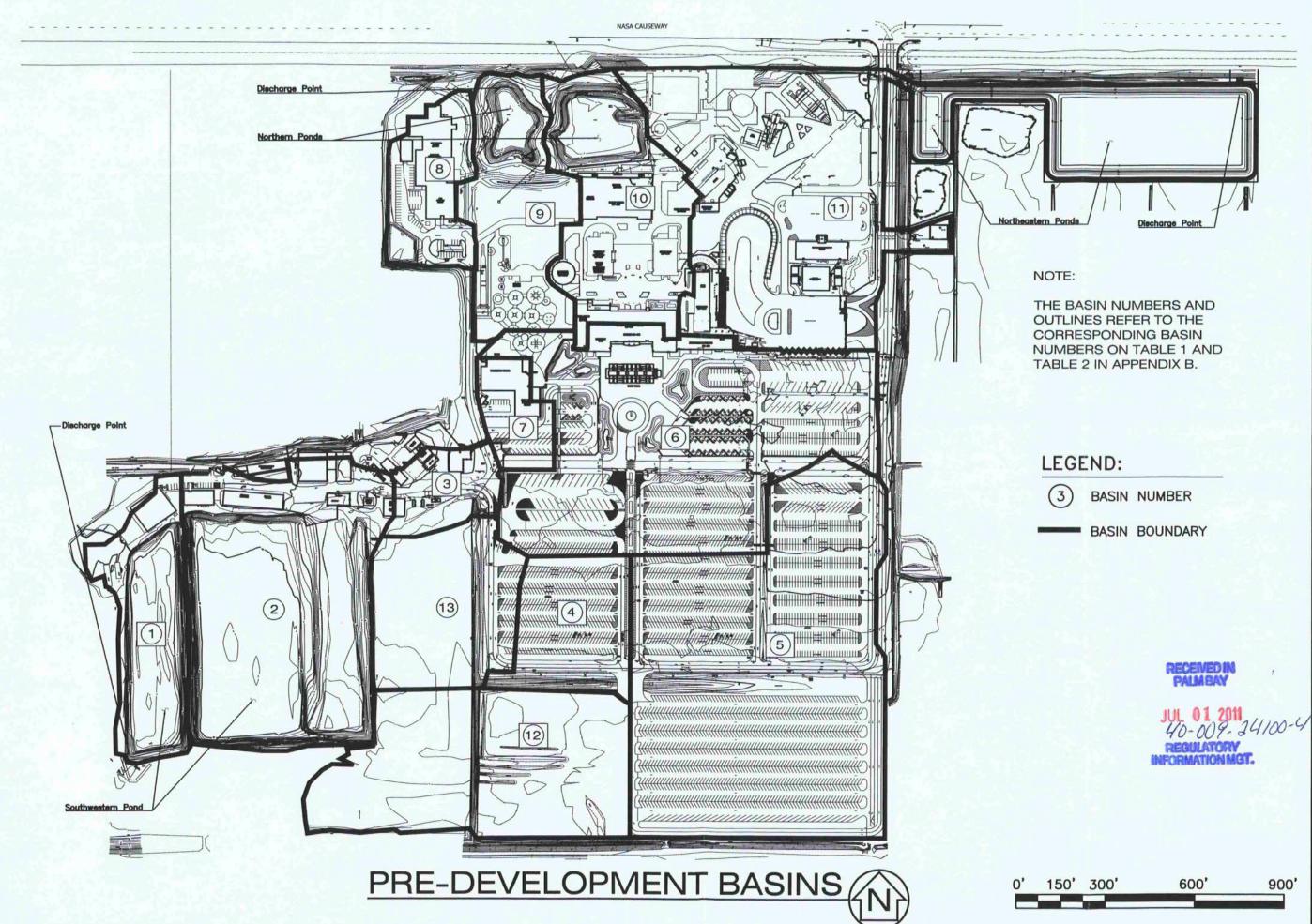
B. Bolt/IMSS-200

4. Upon evaluation of the subject project, the above determinations have been made and identified. Contact the Environmental Management Branch (SI-E3) at 861-1196 for re-evaluation should there be any modifications to the scope of work.

ndb

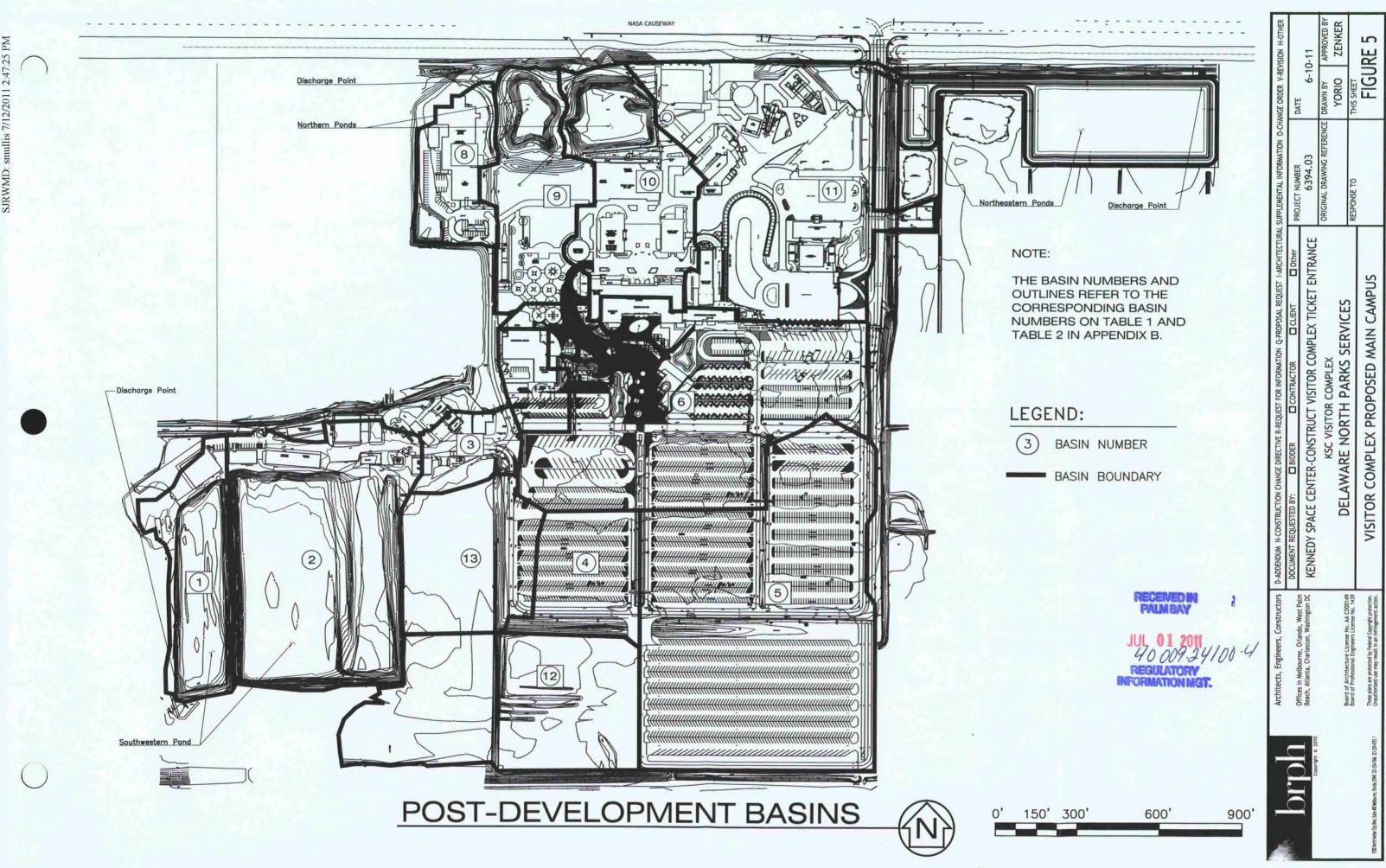
Don Dankert

07/26/2018 10:18

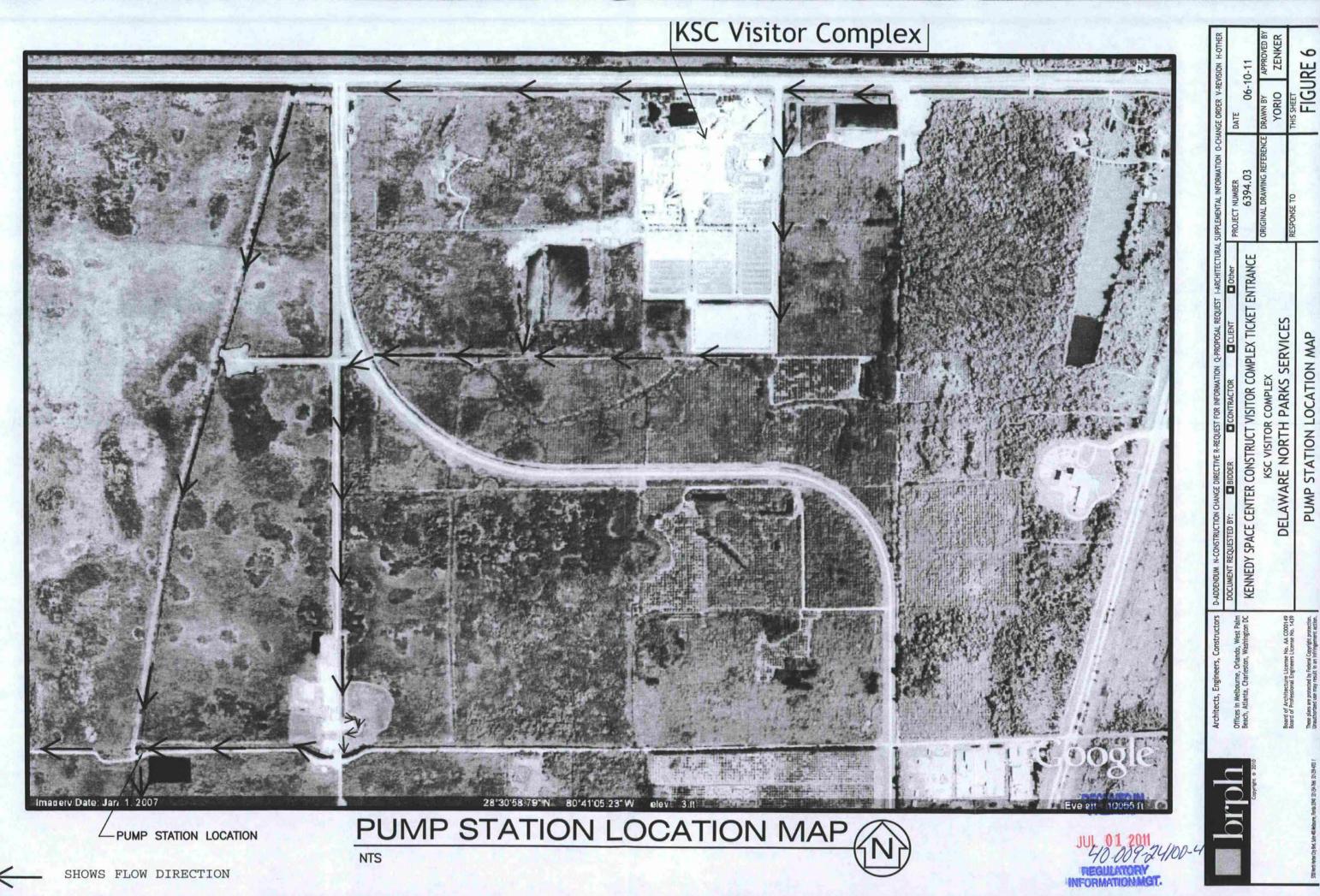

Date

REC #: 10371

DATE: 07/26/2018


Appendix 2 BRPH Civil Engineering Stormwater Pond Calculations

2:47:25 PM SJRW



)'	300'	600'	900'

	Architects, Engineers, Constructors	Architects, Engineers, Constructors D-ADDENDUM N-CONSTRUCTION CHANGE DIRECTIVE R-REQUEST FOR INFORMATION Q-PROPOSAL REQUEST 1-ARCHITECTURAL SUPPLEMENTAL INFORMATION Q-CHANGE ORDER Y-REVISION H-OTHER	SUPPLEMENTAL INFORMATION O-CHA	NGE ORDER V-REV	SION H-OTHER
	Contraction of the second seco	DOCUMENT REQUESTED BY: D BIDDER CONTRACTOR CLIENT COTHER	PROJECT NUMBER	DATE	
	Derices in meruourne, Urlanoo, west raim Beach, Atlanta, Charleston, Washington DC	KENNEDY SPACE CENTER-CONSTRUCT VISITOR COMPLEX TICKET ENTRANCE	6394.03	6-10-11	-11
		KSC VISITOR COMPLEX	ORIGINAL DRAWING REFERENCE	E DRAWN BY	APPROVED BY
	Board of Architecture Icente No. AA COOD149	DELAWARE NORTH PARKS SERVICES		TURIO	ZENNER
	Board of Professional Engineers License No. 1439		RESPONSE TO	THIS SHEET	
STR level letter Cop Bec. Solve 40 lectores, Forda 1244 21:554-500 1	These plans are protected by Federal Copyright protection. Unsuthorized use may result in an infringement action.	VISITOR COMPLEX EXISTING MAIN CAMPUS		FIGURE 4	RE 4

) BASIN N	UMBER
-----------	-------

APPENDIX B

Design Calculations:

Table 1: Pre-Development Basin Summary Table 2: Post-Development Basin Summary Time of Concentration Calculations Table 3: Treatment Volume Determination Stage/Storage Tables Orifice Calculations - Northern Pond ICPR Routing Model Input/Results SJRWMD: smullis 7/12/2011 2:47:25 PM

Basin Summary Tables

,

SJRWMD: smullis 7/12/2011 2:47:25 PM

TABLE 1: Pre-Development Basin Summary

BASIN	TOTAL	IMPERV	PERV	WET	PERCENT	CN	TC
	AREA	AREA	AREA	POND/DITCH	IMPERV		
	(ac)	(ac)	(ac)	(ac)			(min)
	5.15	0.4	1.46	3.29	21.5%	93.75	10
	14.03	1.63	2.94	9.46	35.7%	94.86	10
	2.27	0.91	1.36	0	40.1%	89.01	16
	4.22	3.66	0.1	0.46	97.3%	97.64	10
	21.87	19.22	2.13	0.52	90.0%	96.54	10
	18.05	15.61	2.44	0	86.5%	95.97	10
	1.82	1.32	0.5	0	72.5%	93.88	10
	3.37	1.99	1.38	0	59.1%	91.86	10
	6.06	1.56	3.75	0.75	29.4%	88.72	10
	7.7	4.71	1.33	1.66	78.0%	95.41	10
	22.5	10.73	7.26	4.51	59.6%	93.16	10
	11.1	0	10.91	0.19	0.0%	83.26	56
	6.02	1.1	4.5	0.42	19.6%	86.79	45
			-				
	124.16	62.84	40.06	21.26			

NOTE:

PERVIOUS CN

IMPERVIOUS CN

83 98

SJRWMD: smullis 7/12/2011 2:47:25 PM

TABLE 2: (Post-Development) Master Plan Basin Summary

		(1															
TC		(min)	10	10	16	10	10	10	01	01	5	01	10	95	45		
CN			93.75	95.69	90.07	97.64	96.54	98.00	98.00	92.57	97.33	97.42	96.71	83.26	86.79		
PERCENT	IMPERV		21.5%	52.7%	47.1%	97.3%	%0.06	100.0%	100.0%	63.8%	95.0%	95.0%	89.2%	0.0%	19.6%		
WET	POND/DITCH	(ac)	3.29	9.46	0	0.46	0.52	0	0	0	0.7	1.7	4.51	0.19	0.42		21.25
PERV	AREA	(ac)	1.46	2.16	1.2	0.1	2.13	0	ο	1.22	0.27	0.3	1.94	10.91	4.5		26.19
IMPERV	AREA	(ac)	0.4	2.41	1.07	3.66	19.22	18.05	1.82	2.15	5.09	5.7	16.05	0	1.1		76.72
TOTAL	AREA	(ac)	5.15	14.03	2.27	4.22	21.87	18.05	1.82	3.37	6.06	7.7	22.5	11.1	6.02	-	124.16
BASIN			1	2	m	4	5	9	7	89	6	10	11	12	13		TOTAL

NOTE:

PERVIOUS CN IMPERVIOUS CN

83 98

Appendix 3 Lassiter Transportation Group, Inc. Traffic Impact Study (2017)

Space Commerce Way at KSC VIC Brevard County, Florida

Traffic Impact Study

Prepared for Jones Edmunds & Associates, Inc. By Lassiter Transportation Group, Inc. September 2017

PROFESSIONAL ENGINEERING CERTIFICATION

I hereby certify that I am a Professional Engineer properly registered in the State of Florida practicing with Lassiter Transportation Group, Inc., a corporation authorized to operate as an engineering business, EB 0009227, by the State of Florida Department of Professional Regulation, Board of Professional Engineers, and that I have prepared or approved the evaluations, findings, opinions, conclusions, or technical advice attached hereto for:

PROJECT:	Space Commerce Way at KSC Visitor Complex Southern Access Road
I NOULOI.	Space Commerce way at NGC visitor Complex Southern Access Road

- LOCATION: Kennedy Space Center, FL
- CLIENT: Jones Edmunds & Associates, Inc.

JOB #: 4324.03

I hereby acknowledge that the procedures and references used to develop the results contained in these computations are standard to the professional practice of Transportation Engineering as applied through professional judgment and experience.

Approved by:

NAME:	Gil Ramirez, P.E.						
P.E. No.:	Florida P.E. No. 62600						

DATE: September 25, 2017

Gilberto A Ramirez 2017.09.25 13:25:46 -04'00'

SIGNATURE:

This item has been electronically signed and sealed by: Gil Ramirez, PE on date shown using a digital signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

TABLE OF CONTENTS

Table of Contents	i
List of Tables	.i
List of Figures	ii
List of Appendicesi	ii
Introduction	1
Study Area	1
Study Procedures	1
Planned Roadway Improvements	1
Existing Roadway Analysis	3
Unsignalized Intersection Analysis	3
Signalized Intersection Analysis	3
Roadway Segment Analysis	4
Future Traffic Conditions	7
Background Traffic Growth Rates	7
Trip Generation Growth	8
Trip Distribution	8
Trip Assignment	8
Future Roadway Analysis	9
2018 Opening Year Signalized Intersection Analysis2	9
2035 Design Year Signalized Intersection Analysis 2	9
Roadway Segment Analysis	0
Access Analysis	1
Launch Day Traffic	2
Conclusions and Recommendations	3
Existing	3
2018 Opening Year	3
2035 Design Year	4

List of Tables

Table 1: Existing A.M. and P.M. Peak-Hour LOS - Unsignalized Intersection	3
Table 2: Existing A.M. and P.M. Peak-Hour LOS – Signalized Intersections	4
Table 3: Existing P.M. Peak-Hour Two-Way LOS - Roadway Segments	4
Table 4: KSC VIC Growth Rates	7
Table 5: NASA/Cape Canaveral AFB Growth Rates	7
Table 6: Blue Origin Trip Generation	8

Table 7: Space Florida/Exploration Park Trip Generation	8
Table 8: 2018 Opening Year Peak-Hour LOS – Signalized Intersections	29
Table 9: 2035 Design Year Peak-Hour LOS – Signalized Intersections	29
Table 10: 2035 Design Year Peak-Hour LOS – Improved Signalized Intersections	30
Table 11: 2018 Opening Year Peak-Hour Two-Way LOS (P.M.) - Roadway Segment	30
Table 12: 2035 Design Year Peak-Hour Two-Way LOS (A.M.) - Roadway Segment	30

List of Figures

Figure 1: Location Map2
Figure 2: Existing A.M. Turning Movement Counts5
Figure 3: Existing P.M. Turning Movement Counts
Figure 4: 2018 AM VIC Background9
Figure 5: 2018 PM VIC Background10
Figure 6: 2035 AM VIC Background11
Figure 7: 2035 PM VIC Background12
Figure 8: 2018 AM NASA Background
Figure 9: 2018 PM NASA Background14
Figure 10: 2035 AM NASA Background15
Figure 11: 2035 PM NASA Background16
Figure 12: 2018 AM Blue Origin Traffic17
Figure 13: 2018 PM Blue Origin Traffic
Figure 14: 2035 AM Blue Origin Traffic
Figure 15: 2035 PM Blue Origin Traffic
Figure 16: 2018 AM Space Florida/Exploration Park Traffic21
Figure 17: 2018 PM Space Florida/Exploration Park Traffic
Figure 18: 2035 AM Space Florida/Exploration Park Traffic23
Figure 19: 2035 PM Space Florida/Exploration Park Traffic
Figure 20: Total 2018 AM Peak-Hour Traffic25
Figure 21: Total 2018 PM Peak-Hour Traffic26
Figure 22: Total 2035 AM Peak-Hour Traffic27
Figure 23: Total 2035 PM Peak-Hour Traffic

List of Appendices

- Appendix A- Preliminary Site/Roadway Plan
- Appendix B- Turning Movement Counts
- Appendix C- Unsignalized Intersection HCS Worksheets Existing Conditions
- Appendix D- Signalized Intersection HCS Worksheets Existing Conditions
- Appendix E- Signal Timings
- Appendix F- KSC VIC Growth Data
- Appendix G- NASA/Cape Canaveral Growth Data
- Appendix H- Signalized Intersection HCS Worksheets 2018 Opening Year Conditions
- Appendix I- Signalized Intersection HCS Worksheets 2035 Design Year Conditions
- Appendix J- Signalized Intersection HCS Worksheets 2035 Design Year Conditions- Improved
- Appendix K- National Cooperative Highway Research Program (NCHRP) Report 457 Sheets

Lassiter Transportation Group, Inc. (LTG) has been retained by Jones Edmunds & Associates, Inc. (JEA) to prepare a Traffic Impact Study (TIS) for the future intersection of Space Commerce Way at the proposed southern Kennedy Space Center Visitor Complex (KSC VIC) access road in unincorporated Brevard County, Florida. The proposed intersection is located approximately 1,250 ft. south of the KSC VIC and will include a new driveway intersecting Space Commerce Way opposite to the new Blue Origin facility's minor entrance. Figure 1 shows the location of the project relative to the surrounding road network. The proposed access road is anticipated to be the main access point to the KSC VIC for guests under future conditions. Anticipated future growth data for the KSC VIC, NASA/Cape Canaveral, the Blue Origin facility currently under construction, and future Space Florida/Exploration Park growth was utilized for future condition analyses. The anticipated opening year and design year are 2018 and 2035, respectively. The preliminary site/roadway plans is attached as **Appendix A**.

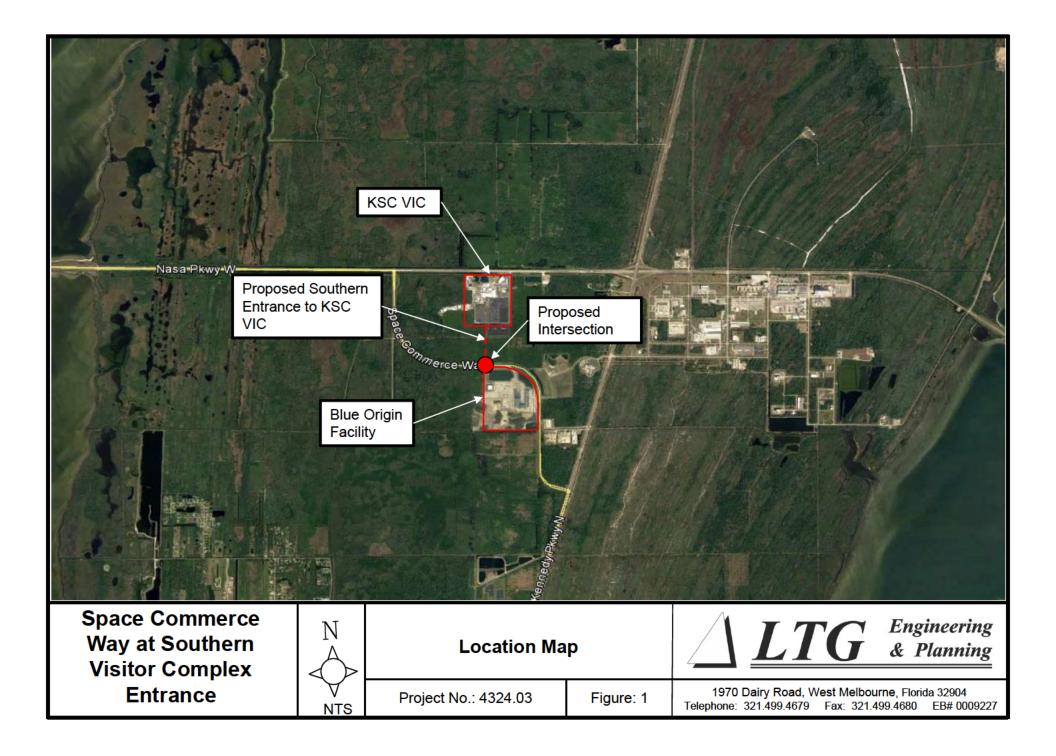
Study Area

The study area includes the intersections as determined in the scoping and research phase. The study area intersections and roadway segments are listed as follows:

Intersections

- NASA Parkway at Space Commerce Way
- NASA Parkway at KSC VIC Entrance
- Space Commerce Way at Kennedy Parkway
- Space Commerce Way at Proposed Southern KSC VIC Entrance

Roadway Segment:


• Space Commerce Way from NASA Parkway to Kennedy Parkway

Study Procedures

Standard engineering and planning procedures were used to determine the impacts of the proposed access road. Reference data was obtained from the Space Coast Transportation Planning Organization (SCTPO), the National Aeronautics and Space Administration (NASA), the Institute of Transportation Engineers (ITE), and the Florida Department of Transportation (FDOT).

Planned Roadway Improvements

FDOT's Five Year Work Program, NASA's planned roadway improvements, and Space Florida's draft Economic Development Transportation Project Fund (EDTPF) Infrastructure Improvements were reviewed to ascertain if there were any programmed or planned roadway improvements within the study area. Based on information available, there are recommended improvements to the intersections of NASA Parkway at Space Commerce Way and NASA Parkway at KSC VIC Entrance. Recommended improvements for NASA Parkway at Space Commerce Way include pavement widening to the existing southern leg, delineator removal between the continuous and non-continuous westbound thru lanes, and replacement of mast arms with pedestal signal structures. Recommended improvements for NASA Parkway at KSC VIC Entrance of mast arms with pedestal signal structures.

2

EXISTING ROADWAY ANALYSIS

The KSC VIC is a tourism facility with unique trip generation characteristics. KSC VIC specific peak-hours were identified via the hourly distribution of 24-hour directional counts collected at the existing northern KSC VIC entrance (northbound and southbound) on Monday, August 7 and Tuesday, August 8, 2017. The hourly distribution indicated an a.m. peak-hour of 9:00 to 11:00 and a p.m. peak-hour of 4:00 to 6:00. Turning movement counts were collected for the KSC VIC specific a.m. and p.m. peak-hours at the study area intersections on Thursday, August 10, 2017. Traffic volumes were balanced when the collected traffic volumes differed between interconnected intersections. Figures 2 and 3 graphically show the existing a.m. and p.m. peak-hour turning movements at the study area intersections. The raw turning movement count summaries are provided in **Appendix B**.

Unsignalized Intersection Analysis

The level of service (LOS) at an unsignalized intersection is based on the average stop delay per vehicle for the various movements within the intersection. The operating conditions at the unsignalized intersections were evaluated using the *Highway Capacity Software 7, Version 7.2.1 (HCS)*. This software utilizes the procedures outlined in Chapter 20 and 21 of the <u>Highway Capacity Manual</u>, 6th Edition, titled "Two-Way Stop Control Intersections" and "All-Way Stop-Controlled Intersections", respectively. Although the proposed southern KSC VIC entrance does not exist and the Blue Origin facility to the south is still under construction. The intersection was analyzed under existing conditions to determine the impact of the small amount of traffic for on-site workers. Table 1 shows the existing a.m. and p.m. peak-hour LOS at the unsignalized intersection. The HCS summary sheets are located in **Appendix C**. As indicated in the table, the unsignalized intersection currently operates within an acceptable level of service (LOS).

		E	kisting C	onditions	
		A.M. Peak-l	lour	P.M. Peak-	Hour
Intersection	Adopted LOS	NB Approach Delay (sec.)	LOS	NB Approach Delay (sec.)	LOS
Space Commerce Way at Proposed					
Southern KSC VIC Entrance	E	9.6	В	10.5	В

 Table 1

 Existing A.M. and P.M. Peak-Hour LOS - Unsignalized Intersection

 Space Commerce Way at Proposed Southern KSC Entrance

Signalized Intersection Analysis

The LOS at a signalized intersection is based on the average control delay per vehicle for the various movements within the intersection. The operating conditions at the signalized intersections were evaluated using the agencies' signal timings and *Highway Capacity Software 7, Version 7.2.1 (HCS)*. This software utilizes the procedures outlined in Chapter 19 of the <u>Highway Capacity Manual</u>, 6th Edition, titled "Signalized Intersections". It should be noted that all westbound through traffic on NASA Parkway originating from the east of Kennedy Parkway intersection was observed to utilized the continuous westbound through lane on NASA Parkway at the northern KSC VIC access point and at Space Commerce Way and a nominal of 10% exiting from the KSC VIC north access point is assigned to the non-continuous through lane at Space Commerce Way. Table 2 shows the existing a.m. and p.m. peak-hour LOS at the signalized intersections. The HCS summary sheets are located in

Appendix D and signal timing sheets are in **Appendix E**. As indicated in Table 2, all intersections are currently operating within an acceptable LOS with all approach V/C ratios below 1.0.

 Table 2

 Existing A.M. and P.M. Peak-Hour LOS – Signalized Intersections

 Space Commerce Way at Southern KSC Entrance

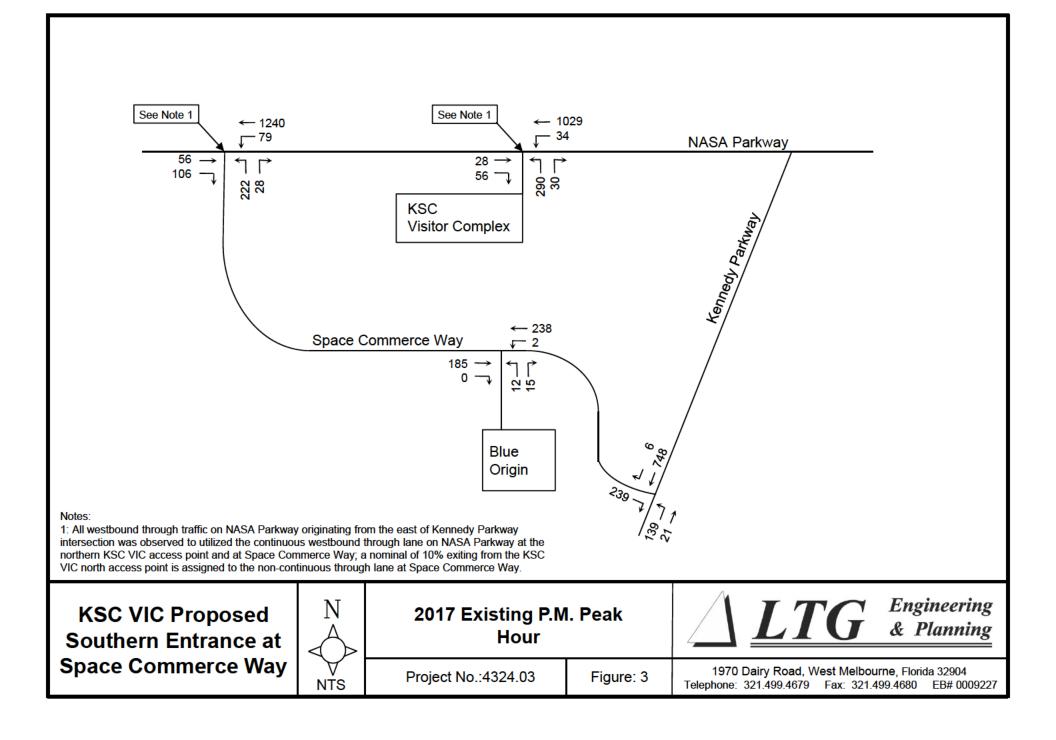
			Existing C	onditions		
	A.	M. Peak-Ho	our	Ρ.	M. Peak-Ho	ur
Intersection	Delay (sec.)	LOS	V/C greater than 1.0?	Delay (sec.)	LOS	V/C greater than 1.0?
NASA Parkway at Space Commerce Way	8.5	А	No	12.3	В	No
NASA Parkway at Visitor Center Complex	10.2	В	No	18.4	В	No
Space Commerce Way at Kennedy Parkway	12.3	В	No	17.7	В	No

Roadway Segment Analysis

Roadway level of service describes the operating condition determined from the number of vehicles passing over a given section of roadway during a specified time period. It is a qualitative measure of several factors which include: speed, travel time, traffic interruptions, freedom to maneuver, driver comfort, convenience, safety and vehicle operating costs. Six levels of service have been established as standards by which to gauge roadway performance, designated by the letters A through F. The level of service categories are defined as follows:

Level of Service A: Free flow, individual users virtually unaffected by the presence of others Level of Service B: Stable flow with a high degree of freedom to select operating conditions Level of Service C: Flow remains stable, but with significant interactions with others Level of Service D: High-density stable flow in which the freedom to maneuver is severely restricted Level of Service E: This condition represents the capacity level of the road Level of Service F: Forced flow in which the traffic exceeds the amount that can be served

The existing AADT for the study area roadway segment was obtained from FDOT's Florida Transportation Information data. The existing p.m. peak-hour two-way LOS for the study area road segment is shown in Table 3. As indicated in Table 3 below, the study roadway segment currently operates within an acceptable LOS.


 Table 3

 Existing P.M. Peak-Hour Two-Way LOS - Roadway Segments

 Space Commerce Way at Southern KSC Entrance

	Segment			NASA	Peak-Hour	Existing		
Roadway	From	То	Lanes	Preferred LOS	Two-Way Capacity for LOS	Peak-Hour Two-Way Volume	LOS	
Space Commerce Way	NASA Parkway	Kennedy Parkway	2	F	1.427	306	С	

FUTURE TRAFFIC CONDITIONS

The critical intersections and roadway segment were analyzed to determine potential impacts based on 2018 opening year and 2035 design year conditions. The following documents the procedures used to determine the traffic for both analysis years.

The unique characteristics of the existing facilities and proposed developments within the study area required a hybrid approach in estimating the future traffic volumes. Linear average growth was used for those existing facilities where future growth trends could be estimated from historical records and client data. For other developments ITE trip generation rates were developed based on the anticipated land use and intensity:

- KSC VIC (growth rate) •
- NASA/Cape Canaveral (growth rate) •
- Blue Origin (ITE trip generation) •
- Space Florida/Exploration Park (ITE trip generation)

Background Traffic Growth Rates

Growth rates for the KSC VIC, NASA KSC, Cape Canaveral AFB were determined via extrapolation of current growth data. KSC VIC traffic growth data was interpolated from the projected annual attendance from 2016 to 2035. Table 4 identifies the KSC VIC growth data utilized. The raw growth data is found in Appendix F.

Spa	-	(SC VIC Growth R erce Way at South		nce
-	Year	Sample Month (July)*	2017 % ∆	

S е

Table 4

2017 177,080 NA 2018 182,392 3% 2035 357.317 202%

*Same % Δ for all months of data

NASA KSC and Cape Canaveral AFB growth data was determined via analysis of the latest Central Florida Regional Planning Model (CFRPM). Employment projections in the model's Traffic Analysis Zones (TAZ) were analyzed for years 2020 and 2040. With this data, annualized growth rates were calculated as shown in Table 5. The raw data is found in Appendix G.

Table 5
NASA/Cape Canaveral AFB Growth Rates
Space Commerce Way at Southern KSC Entrance

	TAZ 299	0 (VAB)	TAZ 2	992 (Canavei	al AFB)	TAZ 299		
Year	Indust.	Service	Comm.	Indust.	Service	Indust.	Service	Total
2020	968	1	1	9	2,526	53	2,595	6,153
2040	2,905	4	2	26	2,548	60	3,036	8,581
Vol. Δ	1,937	3	1	17	22	7	441	2,428
Calculated Annualized Growth Rate (Minimum 2% Applied)								

Lassiter Transportation Group, Inc.

Space Commerce Way at Southern KSC VIC Entrance

Trip Generation Growth

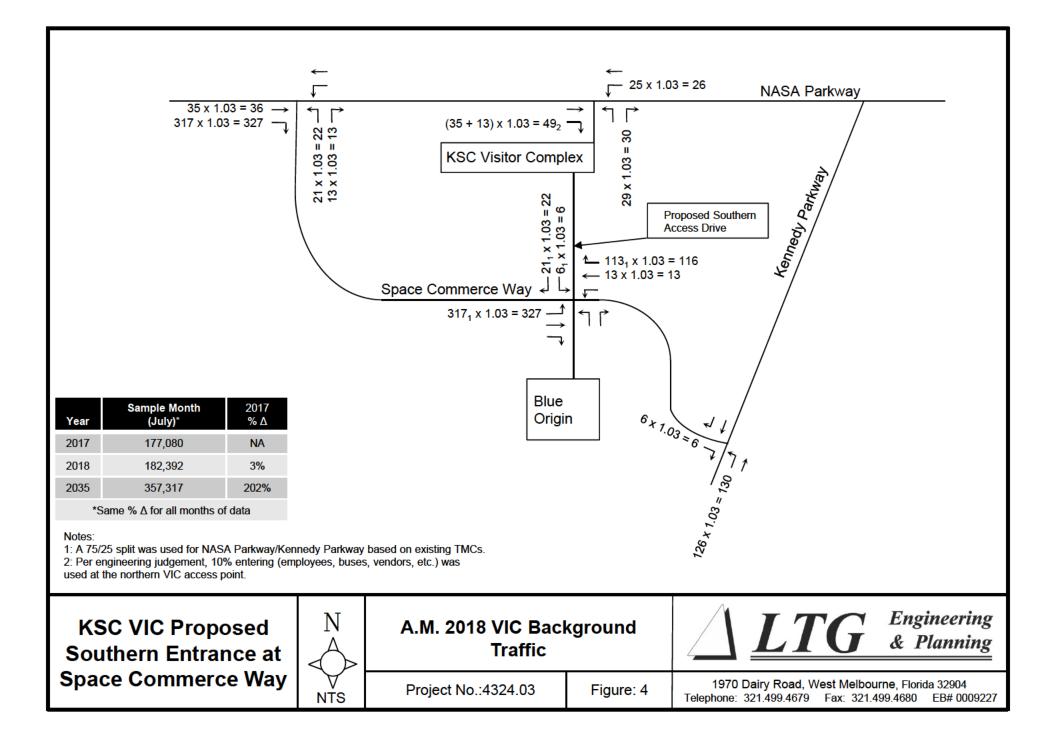
The total trip generation for the Blue Origin development was determined using the trip generation rates contained in the *Institute of Transportation Engineers (ITE) 9th edition* of the <u>Trip Generation Manual</u>. Table 6 shows the anticipated total daily, a.m. and p.m. peak-hour trip generation for the development under 2018 and 2035 conditions.

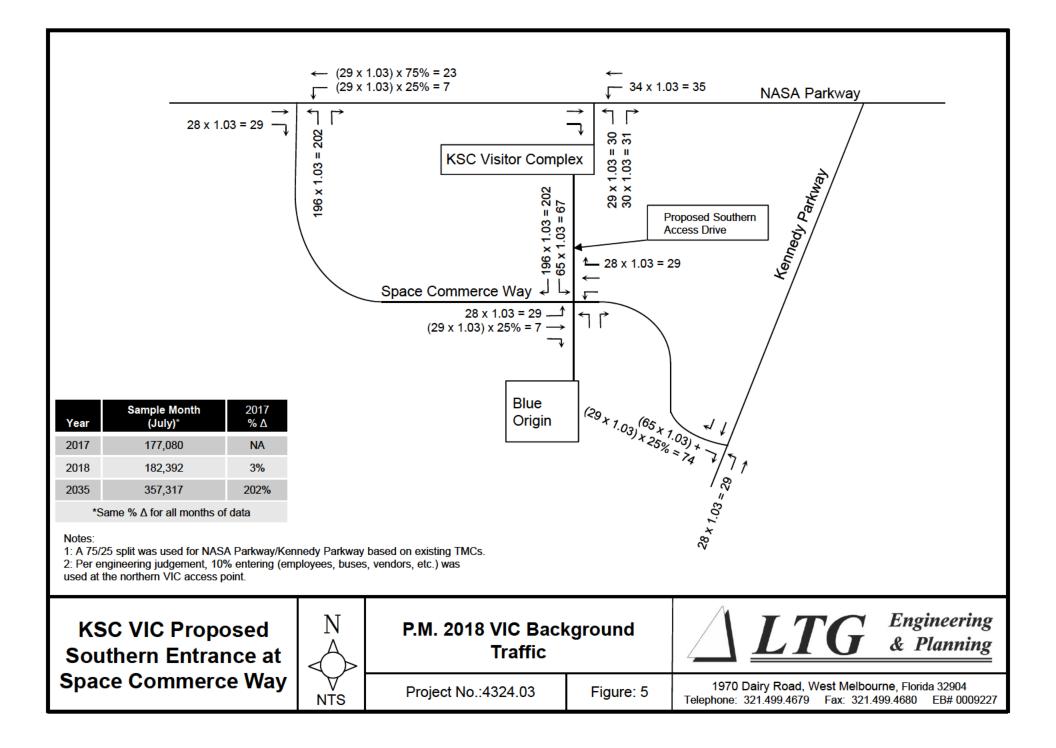
Table 6Blue Origin Trip GenerationSpace Commerce Way at Southern KSC Entrance

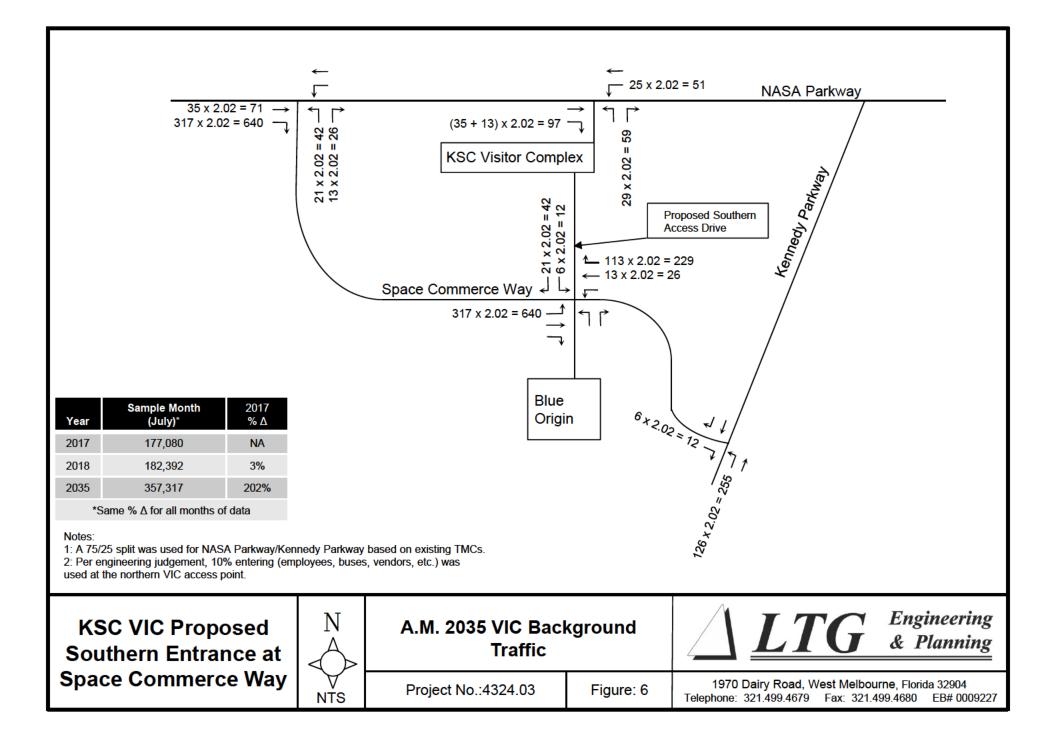
. <u> </u>	Time Period	Generator	ITE Land Use Code	Trip Rate Equation	Units (X) Employees	Total Trips (T)	Percent Enter	Percent Exit	Trips Entering	Trips Exiting
	Daily	Manufacturing	140	T = 1.75(X) + 245.96	175	552	50%	50%	276	276
2018	AM Peak- Hour	Manufacturing	140	Ln(T) = 0.85 Ln(X) + 0.07	175	87	73%	27%	64	23
	PM Peak- Hour	Manufacturing	140	Ln(T) = 0.78 Ln(X) +0.48	175	91	44%	56%	40	51
	Daily	Manufacturing	140	T = 1.75(X) + 245.96	350	859	50%	50%	430	429
2035	AM Peak- Hour	Manufacturing	140	Ln(T) = 0.85 Ln(X) + 0.07	350	156	73%	27%	114	42
	PM Peak- Hour	Manufacturing	140	Ln(T) = 0.78 Ln(X) +0.48	350	156	44%	56%	69	87

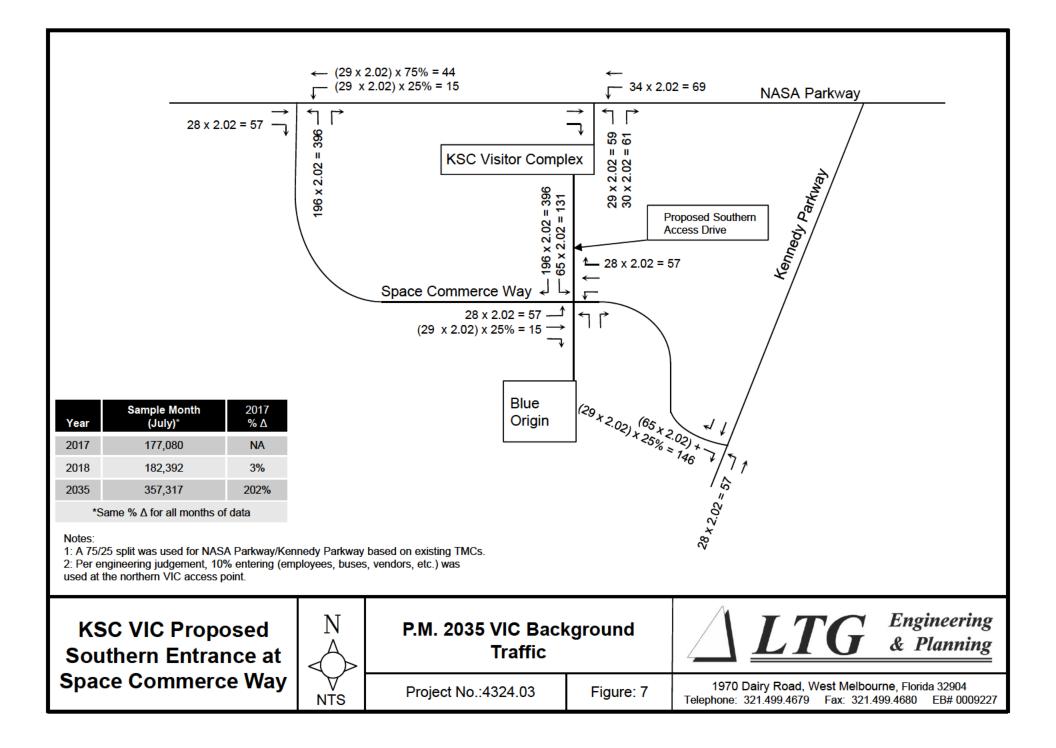
The total trip generation for the Space Florida/Exploration Park component development was also determined using the trip generation rates contained in the *Institute of Transportation Engineers (ITE) 9th edition* of the <u>Trip</u> <u>Generation Manual</u>. Table 7 shows the total daily, a.m. and p.m. peak-hour trip generation for component under 2035 conditions. It should be noted that there is no anticipated growth of this component for 2018 conditions.

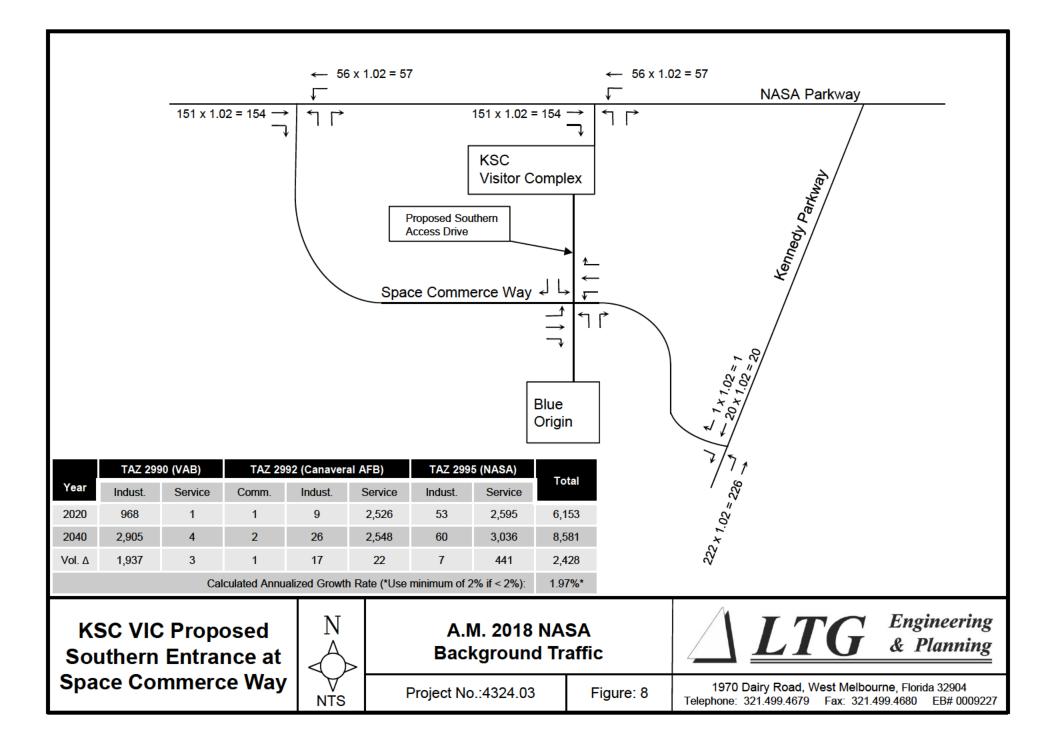
Table 7Space Florida/Exploration Park Trip GenerationSpace Commerce Way at Southern KSC Entrance

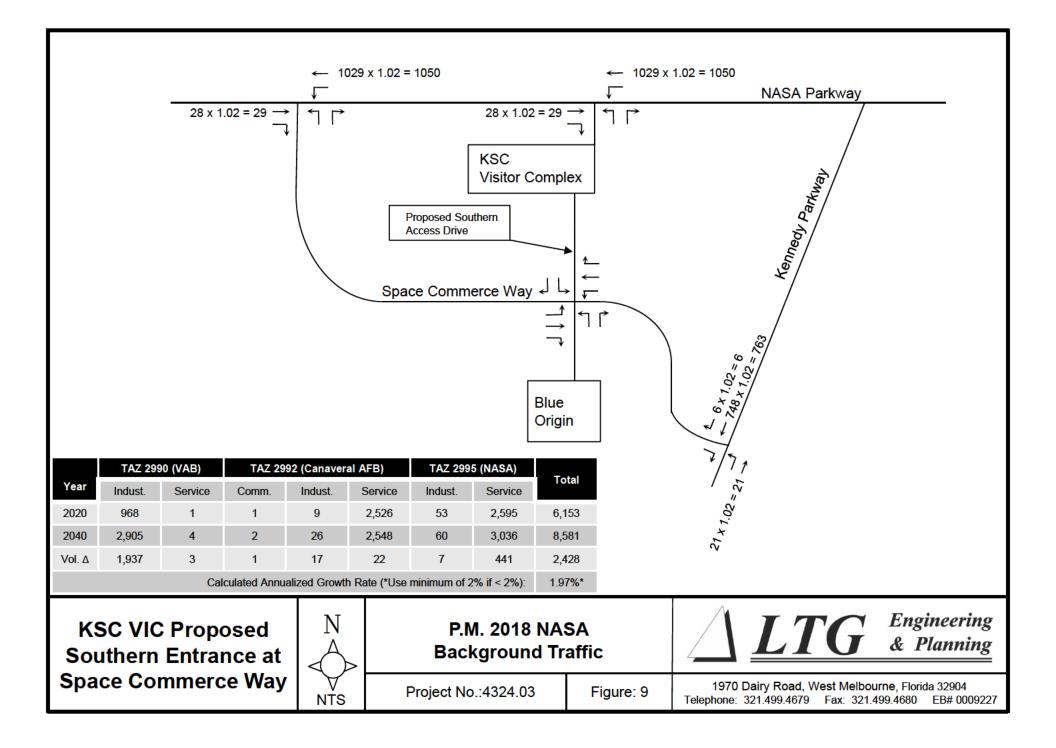

	Time Period	Generator	ITE Land Use Code	Trip Rate Equation	Units (X) Employees	Total Trips (T)	Percent Enter	Percent Exit	Trips Entering	Trips Exiting
	Daily	Corporate Headquarters Building	714	Ln(T) = 0.97 Ln(X) +2.23	322	2,518	50%	50%	1,260	1,258
2035	AM Peak- Hour	Corporate Headquarters Building	714	T = 1.52(X)	322	489	93%	7%	455	34
	PM Peak- Hour	Corporate Headquarters Building	714	T = 1.41(X)	322	454	10%	90%	46	408


Trip Distribution

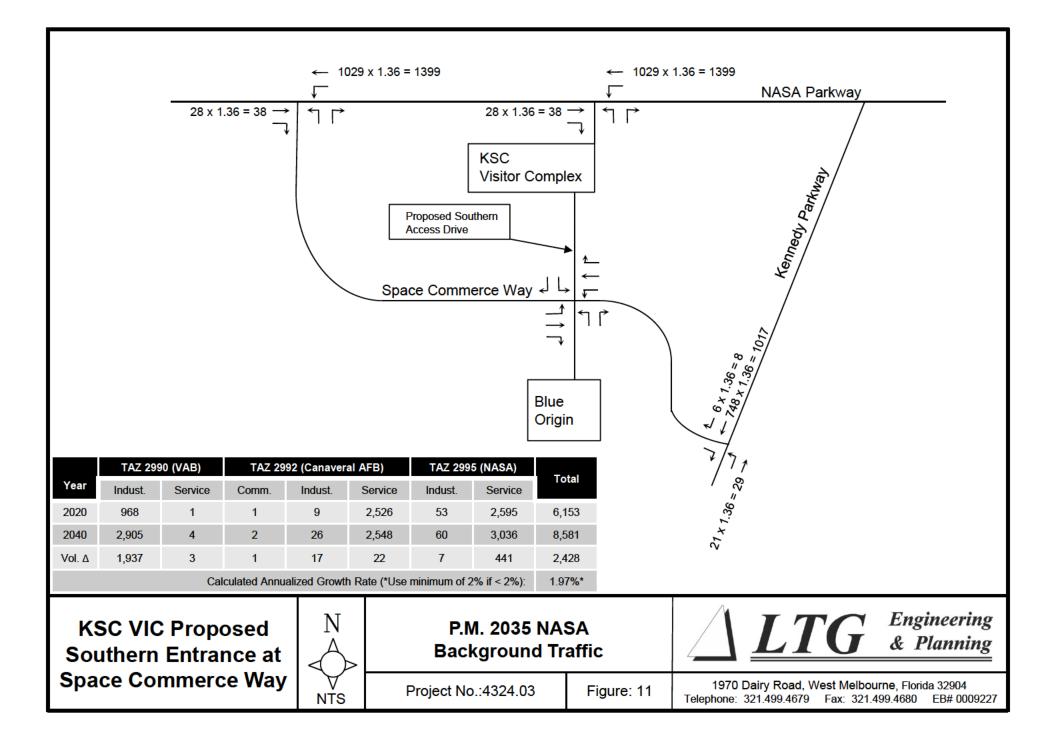

The process of determining the directional flow of traffic associated with a new development is called trip distribution. Each component's trip distribution was determined based on the directional distribution of existing traffic and modified to account for future developments in the study area. The anticipated distribution for each development is shown with future volumes in Figures 4-19.

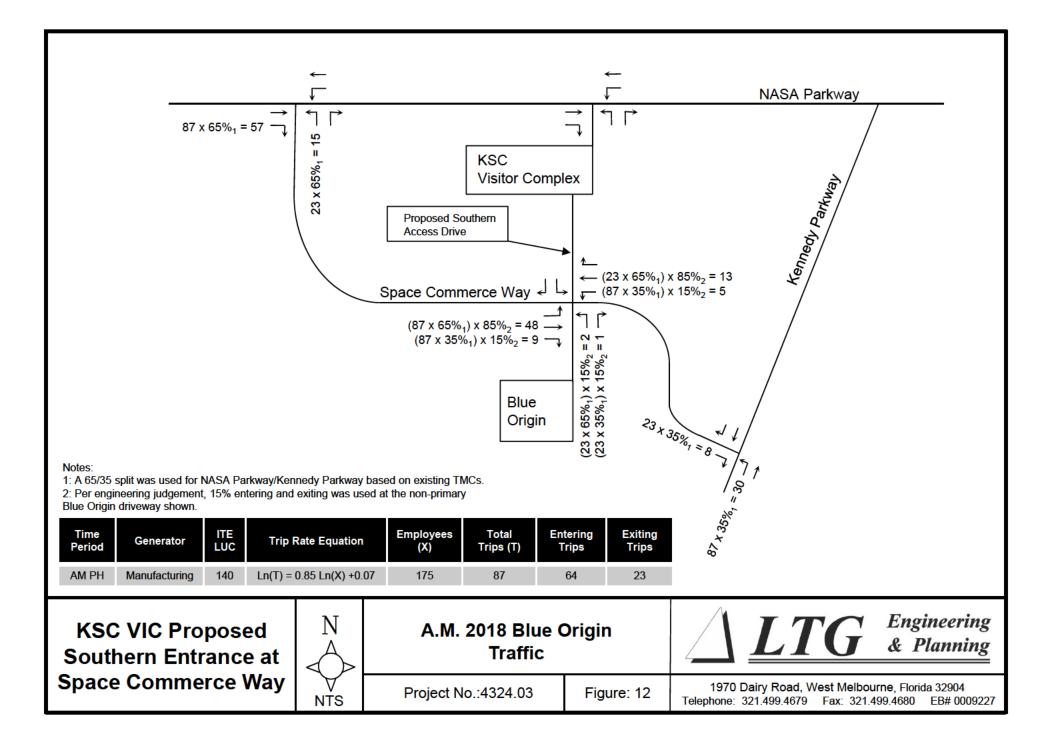

Trip Assignment

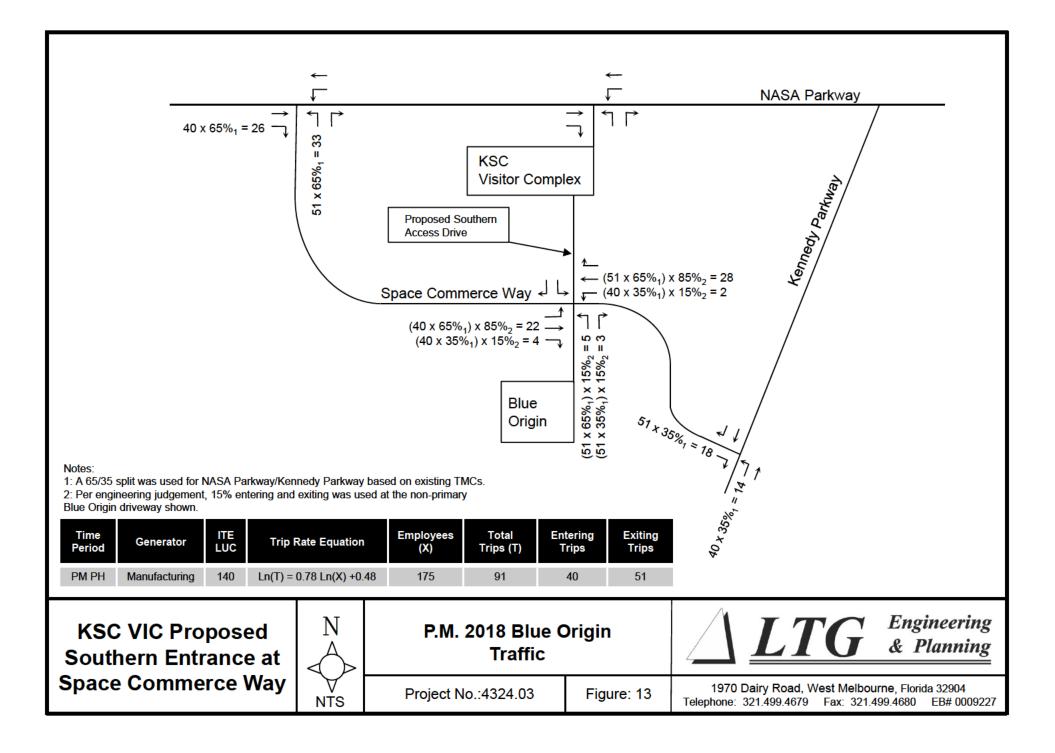

The final step in the analysis was to assign the future traffic to the road network per each component. Figure 20-23 graphically depicts the a.m. and p.m. peak-hour traffic assignment for each component, as well as total combined future a.m. and p.m. traffic volumes.

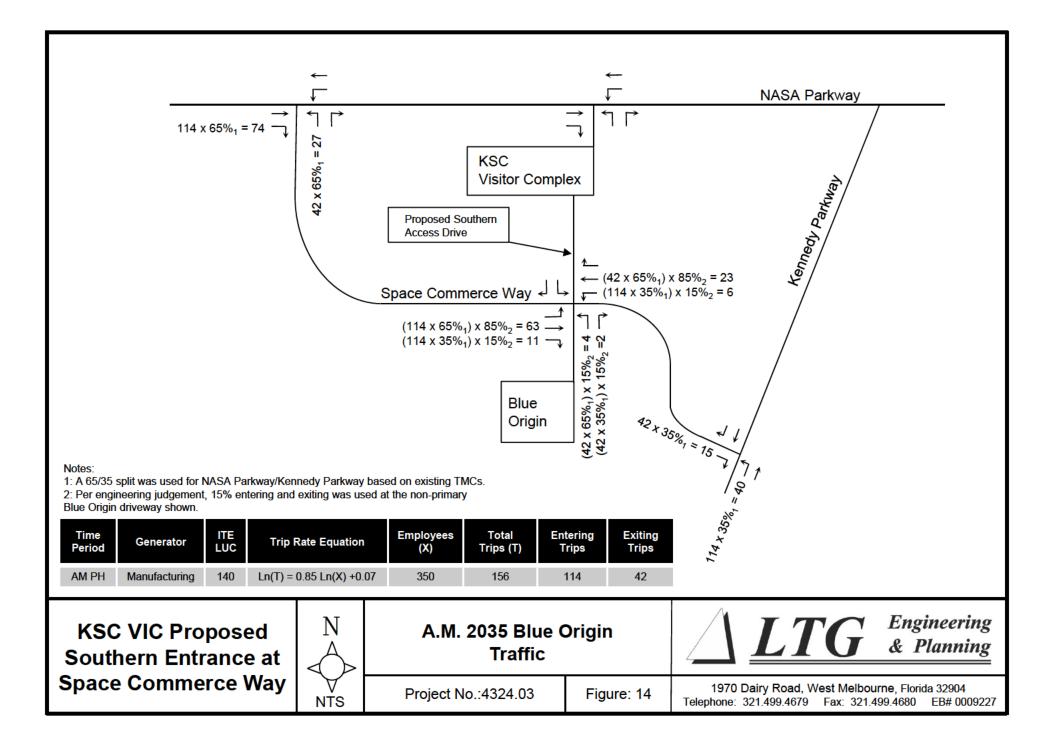


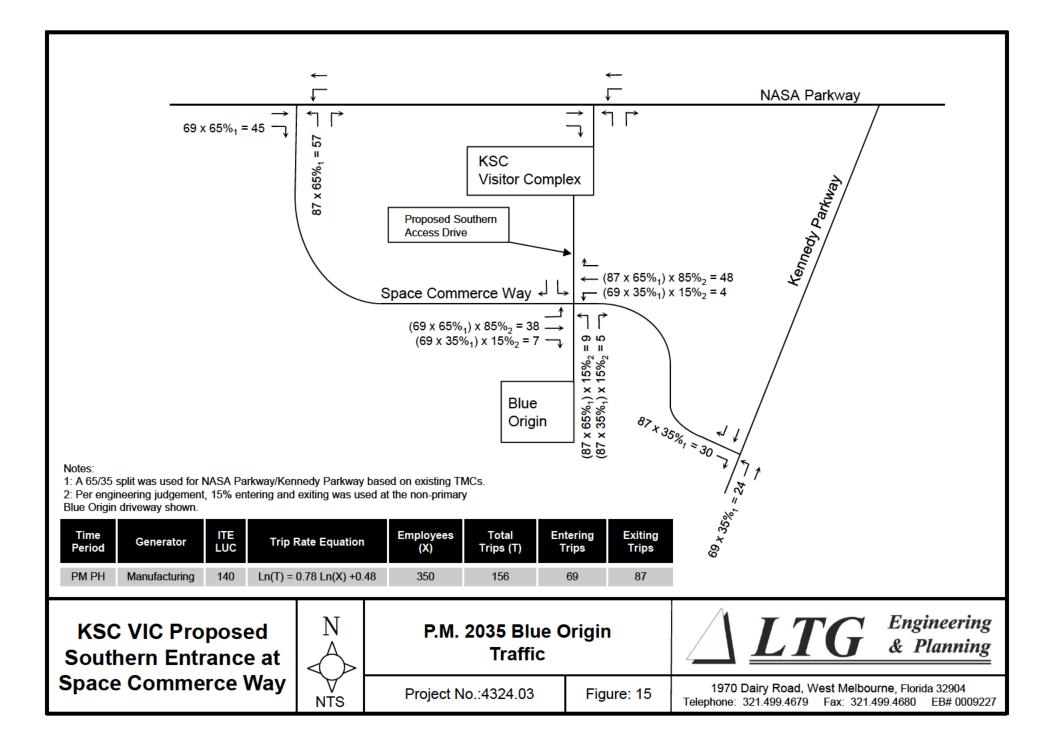


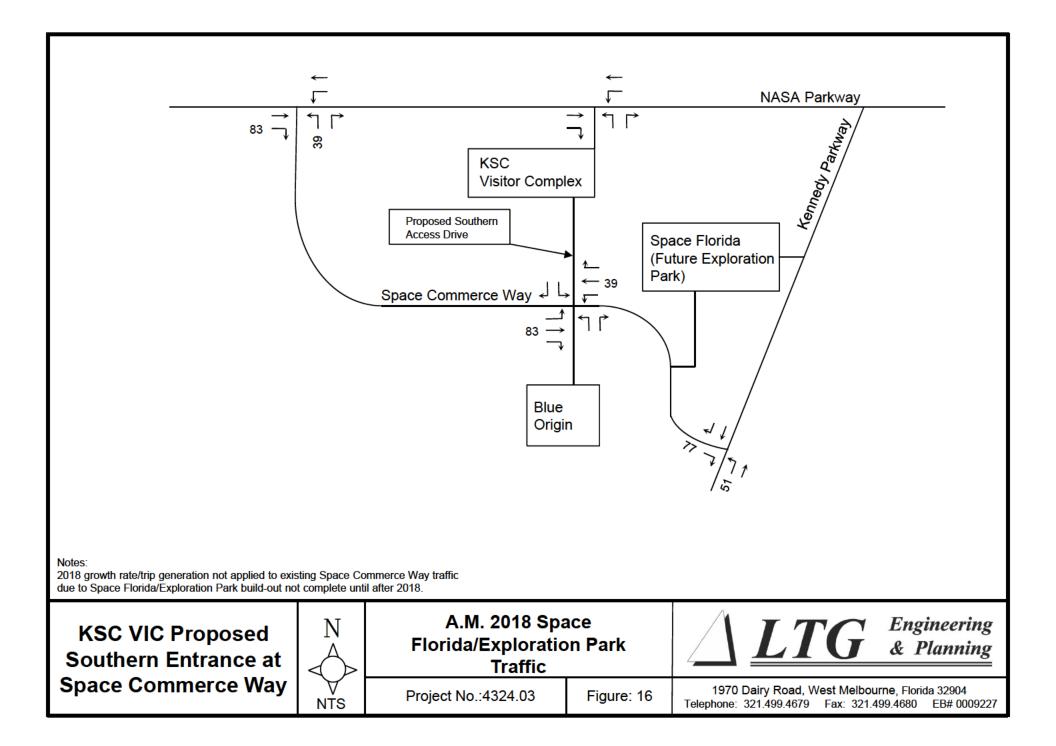


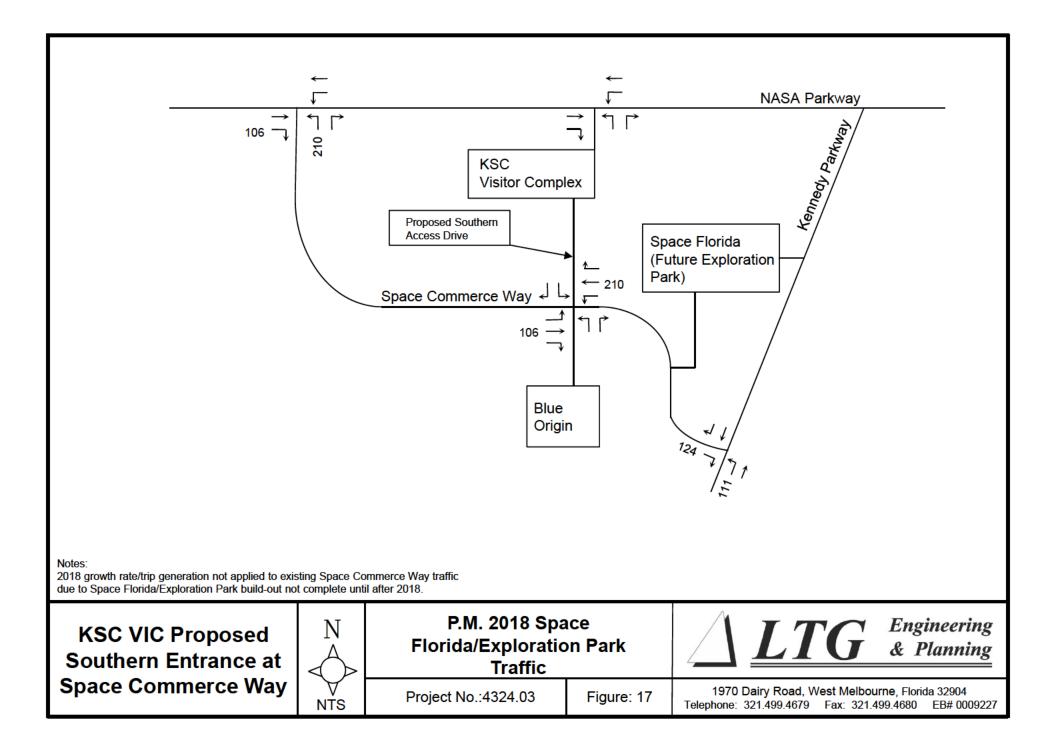


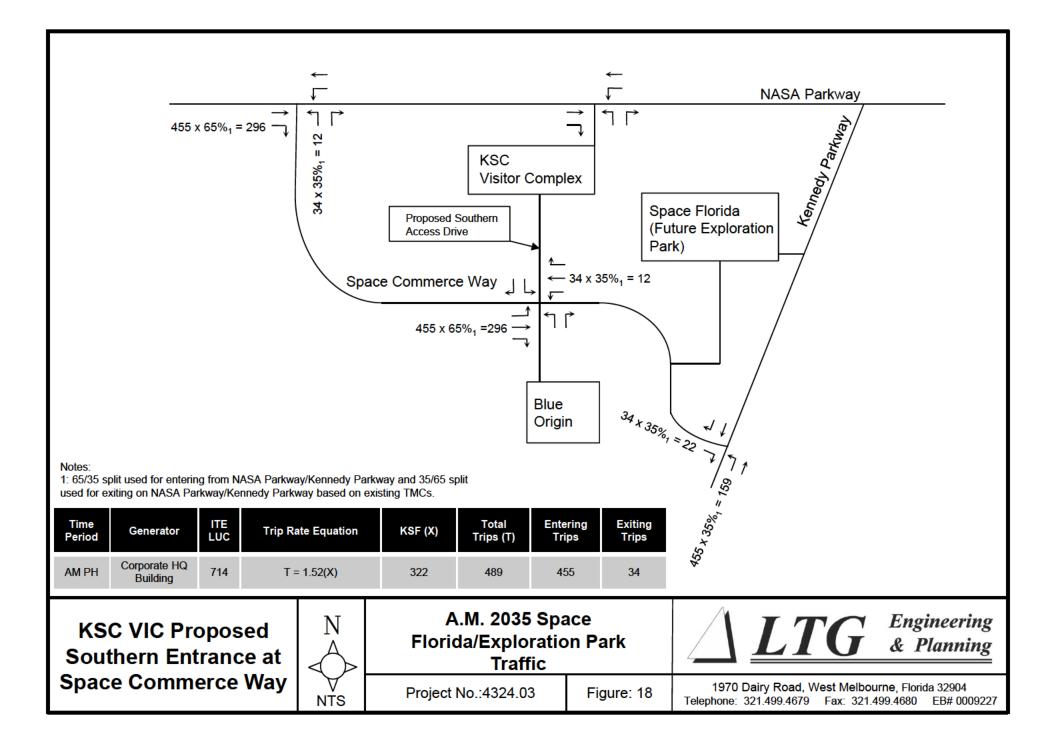


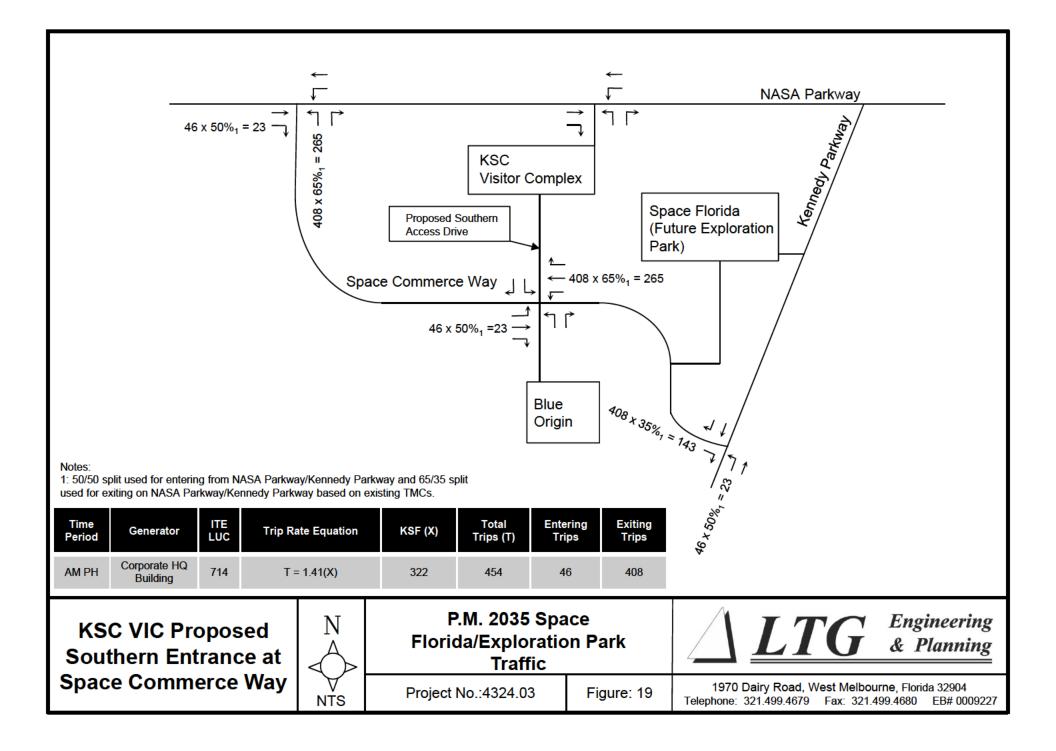


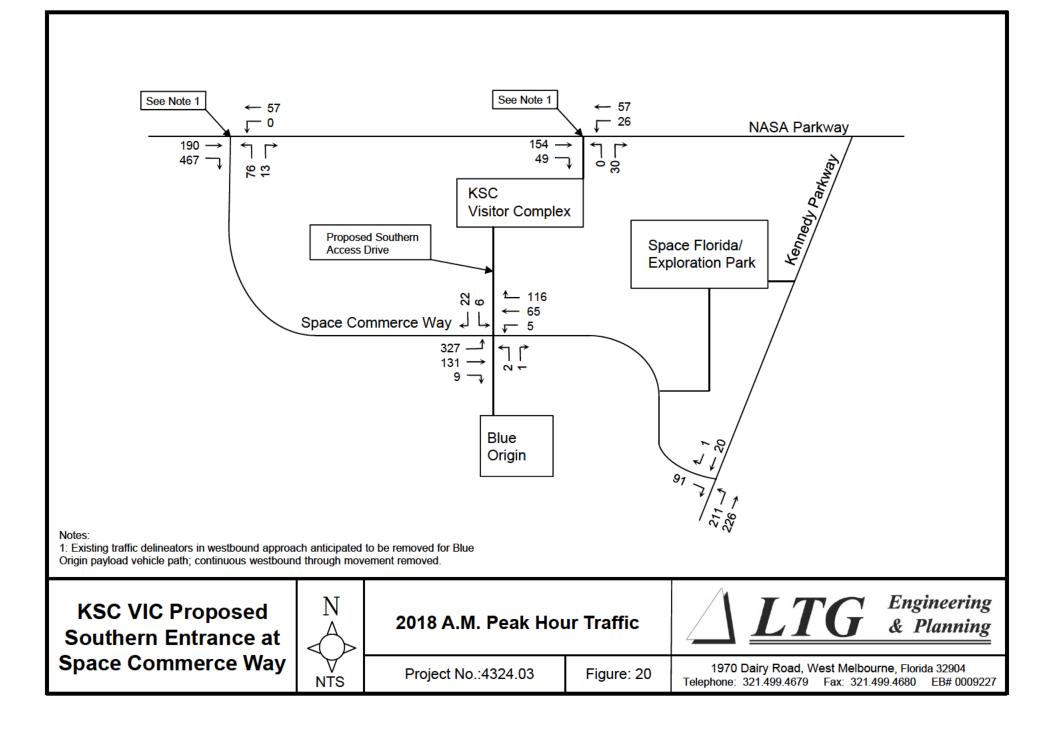


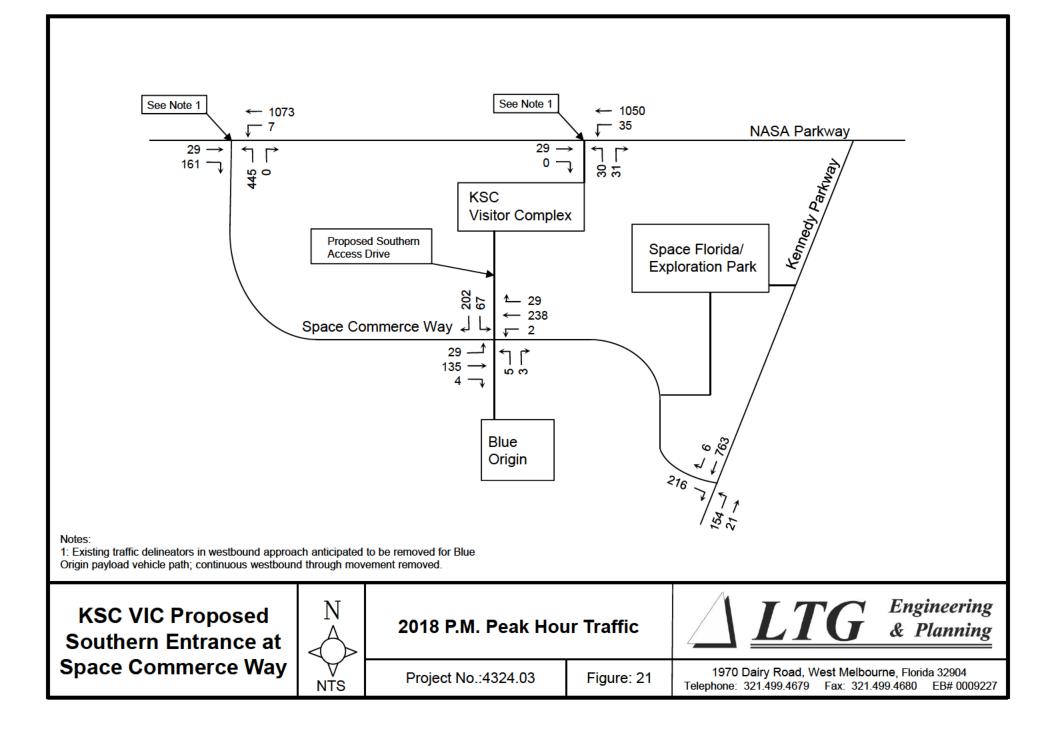


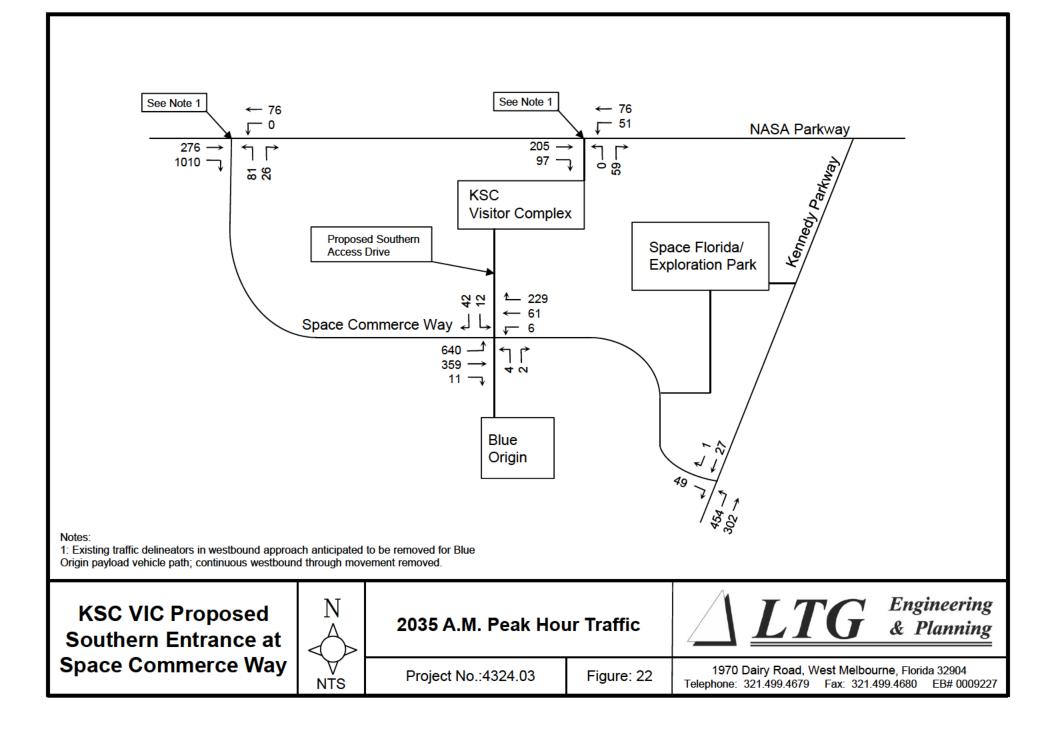


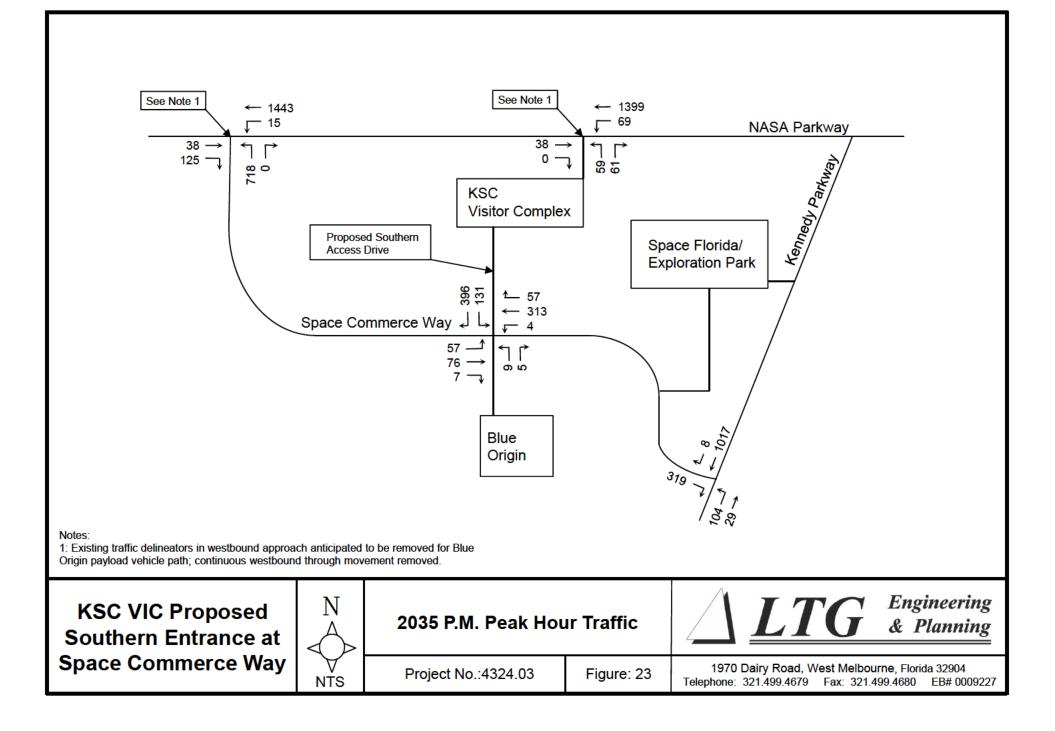












FUTURE ROADWAY ANALYSIS

The study intersections and segment were analyzed based on the future 2018 and 2035 roadway conditions to determine potential impacts and to investigate mitigation recommendations. It should be noted that the intersection of Space Commerce Way at the Proposed Southern KSC VIC Entrance will be signalized under future conditions and will be analyzed as signalized under future 2018 and 2035 conditions.

2018 Opening Year Signalized Intersection Analysis

The signalized intersections were analyzed to determine the operational LOS under 2018 conditions during the a.m. and p.m. peak-hours. As indicated in Table 8, all signalized intersections are anticipated to operate at an acceptable LOS with all approach V/C ratios below 1.0. The HCS summary sheets are located in **Appendix H**.

Table 8
2018 Opening Year Peak-Hour LOS – Signalized Intersections
Space Commerce Way at Southern KSC Entrance

	A.	M. Peak-Ho	our	P.M. Peak-Hour			
	Delay (sec.)	LOS	V/C greater than 1.0?	Delay (sec.)	LOS	V/C greater than 1.0?	
NASA Parkway at Space Commerce Way	5.6	А	No	12.9	В	No	
NASA Parkway at Visitor Center Complex	7.8	А	No	5.5	А	No	
Space Commerce Way at Kennedy Parkway	13.1	В	No	17.5	В	No	
Space Commerce Way at Proposed							
Southern KSC VIC Entrance	20.3	С	No	23.1	С	No	

2035 Design Year Signalized Intersection Analysis

The signalized intersections were analyzed to determine the operational LOS under 2035 conditions during the a.m. and p.m. peak-hours. As indicated in Table 9, all signalized intersections are anticipated to operate at an acceptable LOS with all approach V/C ratios below 1.0 under 2035 conditions except NASA Parkway at Space Commerce Way. The HCS summary sheets are located in **Appendix I**.

 Table 9

 2035 Design Year Peak-Hour LOS – Signalized Intersections

 Space Commerce Way at Southern KSC Entrance

	A.M. Peak-Hour			P.M. Peak-Hour			
	Delay (sec.)	LOS	V/C greater than 1.0?	Delay (sec.)	LOS	V/C greater than 1.0?	
NASA Parkway at Space Commerce Way	28.4	С	Yes	60.3	Е	Yes	
NASA Parkway at Visitor Center Complex	8.9	А	No	8.0	А	No	
Space Commerce Way at Kennedy Parkway	18.2	В	No	25.8	С	No	
Space Commerce Way at Proposed							
Southern KSC VIC Entrance	22.8	С	No	26.6	С	No	

To mitigate the LOS and V/C deficiencies for NASA Parkway at Space Commerce Way the following improvements are recommended for 2035 conditions:

- Dual northbound left-turn lanes
- Optimize timing splits

Table 10 provides the revised analysis findings for NASA Parkway at Space Commerce Way with the recommended improvements incorporated. The HCS summary sheets are located in **Appendix J**.

Table 10
2035 Design Year Peak-Hour LOS – Improved Signalized Intersections
Space Commerce Way at Southern KSC Entrance

	A.M. Peak-Hour		P.M. Peak-Hour		ur	
	Delay (sec.)	LOS	V/C greater than 1.0?	Delay (sec.)	LOS	V/C greater than 1.0?
NASA Parkway at Space Commerce Way	18.9	В	No	14.9	В	No

Roadway Segment Analysis

The 2018 and 2035 peak-hour two-way LOS for the study area road segment is shown in Table 11 and 12, respectively. As indicated in the tables, the study roadway segment will operate within an acceptable LOS under 2018 and 2035 conditions. It should be noted that the p.m. peak-hour was the highest peak-hour under 2018 conditions while the a.m. peak-hour was the highest peak-hour under 2035 conditions. This is attributed to the different growth rates and trip generation components used for the future volumes. Accordingly, the highest peak-hours identified for 2018 and 2035 conditions were utilized for the analysis.

Table 11 2018 Opening Year Peak-Hour Two-Way LOS (P.M.) - Roadway Segment Space Commerce Way at Space Center Visitor Complex Entrance

	Segment			NASA	Peak-Hour	Desire	
Roadway	From	То	Lanes	Preferred LOS	Two-Way Capacity for LOS	Design Traffic	LOS
Space Commerce Way	NASA Parkway	Kennedy Parkway	2	С	1,427	613	С

 Table 12

 2035 Design Year Peak-Hour Two-Way LOS (A.M.) - Roadway Segment

 Space Commerce Way at Space Center Visitor Complex Entrance

	Segi	ment		NASA	Peak-Hour	Design	
Roadway	From	То	Lanes	Preferred LOS	Two-Way Capacity for LOS	Design Traffic	LOS
Space Commerce							
Way	NASA Parkway	Kennedy Parkway	2	С	1,427	1,117	С

Access Analysis

The proposed KSC VIC southern access drive will provide full-access to and from eastbound and westbound Space Commerce Way on the north leg of the intersection. The intersection will also provide full-access to and from the minor Blue Origin driveway on the south leg.

The need and geometry for turn lanes on Space Commerce Way was evaluated using National Cooperative Highway Research Program (NCHRP) Report 457, FDOT Standard Index 301 and HCS output. The summary worksheets are included as **Appendix K**. The results of the turn lane evaluation are provided below:

2018 Opening Year Conditions:

Eastbound:	Dual left-turn lanes; approximate 125 ft. 95 th percentile queue + 290 ft. deceleration distance = 415 ft. total turn lane length One shared through/right-turn lane
Westbound:	One left-turn lane; approximate 75 ft. 95 th percentile queue + 290 ft. deceleration distance = 365 ft. total turn lane length One through lane One right-turn lane; approximate 25 ft. 95 th percentile queue + 290 ft. deceleration distance = 315 ft. total turn lane length
Northbound:	One shared left/right-turn lane

• Southbound: One left-turn lane; approximate 75 ft. 95th percentile queue + 145 ft. deceleration distance = **220 ft. total turn lane length** One right-turn lane; approximate 125 ft. 95th percentile queue + 145 deceleration distance = **270 ft. total turn lane length**

2035 Design Year Conditions:

 Eastbound: 	Dual left-turn lanes; approximate 250 ft. 95th percentile queue + 290 ft. deceleration
	distance = 540 ft. total turn lane length
	One shared through lane
	One right-turn lane; approximate 25 ft. 95 th percentile queue + 290 ft. deceleration
	distance = 315 ft. total turn lane length

- Westbound: One left-turn lane; approximate 25 ft. 95th percentile queue + 290 ft. deceleration distance = **315 ft. total turn lane length** One through lane One right-turn lane; approximate 200 ft. 95th percentile queue + 290 ft. deceleration distance = **490 ft. total turn lane length**
- Northbound: One shared left/right-turn lane
- Southbound: One left-turn lane; approximate 125 ft. 95th percentile queue + 145 ft. deceleration distance = **270 ft. total turn lane length** One right-turn lane; approximate 125 ft. 95th percentile queue + 145 deceleration distance = **270 ft. total turn lane length**

It should be noted that all total turn lane lengths are estimates based on the 95th percentile queues reported in HCS and the total deceleration length (with taper included; 50 ft. single lane and 100 ft. dual lane) per FDOT Standard Index 301.

Launch Day Traffic

Traffic on an average launch day was evaluated to assess the impact on the study area roadway network and to provide potential mitigation measures. It is recognized that traffic to and from the KSC VIC will be significantly higher, directional, and concentrated for launches during the hours of operation. Coordination and data from the KSC VIC indicates that typical non-seasonal peak-day attendance is approximately 4,500 while typical seasonal peak-day attendance is approximate of 2.5 persons per vehicle. It has also been indicated on previous launches from 2017 (one in July and one in August) that attendance was approximately 12,000 to 13,000. Attendance is anticipated to grow for future manned launches.

Launch dates, times, and attendance varies significantly. Accordingly, only an analysis for the average day was conducted. The final analyses conducted on normal day conditions in both 2018 and 2035 conditions did not indicate failures, with the highest delays at NASA Parkway at Space Commerce Way and at Space Commerce Way at the Proposed Southern KSC VIC Entrance. With this, it can be anticipated that there will be times during heavily concentrated entering and exiting traffic which will cause increased delays and potential failures at the study intersections. To minimize increased delays as efficiently as possible, it is recommended to divide entering traffic when delay at NASA Parkway at Space Commerce Way and at Space Commerce Way at the Proposed Southern KSC VIC Entrance.

Multiple treatments can be utilized for the minimization of delay during launch times:

- Adaptive control, coordination of timings, or specific launch day timing plans to ensure optimum timings are employed.
- Installation of CCTV cameras at intersections to give KSC VIC/NASA traffic control staff views of real-time traffic conditions, allowing for manual operation of the signals due to emergent conditions.
- Installation of dynamic message or trailblazer signs on NASA Parkway and Space Commerce Way to direct visitors to the appropriate entrance and balance flows.
- On-site signage/personnel directing visitors to the exits after launches to balance outgoing traffic volumes between NASA Parkway and Kennedy Parkway.

These potential treatments can be combined in coordination with each other to best minimize delays. However, the installation of dynamic message or trailblazer signs should be considered a priority. Tourism facilities attract above average rates of visitors unfamiliar with the KSC VIC and adjacent roadway network. Unfamiliar drivers should be made aware of traffic patterns as soon and as clearly as possible. This not only applies to launch days, but also applies to the new traffic pattern for non-launch days. A dynamic message sign or trailblazer will be very effective in directing visitors to the new southern entrance.

CONCLUSIONS AND RECOMMENDATIONS

This study was conducted to evaluate the impact of the proposed southern KSC VIC entrance at Space Commerce Way in unincorporated Brevard County, Florida. The summary and results of the study are detailed below:

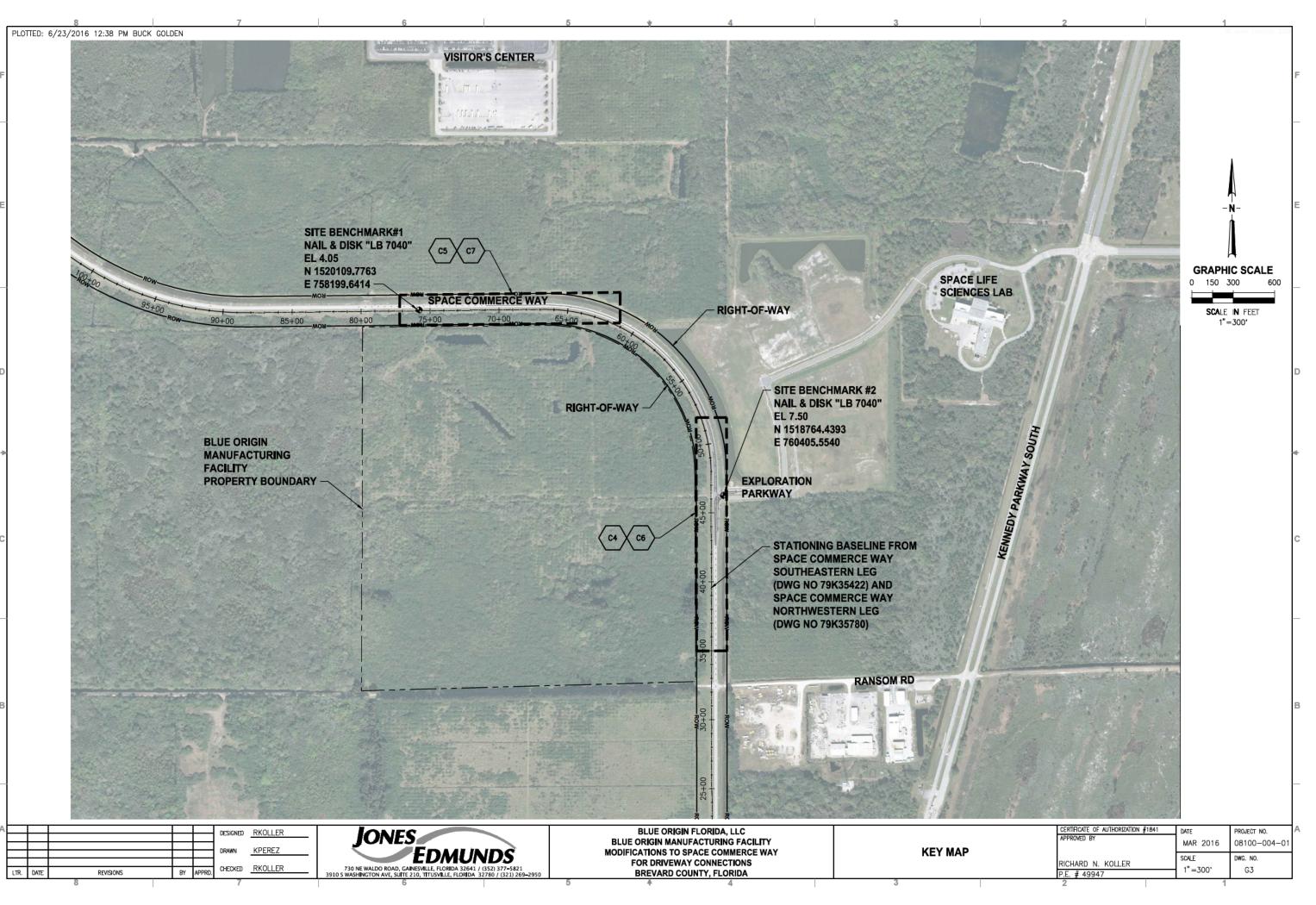
- The Proposed Southern KSC VIC Entrance will be used exclusively for visitors while the existing northern entrance will be used by employees, buses, and vendors.
- The Proposed Southern KSC VIC Entrance will be opposite of a minor driveway for the future Blue Origin facility under construction.
- Both opening year 2018 and design year 2035 conditions were analyzed.

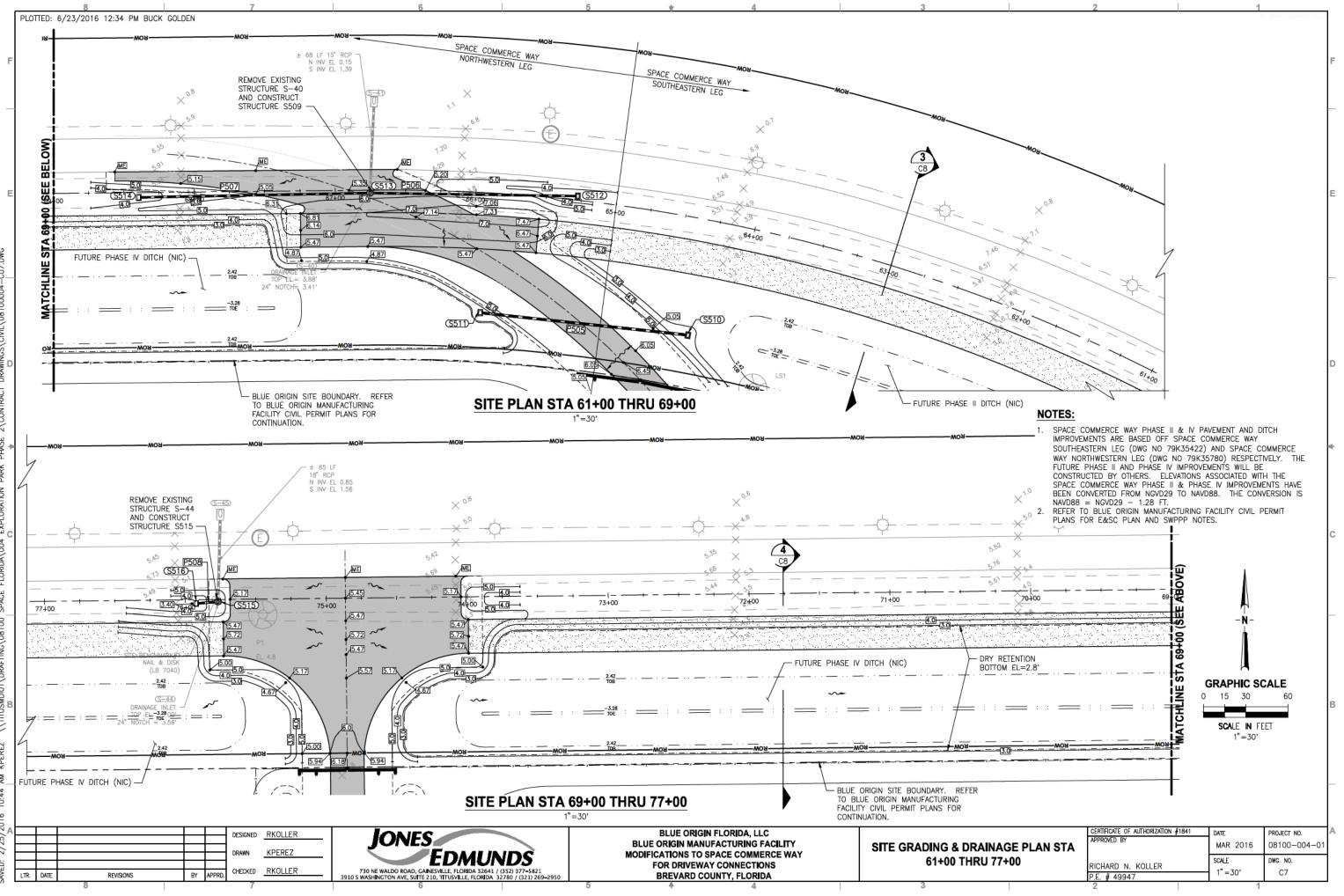
Existing

- Under existing conditions, the unsignalized intersection of Space Commerce Way at the Southern KSC VIC Entrance operates within an acceptable LOS during the a.m. and p.m. peak-hour.
- Under existing conditions, all signalized intersections operate within an acceptable LOS with V/C ratios less than 1.0 during the a.m. and p.m. peak-hour.
- Under existing conditions, the study area roadway segment analyzed, Space Commerce Way from NASA Parkway to Kennedy Parkway currently operates within an acceptable LOS.

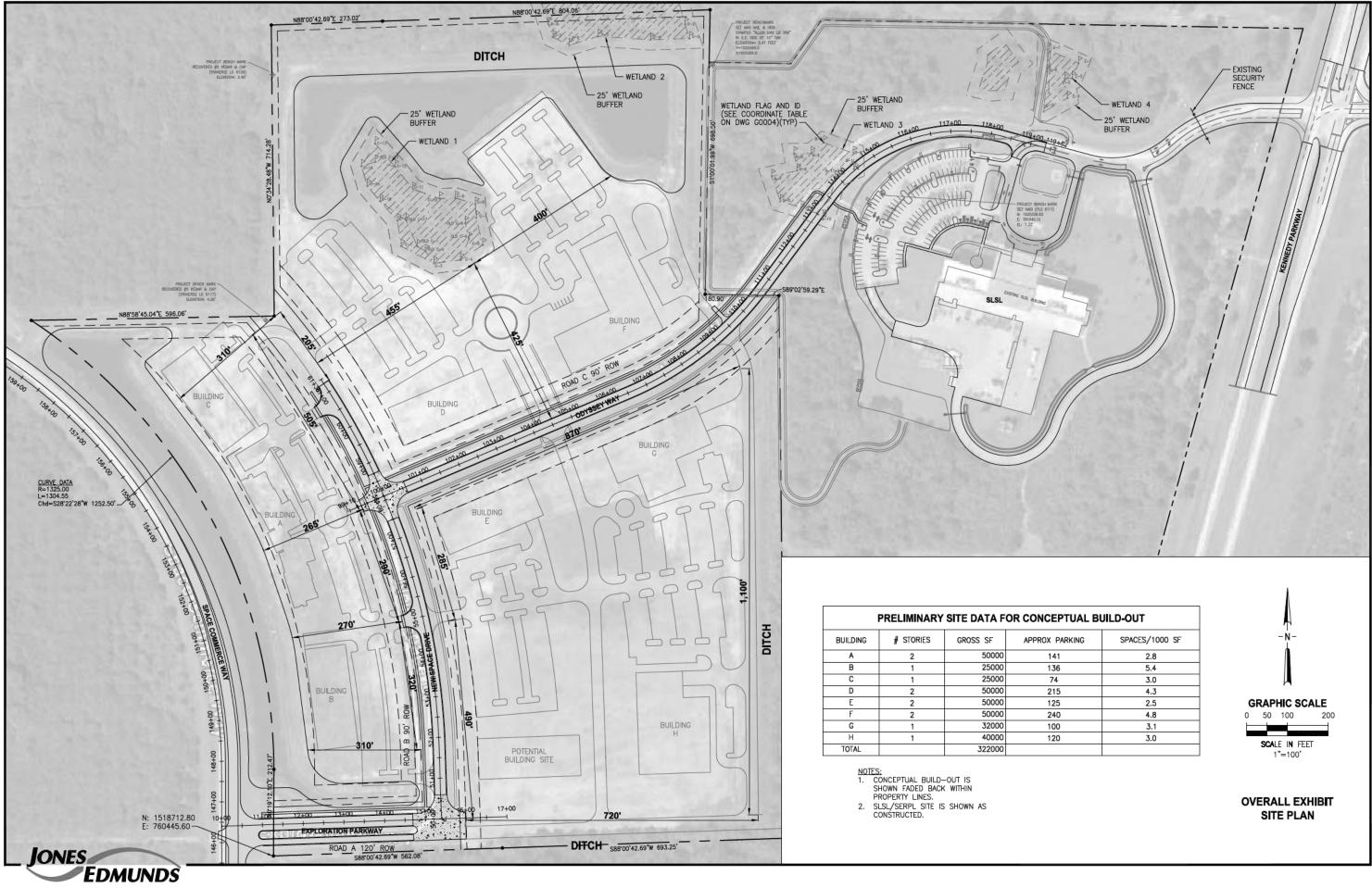
2018 Opening Year

- Under 2018 conditions, the existing unsignalized intersection of Space Commerce Way at the Southern KSC VIC Entrance is anticipated to be under signal control.
- Under 2018 conditions, the newly signalized intersection of Space Commerce Way at the Southern KSC VIC Entrance is recommended to have the following minimum geometry:
 - Eastbound: Dual left-turn lanes with 415 ft. length One shared through/right-turn lane
 - Westbound: One left-turn lane with 365 ft. length One through lane One right-turn lane with 315 ft. length
 - o Northbound: One shared left/right-turn lane
 - Southbound: One left-turn lane with 220 ft. length
 One right-turn lane with 270 ft. length
- Under 2018 conditions, all signalized intersections are anticipated to operate within an acceptable LOS with V/C ratio less than 1.0.


• Under 2018 conditions, the study area roadway segment analyzed, Space Commerce Way from NASA Parkway to Kennedy Parkway is anticipated to operate within an acceptable LOS.


2035 Design Year

- Under 2035 conditions, the unsignalized intersections are anticipated to operate within an acceptable LOS with V/C ratios less than 1.0 except the intersection of NASA Parkway at Space Commerce Way.
- To mitigate the deficiencies at NASA Parkway at Space Commerce Way, the following improvements are recommended:
 - Dual northbound left-turn lanes
 - Optimize timing splits
- Under 2035 conditions, the signalized intersection of Space Commerce Way at the Southern KSC VIC Entrance is recommended to have the following minimum geometry:
 - Eastbound: Dual left-turn lanes with 540 ft. length
 One shared through lane
 One right-turn lanes with 315 ft. length
 - Westbound: One left-turn lane with 315 ft. length
 One through lane
 One right-turn lane with 490 ft. length
 - Northbound: One shared left/right-turn lane
 - Southbound: One left-turn lane with 270 ft. length One right-turn lane with 270 ft. length
- Under 2035 conditions, the study area roadway segment analyzed, Space Commerce Way from NASA Parkway to Kennedy Parkway is anticipated to operate within an acceptable LOS.


APPENDICES

APPENDIX A Preliminary Site/Roadway Concept Plan

8 AM

ONCEPTUAL BUILD-OUT			
PPROX PARKING	SPACES/1000 SF		
141	2.8		
136	5.4		
74	3.0		
215	4.3		
125	2.5		
240	4.8		
100	3.1		
120	3.0		
	l		

APPENDIX B Turning Movement Counts

TIME	1 EAST	Total
	EAD I	
01:00	3	3
02:00	7	7
03:00	2	2
04:00	2	2
05:00	7	7
06:00	41	41
07:00	188	188
08:00	105	105
09:00	88	88
10:00	89	89
11:00	86	86
12:00	103	103
13:00	101	101
14:00	104	104
15:00	116	116
16:00	140	140
17:00	150	150
18:00	203	203
19:00	132	132
20:00	145	145
21:00	54	54
22:00	26	26
23:00	24	24
24:00	34	34
DAY TOTAL	1950	1950
PERCENTS	100.0%	100%
AM Times	06:15	
AM Peaks	188	
PM Times	17:15	
PM Peaks	203	

Machine #: Space Commer Site ID: 00000000151 Description: Space Commerce Way EB W of Prop. Drwy

TIME	1 EAST	Total
01:00	7	7
02:00	7	7
03:00	3	3
04:00	6	3 6 3
05:00	3	
06:00	45	45
07:00	178	178
08:00	104	104
09:00	87	87
10:00	78	78
11:00	79	79
12:00	69	69
13:00	106	106
14:00	78	78
15:00	98	98
16:00	111	111
17:00	161	161
18:00	220	220
19:00	139	139
20:00	130	130
21:00	71	71
22:00	25	25
23:00	28	28
24:00	31	31
DAY TOTAL	1864	1864
PERCENTS	100.0%	100%
AM Times	06:00	
AM Peaks	178	
PM Times PM Peaks	17:00 234	
III ICAND	201	

TIME	1 EAST	Total
00:15	1	1
00:30	0	0
00:45	0	0
01:00	2	2
lour Total	3	3
01:15	0	0
01:30	1	1
	1	
01:45		1
02:00	5	5
iour Total	7	7
02:15	0	0
02:30	1	1
02:45	1	1
03:00	0	0
Hour Total	2	2
03:15	0	0
03:30	0	0
03:45	1	1
04:00	1	1
Iour Total	2	2
04:15	0	0
04:30	1	1
04:45	1	1
05:00	5	5
iour Total	7	7
05:15	3	3
05:30	5	5
05:45	11	11
06:00	22	22
our Total	41	41
06:15	51	51
06:30	53	53
06:45	60	60
07:00	24	24
our Total	188	188
07:15	19	19
07:30	37	37
07.45	28	28
07:45	21	21
08:00		
08:00		105
08:00 our Total	105	105
08:00		

Machine #: Space Commer Site ID: 00000000151 Description: Space Commerce	Way EB W of Prop. Drwy	File: Commer.prn Street Name: Space Commerce Way E County: Brevard
TIME	1 EAST	Total
09:00	17	17

09:00	17	17
Hour Total	88	88
09:15	19	19
09:30	20	20
09:45	16	16
10:00	34	34
Hour Total	89	89
10:15	17	17
10:30	26	26
10:45	21	21
11:00	22	22
Hour Total	86	86
11:15	21	21
11:30	27	27
11:45	29	29
12:00	26	26
Hour Total	103	103
12:15	26	26
12:30	24	24
12:45	26	26
13:00	25	25
Hour Total	101	101
13:15	33	33
13:30	26	26
13:45	23	23
14:00	22	22
Hour Total	104	104
14:15	23	23
14:30	29	29
14:45	35	35
15:00	29	29
Hour Total	116	116
15:15	45	45
15:30	24	24
15:45	39	39
16:00	32	32
Hour Total	140	140
16:15	39	39
16:30	39	39
16:45	35	35
17:00	37	37
Hour Total	150	150

TIME	1 EAST	Total
	EA51	
17:15	39	39
17:30	55	55
17:45	49	49
18:00	49 60	49 60
18:00	۰۰۰۰ ۵ <i>۰</i>	
our Total	203	203
18:15	34	34
18:30	23	23
18:45	44	44
19:00	31	31
our Total	132	132
10.15	48	4.9
19:15		48
19:30	42	42
19:45	31	31
20:00	24	24
our Total	145	145
20:15	19	19
20:30	14	14
20:45	11	11
21:00	10	10
our Total	54	54
21:15	9	9
21:30	6	6
21:45	7	7
22:00	4	4
our Total	26	26
22:15	5	5
22:30	6	6
22:45	4	4
23:00	9	9
ur Total	24	24
22.15	1 0	10
23:15	13	13
23:30	10	10
23:45	4	4
24:00	7	7
our Total	34	34
AY TOTAL	1950	1950
IRCENTS	100.0%	100%
f Thim	06 15	
1 Times	06:15	
Peaks	188	
I Times I Peaks	17:15 203	

TIME	1 EAST	Total
00:15	2	2
00:30	0	0
00:45	2	2
01:00	3	3
Hour Total	7	7
01:15	1	1
01:30	1	1
01:45	1	1
02:00	4	4
lour Total	7	7
02:15	0	0
02:30	1	1
02:45	1	1
03:00	1	1
Hour Total	3	3
03:15	1	1
03:30	2	2
03:45	3	3
04:00	0	0
lour Total	6	6
04:15	0	0
04:30	1	1
04:45	1	1
05:00	1	1
Hour Total	3	3
05:15	1	1
05:30	5	5
05:45	11	11
06:00	28	28
iour Total	45	45
06:15	54	54
06:30	50	50
06:45	46	46
07:00	28	28
lour Total	178	178
07:15	27	27
07:30	24	24
07:45	33	33
08:00	20	20
lour Total	104	104
08:15	33	33
08:30	10	10
08:45	21	21

Description: Space Commerce Way EB W of Prop. Drwy

TIME	1 EAST	Total
09:00	23	23
Hour Total	87	87
09:15	16	16
09:30	17	17
09:45	23	23
10:00	22	22
Hour Total	78	78
10:15	13	13
10:30	17	17
10:45	24	24
11:00	25	25
Hour Total	79	79
11:15	16	16
11:30	19	19
11:45	19	19
12:00	15	15
Hour Total	69	69
12:15	24	24
12:30	29	29
12:45	29	29
13:00	24	24
Hour Total	106	106
13:15	26	26
13:30	23	23
13:45	15	15
14:00	14	14
Hour Total	78	78
14:15	17	17
14:30	25	25
14:45	32	32
15:00	24	24
Hour Total	98	98
15:15	21	21
15:30	23	23
15:45	30	30
16:00	37	37
Hour Total	111	111
16:15	37	37
16 : 30	41	41
16:45	36	36
17:00	47	47
Hour Total	161	161

TIME	1	Total
	EAST	
17:15	71	71
17:30	73	73
17:45	43	43
18:00	33	33
Hour Total	220	220
18:15	35	35
18:30	36	36
18:45	38	38
19:00	30	30
our Total	139	139
19:15 19:30	36	36
19:30 19:45	32 30	32 30
20:00	32	32
lour Total	130	130
20:15	29	29
20:30	17	17
20:45	14	14
21:00	11	11
lour Total	71	71
21 : 15	б	6
21:30	9	9
21:45	6	6
22:00	4	4
our Total	25	25
22:15	7	7
22:30	6	6
22:45	6	6
23:00	9	9
our Total	28	28
23:15	17	17
23:30	8	8
23:45	4	4
24:00	2	2
our Total	31	31
DAY TOTAL	1864	1864
PERCENTS	100.0%	100%
м. т.		
M Times	06:00	
M Peaks	178	
M Times	17:00	

TIME	1 WEST	Total
01:00	4 3	4 3
02:00		3
03:00	4	4
04:00	5	5
05:00	41	41
06:00	41	41
07:00	67	67
08:00	98	98
09:00	132	132
10:00	164	164
11:00	139	139
12:00	121	121
13:00	107	107
14:00	103	103
15:00	108	108
16:00	140	140
17:00	149	149
18:00	130	130
19:00	70	70
20:00	41	41
21:00	33	33
22:00	19	19
23:00	7	7
24:00	6	6
	1720	
DAY TOTAL PERCENTS	1732	1732 100%
PERCENIS	100.0%	TOOA
AM Times	09:30	
AM Peaks	166	
PM Times	16 : 45	
PM Peaks	167	

Machine #: 080609053538 Site ID: Space Commer Description: Space Commerce Way WB E of Prop. Drwy

TIME	1	Total
	WEST	
01:00	1	1
02:00	4	4
03:00	4	4
04:00	14	14
05:00	41	41
06:00	41	41
07:00	65	65
08:00	76	76
09:00	100	100
10:00	127	127
11:00	115	115
12:00	110	110
13:00	106	106
14:00	87	87
15:00	85	85
16:00	136	136
17:00	147	147
18:00	137	137
19:00	64	64
20:00	30	30
21:00	33	33
22:00	17	17
23:00	14	14
24:00	б	6
DAY TOTAL	1560	1560
PERCENTS	100.0%	100%
AM Times	09:00	
AM Peaks	133	
PM Times	17:00	
PM Peaks	162	

TIME	1 WEST	Total
 00.15		~
00:15	0	0
00:30	0	0
00:45	3	3
01:00	1	1
Hour Total	4	4
01:15	0	0
01:30	0	0
01:45	1	1
02:00	2	2
Hour Total	3	3
02:15	0	0
02:30	0	0
02:45	2	2
03:00	2	2
Hour Total	4	4
03:15	1	1
03:30	2	2
03:45	0	0
04:00	2	2
Hour Total	5	5
04:15	6	6
04:30	8	8
04:45	14	14
05:00	13	13
Hour Total	41	41
05:15	22	22
05:30	15	15
05:45	2	2
06:00	2	2
Hour Total	41	41
06:15	11	11
06:30	13	13
06:45	22	22
07:00	21	21
Hour Total	67	67
07:15	28	28
07:30	23	23
07:45	22	22
08:00	25	25
Hour Total	98	98
08:15	22	22
08:15 08:30	22 31	22 31

10:15 33 33 33 10:30 38 38 10:45 44 44 11:00 24 24 tour Total 139 139 11:15 37 37 11:45 26 26 12:00 35 35 iour Total 121 121 12:15 24 24 12:10 34 34 12:13 34 34 12:14 21 121 12:15 24 24 12:10 24 24 12:10 24 24 12:13 34 34 12:14 21 21 13:10 24 24 4our Total 107 107 13:15 21 21 13:145 27 21 14:15 28 28 14:16 21 21 15:00 37 37 15:15 29 21 <t< th=""><th>TIME</th><th>1 WEST</th><th>Total</th></t<>	TIME	1 WEST	Total
Nour Total 132 132 09:15 31 31 31 09:33 46 46 03:45 40 40 10:00 47 47 10:01 164 164 10:15 33 33 10:41 164 164 10:15 33 33 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 24 24 12:00 24 24 13:00 24 24 13:00 24 24 14:00 24 24 14:15 28 28 14:16 29 28 14:15 2			35
09:15 31 31 31 09:15 46 46 10:00 47 47 1our Total 164 164 10:15 33 33 10:30 34 38 10:15 33 38 10:10 44 44 10:15 37 37 10:10 44 44 iour Total 139 139 11:15 37 37 11:20 37 37 11:45 26 26 12:00 35 35 12:00 34 34 12:15 24 24 12:10 121 121 12:15 24 24 13:10 31 31 13:10 21 21 13:10 21 21 13:10 21 21 13:10 22 22 14:15			
09:30 46 46 09:40 47 47 tour Total 164 164 10:15 33 33 10:30 38 38 10:15 33 33 10:16 34 44 11:10 24 24 tour Total 139 139 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 11:15 37 37 12:10 24 24 12:10 24 24 12:10 24 24 12:10 24 24 12:10 24 24 12:10 24 24 12:10 24 24 12:11 11 121 12:12 24 24 13:15 21 21 14:16 22 23 14:16 22 24 14:16 28 29 14:16 29 29 14:16 20			
09:45 40 40 10:10 47 47 sour Total 164 164 10:15 33 33 10:30 39 34 10:43 44 44 11:00 24 24 iour Total 139 139 11:15 37 37 11:15 26 26 12:00 35 35 four Total 121 121 12:15 24 24 12:00 35 35 four Total 121 121 12:15 24 24 12:00 26 25 13:00 26 25 13:00 21 31 13:15 21 31 13:45 27 27 14:00 24 24 14:15 28 28 14:16 28 28 14:10 21 </td <td></td> <td></td> <td>31</td>			31
10:00 47 47 tour Total 164 164 10:15 33 33 10:45 44 44 11:00 24 24 four Total 139 139 11:15 37 37 11:16 37 37 11:15 37 37 11:16 37 37 11:18 37 37 11:19 23 26 12:00 35 35 10ur Total 121 121 12:15 24 24 12:00 35 35 10ur Total 121 121 12:15 24 24 12:00 34 24 12:16 24 24 13:00 24 24 14:13 21 21 13:00 24 24 14:00 24 24 14:01 103 103 14:13 22 22 14:14 23 21 14:15 29 21 15:00 37 37 15:15 29 21 15:16			
Iour Total 164 164 10:15 33 33 10:30 38 38 10:45 44 44 11:00 24 24 4our Total 139 139 11:15 37 37 11:10 23 23 11:15 26 26 12:00 35 35 10:ur Total 121 121 12:15 24 24 12:30 34 34 13:00 24 24 14:01 107 107 13:15 21 21 13:00 24 24 14:01 107 107 13:15 21 21 13:00 23 31 13:45 27 27 14:01 26 28 14:15 26 28 14:15 26 21 15:10 33 <td></td> <td></td> <td></td>			
10:15 33 33 33 10:30 38 38 10:45 44 44 11:00 24 24 tour Total 139 139 11:15 37 37 11:45 26 26 12:00 35 35 iour Total 121 121 12:15 24 24 12:10 34 34 12:13 34 34 12:14 21 121 12:15 24 24 12:10 24 24 12:10 24 24 12:13 34 34 12:14 21 21 13:10 24 24 4our Total 107 107 13:15 21 21 13:145 27 21 14:15 28 28 14:16 21 21 15:00 37 37 15:15 29 21 <t< td=""><td></td><td></td><td>47</td></t<>			47
10:30 38 38 10:45 44 11:00 24 Hour Total 139 11:15 37 11:30 23 11:45 26 12:00 35 10:15 26 12:00 35 10:17 121 12:10 35 12:00 35 10:17 121 12:15 24 12:00 35 10:17 121 12:15 24 12:00 35 10:17 121 12:15 24 12:00 34 12:10 24 12:11 121 12:12 21 12:130 24 13:15 21 13:16 21 13:130 31 13:45 27 14:00 24 24 24 44our Total 103 14:15 28 14:30 22 14:00 20 15:15 29 15:00 37 33 33 15:45 33 <td< td=""><td>Hour Total</td><td>164</td><td>164</td></td<>	Hour Total	164	164
10:45 44 44 11:00 24 24 4our Total 139 139 11:15 37 37 11:30 23 23 11:43 26 26 12:00 35 35 10ur Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 440ur Total 107 107 13:15 21 21 13:15 21 21 13:16 21 21 13:15 21 21 14:00 24 24 44 24 11:15 21 21 13:10 31 31 13:15 21 21 14:00 24 24 14:15 28 28 14:16 29 28 14:15 29 29 15:15 33 33 15:45 34 34 16:00 34 34 16:15 33 33 16:45 39 38 <		33	33
11:00 24 24 iour Total 139 139 11:15 37 37 11:30 23 23 11:45 26 26 12:00 35 35 iour Total 121 121 12:15 24 24 12:10 34 34 12:13 24 24 12:145 25 25 13:00 24 24 10ur Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 10ur Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 16our Total 108 108 15:15 29 29 15:30 33 33 15:45 34 34 16:00 34 34 16:00 34 34 16:15 33 33 16:45 38 38 16:00	10:30	38	38
Nour Total 139 139 11:15 37 37 11:30 23 23 11:45 26 26 12:00 35 35 10ur Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 4our Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 4our Total 107 107 13:45 21 21 14:00 24 24 4our Total 103 103 14:15 28 28 14:45 21 21 15:00 37 37 16:15 33 33 15:45 44 44 16:00 <	10:45		
iour Total 139 139 11:15 37 37 11:30 23 23 11:45 26 26 12:00 35 35 Hour Total 121 121 12:15 24 24 12:20 35 36 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 10ur Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 14:01 103 103 14:15 28 28 14:30 22 22 14:430 22 22 14:430 33 33 15:00 37 37 15:00 37 37 15:00 33			24
11:30 23 23 11:45 26 26 12:00 35 35 Hour Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:15 29 22 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:15 29 29 15:30 34 34 16:00 34 34 16:00 34 34 16:01 33 33 16:30 20 20 16:45 38 38 17:00 58 58	Hour Total	139	139
11:30 23 23 11:45 26 26 12:00 35 35 Hour Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 15:45 29 29 15:30 34 34 16:00 34 34 16:00 36 38 16:15 38 38 17:00 58 58	11:15	37	37
12:00 35 35 Hour Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 14:15 29 29 15:15 29 29 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58		23	23
Hour Total 121 121 12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 kour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 34 16:00 34 34 16ur Total 140 140 16:15	11:45	26	26
12:15 24 24 12:30 34 34 12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 iour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 15:15 33 33 15:45 34 34 16:00 34 34 16:00 34 34 16:15 33 33 16:30 20 20 16:45	12:00	35	35
12:30 34 34 12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140	Hour Total	121	121
12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140	12:15	24	24
12:45 25 25 13:00 24 24 Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140	12:30	34	34
Hour Total 107 107 13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 15:45 44 34 16:00 30 33 16:30 20 20 16:45 38 38 17:00 58 58		25	25
13:15 21 21 13:30 31 31 13:45 27 27 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	13:00	24	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hour Total	107	107
13:45 27 27 $14:00$ 24 24 Hour Total 103 103 $14:15$ 28 28 $14:30$ 22 22 $14:45$ 21 21 $15:00$ 37 37 Hour Total 108 108 $15:15$ 29 29 $15:30$ 33 33 $15:45$ 44 44 $16:00$ 34 34 Hour Total 140 140 $16:15$ 20 20 $16:45$ 38 38 $17:00$ 58 58	13:15	21	21
14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	13:30	31	31
14:00 24 24 Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	13:45	27	27
Hour Total 103 103 14:15 28 28 14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58			24
14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:15 33 33 16:15 33 33 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	Hour Total		103
14:30 22 22 14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:15 33 33 16:15 33 33 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	14:15	28	28
14:45 21 21 15:00 37 37 Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58			
Hour Total 108 108 15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	14:45	21	
15:15 29 29 15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	15:00	37	37
15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	Hour Total	108	108
15:30 33 33 15:45 44 44 16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	15:15	29	29
16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58			
16:00 34 34 Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	15:45	44	44
Hour Total 140 140 16:15 33 33 16:30 20 20 16:45 38 38 17:00 58 58	16:00		34
16:30 20 20 16:45 38 38 17:00 58 58	Hour Total		140
16:45 38 38 17:00 58 58	16:15	33	33
16:45 38 38 17:00 58 58	16:30	20	20
17:00 58 58			
		58	58
	Hour Total	149	149

TIME	1 WEST	Total
17:15 17:30 17:45 18:00	30 41 33 26	30 41 33 26
Hour Total	130	130
18:15 18:30 18:45 19:00	22 16 8 24	22 16 8 24
Hour Total	70	70
19:15 19:30 19:45 20:00	20 6 9 6	20 6 9 6
Hour Total	41	41
20:15 20:30 20:45 21:00	9 8 11 5	9 8 11 5
Hour Total	33	33
21:15 21:30 21:45 22:00	6 6 4 3	6 6 4 3
Hour Total	19	19
22:15 22:30 22:45 23:00	2 4 1 0	2 4 1 0
Hour Total	7	7
23:15 23:30 23:45 24:00	2 3 1 0	2 3 1 0
Hour Total	6	6
DAY TOTAL PERCENTS	1732 100.0%	1732 100%
AM Times AM Peaks	09:30 166	
PM Times PM Peaks	16:45 167	

01:150 0 0 0 2 2 2 01:130 2 1 1 1 1 1 02:00 1 1 1 1 1 1 tour Total 4 4 4 4 02:15 1			
00:30 00:49 01:00 0 0 00:41 1 1 01:01 1 1 01:15 0 0 01:16 1 1 01:17 1 1 01:18 2 1 01:19 1 1 01:15 1 1 02:15 1 1 02:15 1 1 02:16 1 1 02:17 1 1 02:18 2 2 03:17 0 0 03:16 2 2 03:45 2 2 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 1 1 05:00 16 16 16 16 16 17 1 1 05:15 1 1 06:15 7 7 06:16 16 07:15 16 16 07:16 14 14 07:15 16 16	TIME		Total
00:30 00:49 01:00 0 0 00:41 1 1 01:01 1 1 01:15 0 0 01:16 1 1 01:17 1 1 01:18 2 1 01:19 1 1 01:15 1 1 02:15 1 1 02:15 1 1 02:16 1 1 02:17 1 1 02:18 2 2 03:17 0 0 03:16 2 2 03:45 2 2 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 1 1 05:00 16 16 16 16 16 17 1 1 05:15 1 1 06:15 7 7 06:16 16 07:15 16 16 07:16 14 14 07:15 16 16	00.15	0	0
00:45 0 0 1100 1 1115 0 01:10 2 01:15 0 01:15 1 01:15 1 01:15 1 01:15 1 01:10 1 01:11 1 01:12 1 01:13 1 01:14 1 01:15 1 01:15 2 01:15 0 01:15 0 01:15 0 01:15 0 01:15 0 01:16 1 01:15 0 01:16 1 01:15 7 01:15 7 01:16 16 1000 Total 41 01:15 7 01:15 10 01:10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11			
01:00 1 1 iour Total 1 1 01:15 0 2 01:15 0 2 01:15 0 2 01:15 1 1 02:00 1 1 10000 1 1 10000 1 1 101:15 1 1 102:00 1 1 102:15 1 1 102:15 1 1 102:15 1 1 102:15 2 2 03:15 0 0 03:15 0 0 03:15 0 0 03:15 0 0 03:145 2 2 04:100 9 9 16ur Total 14 14 04:15 7 7 04:16 16 16 16ur Total 41 41 04:15 7 7 04:16 16 16 100:15 20 20 05:15 20 20 06:16 19 19 07:17 19 19 100:1			
01:15 0 0 0 01:30 2 1 1 02:00 1 1 1 00r Total 4 4 4 02:15 1 1 1 02:30 1 1 1 02:43 2 2 2 03:00 0 0 0 cour Total 4 4 4 03:15 0 0 0 04:15 0 0 0 04:00 2 2 2 04:00 2 2 2 04:00 7 7 7 04:15 7 7 7 04:15 20 20 20 05:15 20 20 20 05:15 20 20 20 06:15 7 7 1 06:15 7 7 1 06:15 7 7 1 06:15 7 7 1			
01:30 2 2 01:45 1 1 02:00 1 1 4our Total 4 4 02:15 1 1 02:45 2 2 03:00 0 0 03:15 0 0 03:145 0 0 03:15 0 0 03:145 0 0 03:15 0 0 03:145 0 0 03:15 0 0 04:00 9 9 4our Total 14 14 04:15 7 7 04:10 1 16 100:100 16 16 11 11 11 12 11 11 13 11 11 14 14 14 15 20 20 05:15 7 7 06:15 7 7 06:15 7 7 06:15 7 7 06:15 19 19 06:16 16 19 07:15 16 16 07:15 16 <td>Hour Total</td> <td>1</td> <td>1</td>	Hour Total	1	1
01:45 1 1 four Total 4 4 02:15 1 1 02:45 2 2 03:00 0 0 sour Total 4 4 03:15 0 0 03:30 3 3 03:45 2 2 04:15 7 7 04:15 7 7 04:30 7 7 04:30 7 7 04:15 7 7 04:30 7 1 05:15 20 20 100r Total 41 41 05:15 20 20 05:15 20 20 05:15 20 20 05:15 20 20 06:10 1 1 100r Total 41 41 06:15 7 7 06:40 19 19 06:40 19 19 07:00 19 19 </td <td></td> <td></td> <td></td>			
02:00 1 1 Hour Total 4 4 02:15 1 1 02:30 1 1 02:45 2 2 03:00 0 0 04our Total 4 4 03:15 0 0 03:30 3 3 03:45 2 2 04:00 9 9 4dour Total 14 14 04:15 7 7 04:40 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:15 7 7 04:16 14 14 05:15 20 20 05:15 20 20 05:15 11 11 11 11 11 12 11 11 13 11 11 14 14 14			
02:15 1 1 02:30 1 1 02:30 2 2 03:00 0 0 Nour Total 4 4 03:15 0 0 03:40 3 3 03:45 2 2 04:00 9 9 four Total 14 14 04:15 7 7 04:46 11 11 05:15 20 20 05:00 16 16 16 16 16 1700 Total 41 41 05:15 20 20 05:45 4 4 05:15 20 20 05:45 4 4 06:15 7 7 06:46 19 19 06:45 22 22 07:40 19 19 19 19 19 14 14 14 07:40 24 24			
02:30 1 1 1 02:45 2 2 03:00 0 0 Hour Total 4 4 03:15 0 0 03:30 3 3 03:45 2 2 04:00 9 9 Hour Total 14 14 04:15 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:15 20 20 05:30 6 6 06:00 11 11 11 11 11 Hour Total 41 41 06:15 7 7 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24<	Hour Total	4	4
02:45 2 2 03:00 0 iour Total 4 03:15 0 03:30 3 03:45 2 04:00 9 vour Total 14 04:15 7 7 7 04:45 11 04:30 7 7 7 04:45 11 05:15 20 05:15 20 05:15 20 05:30 6 05:45 4 06:00 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 13 11 14 14 15 16	02:15	1	1
03:00 0 0 Hour Total 4 4 03:15 0 0 03:30 3 3 03:45 2 2 04:00 9 9 Hour Total 14 14 04:15 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:15 7 7 06:45 20 20 06:30 19 19 10ur Total 41 41 06:15 7 7 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24			
Hour Total 4 4 03:15 0 0 03:30 3 2 04:00 9 9 Hour Total 14 14 04:15 7 7 04:30 7 7 04:40 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:15 7 7 06:15 7 7 06:45 20 20 07:10 19 19 Hour Total 41 41 06:15 7 7 07:0 19 19 Hour Total 65 65 07:10 16 16 10 12 22 07:00 19 19 <td></td> <td></td> <td></td>			
03:15 0 0 03:30 3 3 03:45 2 2 04:00 9 9 iour Total 14 14 04:15 7 7 04:30 7 7 04:45 11 11 05:00 16 16 iour Total 41 41 05:15 20 20 05:30 6 6 05:14 4 4 06:00 11 11 iour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 10ur Total 65 65 07:15 16 16 07:14 24 24 08:00 14 14	03:00	0	0
03:30 3 3 3 03:45 2 2 04:00 9 9 Hour Total 14 14 04:15 7 7 04:30 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:15 7 7 06:45 20 20 07:00 19 19 06:45 20 20 07:15 16 65 07:15 16 16 08:00 14 14 14 14 14	Hour Total	4	4
03:45 04:00 2 2 2 iour Total 14 14 04:15 04:30 7 7 04:430 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 itour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:15 22 22 07:45 24 24 08:00 14 14	03:15	0	0
04:00 9 9 Hour Total 14 14 04:15 7 7 04:30 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:10 19 19 Hour Total 65 65 07:15 16 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14			
Hour Total 14 14 04:15 7 7 04:30 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 itour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14			
04:15 7 7 04:30 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:15 16 65 07:15 16 24 08:00 14 14	04:00	9	9
04:30 7 7 04:45 11 11 05:00 16 16 Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:15 16 16 07:15 16 16 08:00 14 14 Hour Total 76 76 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16	Hour Total	14	14
04:45 11 11 11 05:00 16 16 Hour Total 41 41 05:15 20 6 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 65 07:20 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:15 24 24 08:15 24 24 08:15 24 24 08:15 16 16			
05:00 16 16 Hour Total 41 41 05:15 20 6 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 20 07:00 19 19 Hour Total 65 65 07:15 16 65 07:15 16 62 07:15 16 22 07:45 24 24 08:00 14 14			
Hour Total 41 41 05:15 20 20 05:30 6 6 05:45 4 4 06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:45 24 24 08:00 14 14			
05:15 20 6 6 05:30 6 6 6 05:45 4 4 4 06:00 11 11 11 Hour Total 41 41 41 06:15 7 7 7 06:30 19 19 19 06:45 20 20 20 07:00 19 19 19 Hour Total 65 65 65 07:15 16 16 22 07:45 24 24 24 08:00 16 16 16		16	16
05:30 6 6 $05:45$ 4 4 $06:00$ 11 11 Hour Total 41 41 $06:15$ 7 7 $06:30$ 19 19 $06:45$ 20 20 $07:00$ 19 19 Hour Total 65 65 $07:15$ 16 16 $07:30$ 22 22 $07:45$ 24 24 $08:00$ 14 14 Hour Total 76 76 $08:15$ 24 24 $08:30$ 16 16	Hour Total	41	41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
06:00 11 11 Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16			
Hour Total 41 41 06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16			
06:15 7 7 06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16			
06:30 19 19 06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16	Hour Total	41	41
06:45 20 20 07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16	06:15		
07:00 19 19 Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16		19	19
Hour Total 65 65 07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16			
07:15 16 16 07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16	07:00	19	19
07:30 22 22 07:45 24 24 08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16	Hour Total	65	65
07:45 24 24 08:15 24 76 08:30 16 16			
08:00 14 14 Hour Total 76 76 08:15 24 24 08:30 16 16			
Hour Total 76 76 08:15 24 24 08:30 16 16			
08:15 24 24 08:30 16 16			14
08:30 16 16	Hour Total	76	76
08:30 16 16 08:45 30 30			
U8:45 30 30	08:30	16	
	U8:45	30	30

09:15 32 32 09:30 34 34 10:00 24 24 four Total 127 127 10:15 26 26 10:10 33 33 10:14 127 127 10:15 26 26 10:10 33 33 10:40 32 32 11:15 115 115 11:15 33 33 11:40 24 24 10:15 115 115 11:15 33 33 11:40 24 24 11:15 26 26 11:15 26 26 12:15 26 26 12:10 25 25 13:16 23 23 13:10 24 24 14:10 106 106 13:15 20 20 14:10 18 <	TIME	1 WEST	Total
iour Total 100 100 09:150 32 32 09:30 34 34 09:450 37 37 10:00 24 24 four Total 127 127 10:15 26 26 10:41 127 127 10:15 26 26 10:43 33 33 11:00 24 24 iour Total 115 115 11:15 33 33 11:30 25 25 12:49 26 26 12:00 26 26 12:10 25 25 13:00 26 26 14:15 29 23 13:00 26 26 14:15 29 23 13:00 23 23 14:15 29 23 14:16 106 106 14:17 17 <td></td> <td></td> <td>30</td>			30
09:30 34 34 09:45 37 37 10:00 24 24 tour Total 127 127 10:15 26 26 10:30 33 33 10:45 32 32 11:10 115 115 11:15 33 33 11:15 33 33 11:15 33 33 11:15 33 33 11:15 33 33 11:15 115 115 11:15 33 33 11:15 33 33 11:15 116 115 11:15 24 24 100r Total 110 110 12:15 26 26 12:00 26 26 13:01 25 25 14:15 26 26 13:15 22 23 13:16 22 23 13:15 23 23 14:15 16 18 14:15 18 18 14:15 32 33 14:15 32 32 14:15 32	Hour Total		100
09:30 34 34 09:45 37 37 10:00 24 24 tour Total 127 127 10:15 26 26 10:30 33 33 10:45 32 32 11:10 115 115 11:15 33 33 11:15 33 33 11:15 33 33 11:15 33 33 11:15 33 33 11:15 115 115 11:15 33 33 11:15 33 33 11:15 116 115 11:15 24 24 100r Total 110 110 12:15 26 26 12:00 26 26 13:01 25 25 14:15 26 26 13:15 22 23 13:16 22 23 13:15 23 23 14:15 16 18 14:15 18 18 14:15 32 33 14:15 32 32 14:15 32	09.15	32	32
09:45 37 37 10:10 24 24 tour Total 127 127 10:15 26 26 10:30 33 33 10:45 22 22 10:15 26 26 10:30 33 33 10:45 32 32 11:00 24 24 100r Total 115 115 11:15 33 33 11:16 25 26 12:00 26 26 12:10 26 26 12:10 26 26 12:10 26 26 12:10 26 26 13:00 26 26 13:10 23 23 13:13 23 23 13:14 20 26 14:15 20 26 14:10 18 18 14:13 18 <t< td=""><td></td><td></td><td></td></t<>			
10:00 24 24 dour Total 127 127 10:15 26 33 10:40 32 32 10:00 24 24 sour Total 115 115 11:10 24 24 sour Total 115 115 11:15 33 33 11:30 25 25 12:00 26 26 12:00 26 26 12:00 26 26 12:15 26 25 12:16 25 25 13:00 25 25 13:00 26 26 13:00 26 26 13:00 26 26 13:00 26 26 13:00 26 26 14:00 106 106 13:15 27 27 13:46 28 24 14:16 18			
10:15 26 26 10:30 33 33 11:00 24 24 tour Total 115 115 11:15 33 33 11:30 24 24 tour Total 115 115 11:15 26 26 10:17 26 26 10:17 26 26 10:17 26 26 10:0 26 26 10:0 26 26 10:0 26 26 10:0 26 26 10:0 26 26 10:0 26 26 11:0 27 23 13:0 23 23 13:15 24 24 14:15 16 16 14:15 20 20 14:15 20 20 14:15 23 23 15:10 26 26 <td></td> <td></td> <td></td>			
10:30 33 33 10:45 32 11:00 24 Hour Total 115 11:15 33 11:30 25 11:40 26 11:41 10 11:42 26 12:10 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 115 20 13:15 21 13:15 22 13:30 23 13:45 24 14:15 20 14:15 20 14:15 21 14:15 23 14:15 23 14:15 23 14:15 23 15:15 23 15:15 23 15:10 <td>Hour Total</td> <td>127</td> <td>127</td>	Hour Total	127	127
10:30 33 33 10:45 32 11:00 24 Hour Total 115 11:15 33 11:30 25 11:40 26 11:41 10 11:42 26 12:10 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 10000 26 115 20 13:15 21 13:15 22 13:30 23 13:45 24 14:15 20 14:15 20 14:15 21 14:15 23 14:15 23 14:15 23 14:15 23 15:15 23 15:15 23 15:10 <td>10:15</td> <td>26</td> <td>26</td>	10:15	26	26
10:46 32 32 11:00 24 24 iour Total 115 115 11:15 33 33 11:30 26 26 12:00 26 26 iour Total 110 110 12:15 26 26 12:45 29 29 13:00 26 26 Hour Total 106 106 13:15 22 22 13:00 26 26 Hour Total 106 106 13:15 22 22 13:00 26 26 14:10 18 18 14:15 20 20 14:15 20 20 14:15 20 20 14:15 30 30 14:15 23 32 15:15 23 35 15:15 23 35 15:15 23 35 15:15 32 35 16:16 30 30 16:15 30 30 16:16 30 30 16:16 30 30 16:16 30			
11:00 24 24 Hour Total 115 115 11:15 33 33 11:30 25 25 12:00 26 26 100ur Total 110 110 12:15 26 26 12:00 26 26 12:15 26 26 12:15 26 26 13:00 25 25 13:00 26 26 14:15 20 26 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:50 17 17 15:01 30 30 Hour Total 85 85 15:15 23 23 15:10 30 30 Hour Total 85 85 15:15 23 23 15:10 30 30 Hour Total 85 85 15:10 30 30 16:00			
11:15 33 33 11:30 25 25 12:00 26 26 four Total 110 110 12:15 26 26 12:00 26 26 12:15 26 26 12:15 26 26 12:15 26 26 12:15 26 26 13:00 26 26 10ur Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Nour Total 87 87 14:15 20 20 14:15 20 30 16:00 30 30 Hour Total 85 85 15:15 23 23 15:00 30 30 Hour Total 85 85 15:15 23 32 16:00 35 35 Hour Total			
11:30 25 25 11:45 26 26 Jour Total 110 110 12:15 26 26 12:30 25 25 12:45 29 29 13:00 26 26 Nour Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 Hour Total 87 85 15:00 30 30 Hour Total 85 85 15:15 23 23 15:00 30 30 Hour Total 85 35 15:15 23 32 16:00 35 35 Hour Total 136 136 16:00 35 35 Hour Total 136 36	Hour Total	115	115
11:30 25 25 11:45 26 26 Jour Total 110 110 12:15 26 26 12:30 25 25 12:45 29 29 13:00 26 26 Nour Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 Hour Total 87 85 15:00 30 30 Hour Total 85 85 15:15 23 23 15:00 30 30 Hour Total 85 35 15:15 23 32 16:00 35 35 Hour Total 136 136 16:00 35 35 Hour Total 136 36	11:15	33	33
11:45 26 26 lour Total 110 110 12:15 26 26 12:30 25 25 12:45 29 29 13:00 26 26 iour Total 106 106 13:15 22 23 13:45 24 24 14:00 18 18 iour Total 87 87 14:15 20 20 14:15 20 20 14:15 20 20 14:15 20 20 14:15 20 30 14:15 20 30 14:15 21 17 15:00 30 30 16:01 30 30 16:01 35 35 15:15 33 35 15:20 35 35 16:00 35 35 16:15 30 30 16:15 30 30 16:15 <td< td=""><td></td><td></td><td></td></td<>			
12:00 26 26 Hour Total 110 110 12:15 26 26 12:30 25 25 12:45 29 29 13:00 26 26 Hour Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 16:00 35 35 Hour Total 85 85 15:15 23 23 16:00 35 35 Hour Total 136 136 16:01 30 30 Hour Total 136 136 15:15 23 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:16 30 30 16:17 30 30 <td< td=""><td></td><td></td><td></td></td<>			
12:15 26 26 12:30 25 25 12:45 29 29 13:00 26 26 Hour Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 Hour Total 87 87 idur Total 87 20 14:15 20 20 14:45 17 17 15:00 30 30 iour Total 85 85 15:15 23 23 15:45 32 32 16:00 35 35 iour Total 136 136 16:15 30 30 16:00 30 30 16:15 30 30 16:15 30 30 16:45			
12:30 25 25 12:45 29 13:00 26 Hour Total 106 13:15 22 13:30 23 13:45 24 14:00 18 Hour Total 87 Hour Total 87 Hour Total 87 14:15 20 14:30 18 14:45 17 15:00 30 Hour Total 85 15:15 23 15:30 46 15:45 32 15:15 23 15:15 23 15:00 30 Hour Total 85 16:00 35 15:15 23 15:30 46 16:00 35 Hour Total 136 16:00 35 136 30 137 35 136 30 16:00 30 30 30 16:00 30 16:00 30 16:00 30 16:00 30 16:00 30 16:00 30	Hour Total		110
12:30 25 25 12:45 29 13:00 26 Hour Total 106 13:15 22 13:30 23 13:45 24 14:00 18 Hour Total 87 Hour Total 87 Hour Total 87 14:15 20 14:30 18 14:45 17 15:00 30 Hour Total 85 15:15 23 15:30 46 15:45 32 15:15 23 15:15 23 15:00 30 Hour Total 85 16:00 35 15:15 23 15:30 46 16:00 35 Hour Total 136 16:00 35 136 30 137 35 136 30 16:00 30 30 30 16:00 30 16:00 30 16:00 30 16:00 30 16:00 30 16:00 30	12:15	26	26
12:45 29 29 13:00 26 26 Hour Total 106 106 13:15 22 22 13:30 23 23 13:15 22 22 13:30 23 23 13:15 22 22 13:30 23 23 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:00 35 35 Hour Total 85 35 16:00 35 35 Hour Total 136 136 16:00 30 30 16:15 30 30 16:16 30 30 16:30 30 30 16:45 36 36 17:00			
13:00 26 26 iour Total 106 106 13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 iour Total 87 20 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 iour Total 85 85 15:15 23 23 15:45 32 32 15:15 23 35 iour Total 85 85 15:15 23 32 15:45 32 32 16:00 35 35 iour Total 136 136 16:00 35 35 16:00 35 35 16:00 30 30 16:15 30 30 16:20 30 30 16:45 36 36 17:00			
13:15 22 22 13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 20 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:15 23 23 16:00 35 35 Hour Total 85 35 15:15 23 32 16:00 35 35 Hour Total 136 136 Hour Total 136 30 Hour Total 136 30 16:15 30 30 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51	Hour Total	106	106
13:30 23 23 13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51	13:15	22	22
13:45 24 24 14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:00 35 35 Hour Total 136 136 16:00 35 35 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
14:00 18 18 Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
Hour Total 87 87 14:15 20 20 14:30 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:45 36 36 17:00 51 51			
14:30 18 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:15 30 30 16:45 36 36 17:00 51 51	Hour Total	87	
14:30 18 18 18 14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:15 30 30 16:45 36 36 17:00 51 51	14:15	20	20
14:45 17 17 15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
15:00 30 30 Hour Total 85 85 15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:15 30 30 16:45 36 36 17:00 51 51			
15:15 23 23 15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51	Hour Total	85	85
15:30 46 46 15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51	15:15	23	23
15:45 32 32 16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
16:00 35 35 Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51			
Hour Total 136 136 16:15 30 30 16:30 30 30 16:45 36 36 17:00 51 51	16:00	35	
16:30 30 30 16:45 36 36 17:00 51 51			136
16:30 30 30 16:45 36 36 17:00 51 51	16:15	30	30
16:45 36 36 17:00 51 51			
17:00 51 51			
T			
	Hour Total	147	147

TIME	1 WEST	Total
	·····	
17:15	42	42
17:30	31	31
17:45	38	38
18:00	26	26
our Total	137	137
18:15	18	18
18:30	26	26
18:45	6	6
19:00	14	14
our Total	64	64
19:15	12	12
19:30	6	6
19:45	8	8
20:00	4	4
our Total	30	30
20:15	9	9
20:30	10	10
20:45	9	9
21:00	5	5
our Total	33	33
21:15	7	7
21:30	4	4
21:45	5	5
22:00	1	1
our Total	17	17
22:15	3	3
22:30	3	3
22:45	4	4
23:00	4	4
our Total	14	14
23:15	4	4
23:30	1	1
23:45	1	1
24:00	0	Ō
our Total	6	6
AY TOTAL	1560	1560
ERCENTS	100.0%	100%
M Times	09:00	
M Peaks	133	
M Times	17:00	
M Peaks	162	
1 FEAKS	102	

Machine #: NB Site ID: NB Description: Visitor Center Complex NB s of NASA Pkwy		File: NB.prn Street Name: Visitor Center Com County: Brevard	
TIME	1 NORTH	Total	
01:00	0	0	
02:00	18	18	
03:00	1	1	
04:00	0	0	
05:00	1	1	
06:00	5	5	
07:00	10	10	
08:00	13	13	
09:00	21	21	
10:00	42	42	
11:00	98	98	
12:00	103	103	
13:00	99	99	
14:00	155	155	
15:00	195	195	
16:00	279	279	
17:00	386	386	
18:00	464	464	
19:00	417	417	
20:00	329	329	
21:00	68	68	
22:00	11	11	
23:00	12	12	
24:00	7	7	
AY TOTAL	2734	2734	
ERCENTS	100.0%	100%	
1 Times	11:15		
M Peaks	103		
1 Times 1 Peaks	17:45 477		

Machine #: NB Site ID: NB Description: Visitor Center Complex NB s of NASA Pkwy		File: NB.prn Street Name: Visitor Center Com County: Brevard	
TIME	1 NORTH	Total	
01:00	6	6	
02:00	15	15	
03:00	2	2	
04:00	0	0	
05:00	0	0	
06:00	1	1	
07:00	11	11	
08:00	23	23	
09:00	24	24	
10:00	51	51	
11:00	51	51	
12:00	80	80	
13:00	101	101	
14:00	128	128	
15:00	170	170	
16:00	271	271	
17:00	359	359	
18:00	450	450	
19:00	396	396	
20:00	273	273	
21:00	60	60	
22:00	10	10	
23:00	16	16	
24:00	б	6	
Y TOTAL	2504	2504	
RCENTS	100.0%	100%	
1 Times	11:15		
1 Peaks	80		
4 Times 4 Peaks	17:30 456		

File: NB.prn

Machine #: NB

01:15 0 0 0 01:130 0 0 0 01:45 2 2 2 02:00 16 16 16 Hour Total 18 18 10 02:15 1 1 10 0 02:15 1 1 0 0 02:15 1 1 0 0 03:00 0 0 0 0 03:15 0 0 0 0 03:15 0 0 0 0 03:15 0 0 0 0 04:16 0 0 0 0 04:15 1 1 1 0 04:15 1 1 1 1 05:10 0 0 0 0 05:15 0 0 0 0 06:10 2 2 2 0	Machine #: NB Site ID: NB Description: Visitor Center Complex NB s of NASA Pkwy		Street Name: Visitor Center Com County: Brevard	
00:150 0 0 01:40 0 0 01:43 0 0 01:43 0 0 01:43 0 0 01:10 0 0 01:130 0 0 01:130 0 0 01:130 0 0 01:130 0 0 01:140 1 0 01:140 1 1 01:150 1 1 01:141 1 1 01:150 0 0 01:141 1 1 01:150 0 0 01:141 1 1 01:151 0 0 01:161 1 1 01:161 0 0 01:161 0 0 01:161 1 1 01:161 0 0 01:161 0 0 01:		1		
00:130 0 0 00:430 0 0 00:430 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 1 0 01:15 1 0 01:15 1 0 01:15 1 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:16 1 1 01:15 0 0 01:16 1 1 01:17 1 1 01:18 1 1 01:19 1 1 01:19 1 1 01:19 <				
01:45 0 0 01:00 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:13 0 0 01:14 18 19 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:15 0 0 01:16 1 0 01:17 1 0 01:16 0 0 01:17 0 0 01:16 0 0 01:17 0 0 01:16 1 0 01:17 <t< td=""><td></td><td></td><td></td></t<>				
01:00 0 0 Hour Total 0 0 01:130 0 0 01:130 0 0 01:130 0 0 01:130 0 0 01:100 16 16 Hour Total 18 18 02:15 1 1 02:15 1 1 02:15 1 1 02:15 1 1 02:15 1 1 02:15 1 1 02:15 0 0 03:15 0 0 03:15 0 0 03:15 0 0 04:10 0 0 04:10 0 0 04:15 1 1 04:16 0 0 04:15 0 0 05:15 0 0 05:16 2 2 06:0				
Hour Total 0 0 01:15 0 0 01:43 2 2 02:00 16 16 Ecur Total 18 18 02:15 1 1 02:16 1 0 02:15 1 1 02:16 1 1 02:15 1 1 02:16 1 1 02:15 1 1 02:16 1 1 02:15 0 0 03:00 0 0 Hour Total 1 1 03:15 0 0 03:45 0 0 04:00 0 0 04:15 1 1 04:30 0 0 05:15 0 0 05:16 2 2 06:00 2 2 06:15 0 0 06:0				
01:30 01:45 02:00 0 16 0 16 0 16 Hour Total 18 18 02:15 02:30 1 0 00 00 0 0 00 00:13:00 0 0 Hour Total 1 03:15 03:30 0 0 00:14:5 03:30 0 0 00:14:5 03:45 0 0 04:10 0 Hour Total 0 04:15 04:30 0 0 04:15 05:00 1 0 05:15 06:10 0 0 06:15 06:30 0 0 06:15 06:30 0 0 06:15 06:30 0 0 07:15 06:30 1 0 07:15 07:30 1 1 0 10 10 07:15 07:30 1 1 0 08:00 5 08:15 08:30 5			0	
01:30 01:45 02:00 0 16 0 16 0 16 Hour Total 18 18 02:15 02:30 1 0 00 00 0 0 00 00:13:00 0 0 Hour Total 1 03:15 03:30 0 0 00:14:5 03:30 0 0 00:14:5 03:45 0 0 04:10 0 Hour Total 0 04:15 04:30 0 0 04:15 05:00 1 0 05:15 06:10 0 0 06:15 06:30 0 0 06:15 06:30 0 0 06:15 06:30 0 0 07:15 06:30 1 0 07:15 07:30 1 1 0 10 10 07:15 07:30 1 1 0 08:00 5 08:15 08:30 5	01:15	0	0	
01:43 2 2 02:00 16 16 Hour Total 18 18 02:15 0 0 02:43 0 0 02:45 0 0 03:00 0 0 Hour Total 1 1 03:15 0 0 03:30 0 0 03:45 0 0 03:45 0 0 04:10 0 0 04:15 1 1 04:15 1 1 04:15 1 1 05:13 0 0 05:14 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 06:00 2 2 07:00 2 2 07:00 2 2 07:00 2 2 07:00 2 2 07:00 3 <				
02:00 16 16 Hour Total 18 18 02:15 1 1 02:30 0 0 02:45 0 0 03:00 0 0 Hour Total 1 1 03:15 0 0 03:30 0 0 04:00 0 0 04:15 1 1 03:45 0 0 04:10 0 0 04:15 1 1 04:15 1 1 04:15 1 1 04:15 0 0 04:15 0 0 05:10 0 0 05:15 0 0 05:15 0 0 06:15 0 7 06:15 0 7 06:15 0 7 06:15 1 1 07:16 <td></td> <td>2</td> <td>2</td>		2	2	
Hour Total 18 18 02:15 1 1 02:30 0 0 02:43 0 0 02:43 0 0 02:43 0 0 02:43 0 0 02:43 0 0 02:43 0 0 02:43 0 0 03:00 0 0 03:30 0 0 03:45 0 0 04:15 1 1 04:15 1 1 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:00 2 2 Hour Total 5 5 06:00 2 2 Hour Total 5 5 06:10 1 1 07:00 2 2 1	02:00		16	
02:30 0 0 03:00 0 0 Hour Total 1 1 03:15 0 0 03:30 0 0 03:45 0 0 04:00 0 0 Hour Total 0 0 04:10 0 0 04:40 0 0 04:30 0 0 04:45 0 0 05:00 0 0 04:45 0 0 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:20 5 5 08:00 5 5	Hour Total		18	
03:00 0 0 Hour Total 1 1 03:15 0 0 03:30 0 0 03:30 0 0 03:45 0 0 04:00 0 0 Hour Total 0 0 04:30 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 07:00 2 2 Hour Total 10 10 07:16 4 4 07:30 1 1 07:16 1 1 07:16 1 1 07:16 1 1 07:16 1 1 08:10 5 5				
33:00 0 0 Hour Total 1 1 03:15 0 0 03:345 0 0 04:00 0 0 Hour Total 0 0 04:15 1 1 04:30 0 0 04:15 1 1 04:430 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 06:00 2 2 100 0 1 06:10 2 2 100 10 1 07:10 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 101 13 13 08:15 5 5				
03:15 0 0 03:30 0 0 04:00 0 0 Hour Total 0 0 04:15 1 1 04:30 0 0 04:45 0 0 04:45 0 0 04:30 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:53 7 7 06:45 1 1 07:16 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 3 08:00 5 5 5 Hour Total 13				
03:30 0 0 0 03:45 0 0 0 04:00 0 0 0 Hour Total 0 0 0 04:15 1 1 0 0 04:15 1 0 0 0 04:30 0 0 0 0 04:45 0 0 0 0 05:00 0 0 0 0 Hour Total 1 1 1 1 05:15 0 0 0 2 2 06:00 2 2 2 2 2 Hour Total 5 5 0 0 0 0 06:10 2 <	Hour Total	1	1	
03:30 0 0 0 03:45 0 0 0 04:00 0 0 0 Hour Total 0 0 0 04:15 1 1 0 0 04:15 1 0 0 0 04:30 0 0 0 0 04:45 0 0 0 0 05:00 0 0 0 0 Hour Total 1 1 1 1 05:15 0 0 0 2 2 06:00 2 2 2 2 2 Hour Total 5 5 0 0 0 0 06:10 2 <	03:15	0	0	
03:45 0 0 0 Hour Total 0 0 04:15 1 1 04:30 0 0 04:45 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 06:00 2 2 Hour Total 5 5 06:15 0 0 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13				
04:00 0 0 Hour Total 0 0 04:15 1 1 04:30 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:00 5 5 100 13 13		0	0	
Hour Total 0 0 04:15 1 1 04:30 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:00 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:10 5 5 Hour Total 13 13 08:15 5 5 08:15 4 4			0	
04:30 0 0 04:45 0 0 05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:45 1 0 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13	Hour Total		0	
04:45 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13				
05:00 0 0 Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13				
Hour Total 1 1 05:15 0 0 05:30 1 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13				
05:15 0 1 05:45 2 2 06:00 2 2 Hour Total 5 5 06:15 0 0 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13			U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hour Total	1	1	
05:45 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:15 5 4 08:15 5 4				
06:00 2 2 Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:30 4 4				
Hour Total 5 5 06:15 0 0 06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13				
06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 4 08:30 4 4				
06:30 7 7 06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 4 08:30 4 4	06:15	0	0	
06:45 1 1 07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 08:15 5 4 08:15 5 4 08:30 4 4				
07:00 2 2 Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 4 08:30 4 4				
Hour Total 10 10 07:15 4 4 07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:30 4 4	07:00			
07:30 1 1 07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:30 4 4				
07:45 3 3 08:00 5 5 Hour Total 13 13 08:15 5 5 08:30 4 4				
08:00 5 5 Hour Total 13 13 08:15 5 5 08:30 4 4				
Hour Total 13 13 08:15 5 5 08:30 4 4				
08:15 5 5 08:30 4 4				
08:30 4 4				
	08:30	4 5	4 5	

IDME 1 NORTH Total 09:00 7 7 09:00 7 7 Hour Total 21 21 09:13 10 10 09:13 10 10 09:13 10 10 09:14 12 12 10:15 13 12 Hour Total 42 42 10:15 19 19 10:15 29 29 10:15 29 29 10:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 29 29 11:15 19 19 12:15 19 19 13:16 27 <td< th=""><th>Machine #: NB Site ID: NB Description: Visitor Center C</th><th>omplex NB s of NASA Pkwy</th><th>File: NB.prn Street Name: Visitor Center Com County: Brevard</th></td<>	Machine #: NB Site ID: NB Description: Visitor Center C	omplex NB s of NASA Pkwy	File: NB.prn Street Name: Visitor Center Com County: Brevard
Hour Total 21 21 09:15 10 5 09:43 5 5 09:44 12 12 10:00 15 13 Reur Total 42 42 10:15 13 13 Reur Total 42 42 10:15 13 19 10:15 13 19 10:15 13 19 10:15 13 19 10:16 23 23 11:0 21 21 Reur Total 98 98 11:15 23 23 11:40 103 103 12:15 14 16 13:10 29 99 13:10 29 29 13:10 27 27 13:10 25 55 13:10 27 27 13:40 41 41 14:10 42	TIME	1	
Hour Total 21 21 09:15 10 5 09:40 12 12 10:00 12 12 10:00 12 12 10:15 19 19 10:16 29 29 10:15 29 29 10:16 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 27 23 11:30 27 23 11:30 27 23 12:10 35 35 12:10 16 19 12:10 19 19 12:15 34 19 12:10 19 19 12:15 14 19 13:15 25 25 13:16 25 25 13:15 15 155 14:15 47 47			
09:30 5 5 09:45 12 12 10:00 15 13 Hour Total 42 42 10:15 19 19 10:30 29 29 10:45 29 29 10:45 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 27 27 11:45 18 18 12:00 35 35 Rour Total 103 103 12:10 34 14 12:30 19 19 13:00 28 28 Hour Total 99 99 13:15 25 25 13:20 27 27 14:00 66 66 Hour Total 155 153 14:05 155 55 15:0 55 <td></td> <td></td> <td></td>			
09:45 12 15 10:00 15 15 Hour Total 42 42 10:15 19 19 10:30 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 27 27 11:45 18 18 12:10 34 18 12:10 34 19 12:15 34 19 13:00 28 28 Hour Total 99 99 13:15 25 27 13:30 27 27 13:45 37 37 13:15 25 25 13:30 27 27 13:45 37 37 14:10 47 47 14:30 41 41 14:13 41 41 14:15 17 <			
10:00 15 15 Hour Total 42 42 10:15 19 19 10:30 29 29 10:45 29 29 10:10 21 21 Hour Total 98 98 11:15 23 23 11:30 27 27 11:45 18 18 12:10 35 35 Hour Total 103 103 12:15 34 18 12:15 34 19 13:00 28 28 Hour Total 99 99 13:15 25 25 13:00 28 28 Hour Total 19 19 14:15 18 18 14:00 66 66 14:10 155 155 14:01 155 155 15:0 52 52 15:15 69			
Hour Total 42 42 10:15 19 9 10:30 29 29 10:45 29 29 11:00 21 21 Hour Total 98 99 11:13 23 23 11:30 27 27 11:45 18 16 12:00 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 195 155 14:15 47 47 14:30 15 55 14:15 47 73 14:00 52 </td <td></td> <td></td> <td></td>			
10:15 19 19 19 10:30 29 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 27 27 11:45 18 18 12:00 35 35 Hour Total 103 103 12:15 34 34 12:130 19 19 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:43 55 55 15:00 52 52 15:15 60 60 15:15 60 69	10:00	15	15
10:30 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 23 23 11:40 18 18 12:00 35 35 Nour Total 103 103 12:10 35 35 Nour Total 103 103 12:15 34 34 12:30 19 19 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 37 14:00 66 66 Hour Total 155 155 14:10 47 47 14:30 41 41 14:43 55 55 15:00 52 52 15:15 69 69 15:15 69 69 15:43 73 73 15:15 69 69 15:16 <td>Hour Total</td> <td>42</td> <td>42</td>	Hour Total	42	42
10:45 29 29 11:00 21 21 Hour Total 98 98 11:15 23 23 11:10 27 27 11:10 27 27 11:10 27 27 11:10 10 103 12:10 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 28 28 Hour Total 99 99 13:15 25 25 13:45 37 37 14:00 66 66 Kour Total 155 155 14:15 47 47 14:45 55 55 15:15 60 60 15:30 55 55 15:15 60 60 15:30 73 73 16:00 73 73 16:00 73 73 16:15			
11:00 21 21 Hour Total 98 98 11:15 23 23 11:30 27 27 11:45 18 18 12:00 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:10 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 69 15:15 60 60 15:15 60 60 15:15 60 60 15:45 <td< td=""><td></td><td></td><td></td></td<>			
11:15 23 23 11:30 27 27 11:45 18 35 12:00 35 35 iour Total 103 103 12:15 34 34 12:30 19 19 13:00 28 28 iour Total 99 99 13:15 25 25 13:30 27 27 14:00 66 66 iour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:0 52 52 Hour Total 195 195 14:15 47 47 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:45 77 77 16:00 73 73 16:00 73 73 16:15 </td <td></td> <td></td> <td></td>			
11:30 27 27 11:45 18 18 12:00 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:45 55 55 15:0 52 52 Hour Total 195 195 14:15 47 47 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:20 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:20 86 86 16:45 99 99 16:15	Hour Total	98	98
11:30 27 27 11:45 18 18 12:00 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 37 14:00 66 66 Hour Total 155 155 14:00 66 66 Hour Total 195 155 14:15 47 47 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:20 69 69 15:51 60 60 15:20 73 73 Hour Total 279 279 16:00 73 73 Hour Total 279 279 16:15 93 93 16:20 86 86 16:45 99 99 16:52 93 93 16	11:15	23	23
11:45 18 18 12:00 35 35 Hour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:00 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:00 66 66 Hour Total 155 155 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:45 77 77 16:00 73 73 16:00 73 73 16:15 93 93 16:16 93 94 16:15 93 94 16:16 93 94 16:30 <td></td> <td></td> <td></td>			
12:00 35 35 iour Total 103 103 12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 iour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 tour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 iour Total 195 195 16:15 69 69 15:45 77 77 16:00 73 73 16:00 73 73 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
12:15 34 34 12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
12:30 19 19 12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 73 Hour Total 279 279 16:10 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108	Hour Total	103	103
12:45 18 18 13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:10 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:15 94 86 16:45 99 99 17:00 108 108		34	
13:00 28 28 Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 69 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 86 16:45 99 99 17:00 108 108			
Hour Total 99 99 13:15 25 25 13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 Hour Total 195 60 15:15 60 69 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
13:15 25 25 13:30 27 37 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:10 60 60 15:30 69 69 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 86 16:45 99 99 17:00 108 108	13:00	28	28
13:30 27 27 13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108	Hour Total	99	99
13:45 37 37 14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 16:45 99 99 17:00 108 108		25	25
14:00 66 66 Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 Hour Total 195 60 15:15 60 60 15:30 69 69 15:45 77 73 Hour Total 279 279 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108	13:30		27
Hour Total 155 155 14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
14:15 47 47 14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 86 16:30 86 86 16:45 99 99 17:00 108 108	14:00	66	66
14:30 41 41 14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:15 99 99 16:45 99 99 17:00 108 108	Hour Total	155	155
14:45 55 55 15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
15:00 52 52 Hour Total 195 195 15:15 60 60 15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108	Hour Total	195	195
15:30 69 69 15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108	15:15	6.0	60
15:45 77 77 16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
16:00 73 73 Hour Total 279 279 16:15 93 93 16:30 86 86 16:45 99 99 17:00 108 108			
16:15939316:30868616:45999917:00108108			
16:30 86 86 16:45 99 99 17:00 108 108	Hour Total	279	279
16:45 99 99 17:00 108 108	16:15	93	93
16:45 99 99 17:00 108 108	16:30	86	86
		99	99
Hour Total 386 386	17:00	108	108
	Hour Total	386	386

18:15 95 95 18:13 115 115 19:00 96 96 Hour Total 417 417 19:15 118 18 19:30 96 96 19:15 118 18 19:30 96 96 19:15 118 18 19:30 96 96 19:15 118 18 19:30 39 39 Hour Total 329 329 20:15 30 30 20:16 30 30 20:13 22 22 20:14 29 329 20:15 30 30 21:10 2 2 21:10 2 2 21:13 2 2 22:10 2 2 21:14 11 11 21:15 2 2 22:15 2 2 21:16 2 2 22:15 2 2 21:16 2 2 21:17 2 2 21:18 3 3 21:19 2 2	Machine #: NB Site ID: NB Description: Visitor Center Complex NB s of NASA Pkwy		File: NB.prn Street Name: Visitor Center Com County: Brevard	
17:30 109 109 17:40 129 129 18:00 138 138 Hour Total 464 464 18:15 95 95 18:30 115 115 18:00 96 96 Hour Total 417 417 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 129 329 20:15 30 22 20:15 30 22 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:00 1 <th>TIME</th> <th>1</th> <th></th>	TIME	1		
17:30 109 109 17:40 129 129 18:00 138 138 Hour Total 464 464 18:15 95 95 18:30 115 115 18:00 96 96 Hour Total 417 417 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 118 118 19:15 129 329 20:15 30 22 20:15 30 22 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:00 1 <td>17.15</td> <td></td> <td></td>	17.15			
17:45 129 129 18:00 138 HOUR TOTAL 464 18:15 95 18:16 95 18:17 115 18:18 95 18:19 115 19:19 111 19:10 96 19:17 118 19:18 118 19:19 118 19:13 118 19:14 117 19:15 118 19:14 117 19:15 118 19:14 118 19:15 118 19:15 129 20:00 39 20:10 22 20:13 22 20:14 30 20:15 30 20:10 22 20:14 7 21:15 2 22:100 2 100ur Total 11 11 11 21:15 2 22:100 2 22:130 1 21:15 2 22:10 2 21:15 2 21:15 2 21:16 2				
18:00 138 138 Hour Total 464 464 18:15 95 95 18:30 115 115 18:40 111 111 19:00 96 96 Hour Total 417 417 19:15 118 118 19:30 96 96 19:43 76 79 20:00 39 30 20:10 20 22 20:00 20 7 20:10 20 7 20:10 20 7 20:10 20 20 20:10 20 20 20:10 2 2 20:11 2 2 20:12 2 2 20:13 2 2 20:14 2 2 20:15 2 2 21:10 1 1 21:15 2 2				
18:10 95 95 18:30 115 115 18:45 111 111 19:00 96 96 Nour Total 117 417 19:15 118 166 19:30 96 96 19:15 118 166 19:10 128 169 19:13 128 166 19:14 76 76 20:00 39 39 100r Total 129 329 20:15 30 22 20:15 30 22 20:15 30 22 20:15 20 2 20:15 30 20 20:45 7 7 21:10 9 9 100r Total 68 68 21:15 2 2 22:00 2 2 21:15 2 2 22:10 1 11 21:15 2 2 21:14 1 1 22:15 2 2 23:10 2 2 23:13 2 2 23:14 2 2				
18:30 115 115 18:45 111 111 19:00 96 96 Hour Total 417 417 19:15 118 118 19:30 76 76 19:45 76 76 20:00 39 39 Hour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:00 9 9 Hour Total 68 68 21:15 2 2 21:00 2 2 21:00 2 2 21:15 2 2 21:16 2 2 21:17 2 2 21:18 2 2 21:19 2 2 21:10 1 1 21:15 2 2 21:16 2 2 21:17 1 1 21:18 2 2 21:19 2 2 <t< td=""><td>Hour Total</td><td>464</td><td>464</td></t<>	Hour Total	464	464	
18:45 111 111 19:00 96 96 19:15 118 118 19:15 96 96 19:40 76 76 20:00 39 39 4our Total 329 329 20:15 30 30 20:10 22 22 20:15 30 30 20:16 7 7 20:13 22 22 20:45 7 7 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:15 2 2 21:16 1 1 21:17				
19:00 96 96 Hour Total 417 417 19:15 118 118 19:30 96 96 19:45 76 76 20:00 39 329 Hour Total 329 329 Hour Total 329 329 20:15 20 22 20:30 22 22 20:45 7 7 20:05 20 2 20:30 22 22 20:45 2 2 20:45 2 2 21:00 9 9 Hour Total 68 68 21:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 23:00 8 8 Hour Total 12 1 23:15 2 2 23:16 2				
Hour Total 417 417 19:15 118 118 19:30 96 96 19:45 76 76 20:00 39 39 Hour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:05 2 2 21:01 9 9 Hour Total 68 68 21:15 2 2 22:10 2 2 10ur Total 11 11 22:15 2 2 23:00 8 8 Hour Total 12 12 23:10 2 2 23:15 2 2 23:15 2 2 23:15 2 2 23:15 2 2 23:45 0 0 24:00 3 3 Hour Total 7 7 7 7 10 100:0 100:0 0 24:00 3 3 30 3 3 400 100.0 100:0 <td></td> <td></td> <td></td>				
19:30 96 96 19:45 76 76 20:00 39 39 Nour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:00 9 9 Hour Total 68 68 21:15 2 2 22:00 2 2 22:10 2 2 11 11 11 22:15 2 2 22:10 2 2 100 9 9 Hour Total 11 11 22:15 2 2 23:0 1 1 23:10 2 2 23:30 2 2 23:30 3 3 Hour Total 7 7 OAY TOTAL 2734 2734 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 103 100*	Hour Total		417	
19:30 96 96 19:45 76 76 20:00 39 39 Nour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:00 9 9 Hour Total 68 68 21:15 2 2 22:00 2 2 22:10 2 2 11 11 11 22:15 2 2 22:10 2 2 100 9 9 Hour Total 11 11 22:15 2 2 23:0 1 1 23:10 2 2 23:30 2 2 23:30 3 3 Hour Total 7 7 OAY TOTAL 2734 2734 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 103 100*	19:15	118	118	
19:45 76 76 20:00 39 39 Nour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 22:00 2 2 Hour Total 11 11 21:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 23:15 2 2 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 3 3 23:45 0 2 23:45 0 2 23:40 3 3 OAY TOTAL 2734 2734 PERCENTS 103 100* NM Times 103<				
20:00 39 39 Hour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:20 5 2 21:15 2 2 21:15 2 2 21:15 2 2 21:20 2 2 21:45 2 2 22:10 2 2 Hour Total 11 11 22:15 2 2 22:10 1 1 22:15 2 2 23:00 8 8 Hour Total 12 12 23:10 2 2 23:15 2 2 23:20 2 2 23:30 2 2 23:45 0 3 24:00 3 3 34 100.0% 100% MY Times 11:15 MY Times 17:45				
Hour Total 329 329 20:15 30 30 20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 23:00 8 8 Hour Total 12 12 23:00 8 8 Hour Total 12 12 23:15 2 2 23:15 2 2 23:30 2 2 23:45 0 0 24:00 3 3 Hour Total 7 7 7 7 7 7 7 7 23:45 0 100.0% 100% 100% 100% NM Times 11:15 103 103				
20:30 22 22 20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:30 5 5 21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 23:0 1 1 23:15 2 2 23:15 2 2 23:15 2 2 23:15 2 2 23:15 3 3 Hour Total 7 7 DAY TOTAL 2734 100% TOTAL 2734 100% PM Times 11:15 103 PM Times 17:45 103	Hour Total			
20:45 7 7 21:00 9 9 Hour Total 68 68 21:15 2 2 21:30 5 5 21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:16 2 2 23:00 8 8 Hour Total 12 12 23:15 2 2 23:15 2 2 23:145 0 3 24:00 3 3 Hour Total 7 7 PAY TOTAL 2734 2734 PERCENTS 103 100% PM Times 11:15 103 PM Times 17:45 103				
21:00 9 9 Hour Total 68 68 21:15 2 2 21:30 5 5 21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:15 2 2 23:15 2 2 23:15 2 2 23:15 2 2 23:16 0 2 24:00 3 3 Hour Total 7 7 PAT TOTAL 2734 2734 PERCENTS 103 100% PM Times 11:15 103				
Hour Total 68 68 21:15 2 2 21:30 5 5 21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:15 2 2 23:30 2 2 24:00 3 3 Hour Total 7 7 PAY TOTAL 2734 2734 PERCENTS 103 100% PM Times 11:15 103				
21:15 2 2 21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 2 24:00 3 3 Hour Total 7 7 PERCENTS 2734 2734 M Times 11:15 MM Times 103 PM Times 17:45	21:00	9	9	
21:30 5 5 21:45 2 22:00 2 Hour Total 11 11 11 22:15 2 22:30 1 12:15 2 23:00 8 Hour Total 12 12:15 2 23:00 8 Hour Total 12 23:15 2 23:45 0 24:00 3 Hour Total 7 7 7 Total 7 AN Times 11:15 MA Peaks 103 PM Times 17:45	Hour Total	68	68	
21:45 2 2 22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 2 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 103 PM Times 103 103				
22:00 2 2 Hour Total 11 11 22:15 2 2 22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 2 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 103 PM Times 17:45				
22:15 2 2 22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 3 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 MA Peaks 103 PM Times 17:45				
22:30 1 1 22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 0 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	Hour Total	11	11	
22:45 1 1 23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 2 23:45 0 3 Hour Total 7 7 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	22:15	2	2	
23:00 8 8 Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 0 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Times 103 PM Times 17:45	22:30	1	1	
Hour Total 12 12 23:15 2 2 23:30 2 2 23:45 0 3 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45				
23:15 2 2 23:30 2 2 23:45 0 0 24:00 3 3 Hour Total 7 7 DAY TOTAL PERCENTS 2734 100.0% 2734 100% AM Times 11:15 103 PM Times 17:45	23:00	8	8	
23:30 2 2 2 23:45 0 0 0 24:00 3 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	Hour Total	12	12	
23:45 0 0 24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45		2	2	
24:00 3 3 Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45				
Hour Total 7 7 DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45				
DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	24:00	3	3	
DAY TOTAL 2734 2734 PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	Hour Total		7	
PERCENTS 100.0% 100% AM Times 11:15 AM Peaks 103 PM Times 17:45	 DAY TOTAL		2734	
AM Peaks 103 PM Times 17:45	PERCENTS			
AM Peaks 103 PM Times 17:45	AM Timos	11.15		
PM Times 17:45	AM limes AM Peaks			
PM Peaks 477	PM Times			
	PM Peaks	477		

Machine #: NB Site ID: NB Description: Visitor Center	Complex NB s of NASA Pkwy	File: NB.prn Street Name: Visitor Center Com County: Brevard
TIME	1	Total
	NORTH	
00:15	0	0
00:30	0	0
00:45 01:00	0 6	0 6
Hour Total	6	6
01:15 01:30	0 1	0 1
01:30		
02:00	14	14
Hour Total	15	15
02:15	1	1
02:30 02:45	1 0	1 0
03:00	0	0
Hour Total	2	2
03:15	0	0
03:30	0	0
03:45 04:00	0 0	0 0
Hour Total	0	0
04:15	0	0
04:30	0	0
04:45 05:00	0 0	0 0
Hour Total	0	0
05:15	0	0
05:30	0	0
05:45 06:00	0 1	0
Hour Total		1
06:15 06:30	1 3	1 3
06:45	3	3
07:00	4	4
Hour Total	11	11
07:15	0	0
07:30 07:45	16 5	16 5
08:00	5 2	5 2
Hour Total	23	23
08:15	3	3
08:30	4 3	4 3
08:45	3	3

lachine #: NB ite ID: NB escription: Visitor Center (Complex NB s of NASA Pkwy	File: NB.prn Street Name: Visitor Center Com County: Brevard
TIME	1 NORTH	Total
09:00	14	14
our Total	24	24
09:15	9	9
09:30	9	9
09:45	20	20
10:00	13	13
our Total	51	51
10:15	9	9
10:30	10	10
10:45 11:00	17 15	17 15
our Total	51	51
11:15 11:30	15 15	15 15
11:45	22	22
12:00	28	28
our Total	80	80
12:15	24	24
12:30	27	27
12:45	25	25
13:00	25	25
our Total	101	101
13:15	21	21
13:30	19 27	19 27
13:45 14:00	61	27 61
our Total	128	128
14:15	37	37
14:30	54	54
14:45	44	44
15:00	35	35
our Total	170	170
15:15	60	60
15:30	66	66
15:45	60	60
16:00		
our Total	271	271
16:15	71	71
16:30	95	95
16:45	94 99	94 99
17:00	99	ور
our Total	359	359

Machine #: NB Site ID: NB Description: Visitor Center Complex NB s of NASA Pkwy		File: NB.prn Street Name: Visitor Center Com County: Brevard	
TIME	1 NORTH	Total	
17:15	100	100	
17:30	100	100	
17:45	116	116	
18:00	113	113	
our Total	450	450	
18:15	106	106	
18:30	94	94	
18:45	105	105	
19:00	91	91	
our Total	396	396	
19:15	85	85	
19:30	67	67	
19:45	69	69	
20:00	52	52	
our Total	273	273	
20:15	27	27	
20:30	8	8	
20:45	19	19	
21:00	б	6	
our Total	60	60	
21:15	1	1	
21:30	5	5	
21:45	2	2	
22:00	2	2	
our Total	10	10	
22:15	4	4	
22:30	6	6	
22:45	1	1	
23:00	5	5	
our Total	16	16	
23:15	2	2	
23:30	0	0	
23:45	3	3	
24:00	1	1	
our Total	6	6	
AY TOTAL	2504	2504	
ERCENTS	100.0%	100%	
M Times	11:15		
M Peaks	80		
M. Thimse	1 7		
M Times	17:30		
M Peaks	456		

Machine #: SB		File: SB.prn	
Site ID: SB		Street Name: Visitor Center SB	
Description: Visitor Center Complex SB s of NASA Pkwy		County: Brevard	
TIME	1 SOUTH	Total	
01:00	0	0	
02:00	5	5	
03:00	0	0	
04:00	7	7	
05:00	10	10	
06:00	34	34	
07:00	53	53	
08:00	87	87	
09:00	238	238	
10:00	478	478	
11:00	516	516	
12:00	357	357	
13:00	274	274	
14:00	179	179	
15:00	128	128	
16:00	99	99	
17:00	90	90	
18:00	91	91	
19:00	62	62	
20:00	23	23	
20:00	23	23	
21:00	9	9	
22:00	6	6	
23:00	1	1	
		2	
DAY TOTAL	2749	2749	
PERCENTS	100.0%	100%	
AM Times AM Peaks	10:00 542		
PM Times PM Peaks	12:15 274		

Machine #: SB Site ID: SB Description: Visitor Center	Complex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
TIME	1 SOUTH	Total
01:00	1	1
02:00	5	5
03:00	0	0
04:00	9	9
05:00	8	8
06:00	35	35
07:00	59	59
08:00	101	101
09:00	211	211
10:00	368	368
11:00	422	422
12:00	390	390
13:00	256	256
14:00	190	190
15:00	117	117
16:00	111	111
17:00	88	88
18:00	84	84
19:00	46	46
20:00	13	13
21:00	6	6
22:00	3	3
23:00	4	4
	4 2531	4 2531
DAY TOTAL PERCENTS	100.0%	200%
AM Times AM Peaks	10:30 429	
PM Times PM Peaks	12:15 256	

Machine #: SB Site ID: SB Description: Visitor Cente:	r Complex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
TIME	1 SOUTH	Total
01:00 02:00	1 0	1 0
DAY TOTAL PERCENTS	1 100.0%	1 100%
AM Times AM Peaks	1	
PM Times PM Peaks		

File: SB.prn

Machine #: SB

Machine #: SB Site ID: SB Description: Visitor Center	Complex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
TIME	l SOUTH	Total
	 ^	
00:15 00:30	0 0	0 0
00:45	0	0
01:00	0	0
Hour Total	0	0
01:15	0	0
01:30	1	1
01:45	3	3
02:00	1	1
Hour Total	5	5
02:15	0	0
02:30	0	0
02:45	0	0
03:00	0	0
Hour Total	0	0
03:15	0	0
03:30	1	1
03:45	4	4
04:00	2	2
Hour Total	7	7
04:15	1	1
04:30	1	1
04:45	6	6
05:00	2	2
Hour Total	10	10
05:15	1	1
05:30	7	7
05:45 06:00	17 9	17 9
		34
06:15	1	1
06:30 06:45	14 19	14 19
06:45	19	19
Hour Total	53	53
07:15	10	10
07:30	19	19
07:45	24	24
	34	34
Hour Total	87	87
08:15	28	28
08:30	45	45
08:45	72	72

Hour Total 238 238 09:15 106 106 09:13 120 126 09:14 120 126 10:00 136 136 Hour Total 478 478 10:15 123 123 10:15 123 123 10:15 123 123 10:15 123 123 10:15 123 123 10:15 123 123 10:15 123 123 10:15 129 123 11:0 110 110 11:0 100 100 11:15 98 98 11:45 98 98 11:45 126 27 12:15 72 72 12:15 72 72 12:15 72 72 13:00 63 63 Hour Total 274 274 13:15 </th <th>Machine #: SB Site ID: SB Description: Visitor Center Co</th> <th>omplex SB s of NASA Pkwy</th> <th colspan="5">File: SB.prn Street Name: Visitor Center SB County: Brevard</th>	Machine #: SB Site ID: SB Description: Visitor Center Co	omplex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard				
Nour Total 238 238 09:15 106 106 09:30 126 126 09:43 110 110 10:00 138 136 Hour Total 478 478 Hour Total 178 136 10:15 123 123 10:30 119 119 10:45 164 164 11:00 110 100 Nour Total 516 516 11:15 98 98 11:45 94 94 12:00 85 85 Nour Total 357 357 12:15 72 72 13:15 44 44 13:15 44 44 13:45 33 33 14:15 36 36 14:16 36 36 14:16 36 36 14:16 36 36 14:1	TIME	1					
Hour Total 238 238 09:15 09:45 09:45 110:00 106 126 136 106 126 136 106 136 Hour Total 478 478 10:15 16:30 123 16:30 123 16:30 123 16:30 10:15 11:00 123 16:30 123 16:30 123 16:30 10:15 11:00 100 100 100 11:00 100 100 100 11:15 12:10 98 49 88 49 11:13 11:13 12:10 80 85 89 11:13 11:14 357 357 12:10 80 80 11:14 12:10 82 49 41 42 12:10 12:1	09:00	93					
09:30 126 126 09:45 110 110 10:0 136 136 Hour Total 478 478 10:15 123 131 10:30 119 119 10:45 164 164 11:0 110 110 Hour Total 516 516 11:15 98 98 11:145 98 98 11:15 72 72 12:10 85 85 Hour Total 357 357 12:15 72 72 12:16 82 82 13:00 63 63 Hour Total 274 274 13:15 74 64 14:15 36 33 13:00 63 63 Hour Total 179 179 14:15 36 36 14:15 36 36 14:15 19 19 14:10 128 26 15:10 25 25 15:10 25 25 15:10 26 26 15:10 26 26	Hour Total						
09:45 110 110 10:10 136 Hour Total 478 10:15 123 10:30 119 10:43 164 11:00 110 10:15 123 10:30 119 10:43 164 11:00 110 10:15 16 11:15 98 11:15 98 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 12:10 72 12:13 72 12:14 72 12:15 73 13:15 44 13:15 44 13:15 44 13:15 34 14:10 128 15:15 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25	09:15	106	106				
09:45 110 110 10:10 136 Hour Total 478 10:15 123 10:30 119 10:43 164 11:00 110 10:15 123 10:30 119 10:43 164 11:00 110 10:15 16 11:15 98 11:15 98 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 11:15 198 12:10 72 12:13 72 12:14 72 12:15 73 13:15 44 13:15 44 13:15 44 13:15 34 14:10 128 15:15 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25 15:10 25	09:30	126	126				
10:00 136 136 Hour Total 478 478 10:15 123 123 10:30 119 119 10:45 164 110 Hour Total 516 516 11:15 98 98 11:45 94 94 12:00 85 85 Hour Total 357 357 12:10 82 82 12:40 85 85 Hour Total 357 357 12:15 72 72 12:40 82 82 12:43 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 14:16 33 33 14:00 46 48 14:10 34 34 14:10 34 34 15:10 25 25 15:13							
10:15 123 123 10:30 119 119 11:0 110 110 Hour Total 516 516 11:15 98 80 11:13 98 80 11:14 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 85 Hour Total 274 274 13:10 63 63 Hour Total 274 274 13:15 44 54 13:45 33 33 13:00 63 63 Hour Total 274 274 13:15 44 54 13:45 33 33 13:00 25 25 Hour Total 179 179 14:15 36 36 14:15 36 36 14:16 33 33 15:00 25 25							
10:30 119 119 10:45 164 164 11:0 110 110 Hour Total 516 516 11:15 98 98 11:45 94 94 12:00 85 85 Hour Total 357 357 Total 357 357 12:10 85 85 Hour Total 357 357 12:15 72 72 12:145 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 33 14:00 25 25 15:10 25 25 15:10 25 25 15:10 26 26 16:15 26 26 16:15 26 26 16:15 26 26 16:15 26 26 16:15<	Hour Total	478	478				
10:30 119 119 10:45 164 164 11:0 110 110 Hour Total 516 516 11:15 98 98 11:45 94 94 12:00 85 85 Hour Total 357 357 Total 357 357 12:10 85 85 Hour Total 357 357 12:15 72 72 12:145 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 33 14:00 25 25 15:10 25 25 15:10 25 25 15:10 26 26 16:15 26 26 16:15 26 26 16:15 26 26 16:15 26 26 16:15<	10:15	123	123				
10:46 164 164 11:00 110 110 Hour Total 516 516 11:15 98 98 11:43 94 94 12:10 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:10 48 48 Hour Total 179 179 14:15 36 36 15:00 25 25 15:15 26 26 15:15 26 25 15:00 31 31 16:00 31 31 16:00 31 31							
11:00 110 110 Hour Total 516 516 11:15 98 96 11:43 90 90 11:45 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:130 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:00 25 25 14:15 36 36 14:15 36 36 14:16 33 33 15:00 25 25 15:15 26 25 15:30 24 24 15:43 19 19 16:00 31 31 16:00 31 31 16:15 26 26 16:30 31 31 16:45 <td< td=""><td></td><td></td><td></td></td<>							
11:15 98 98 11:30 90 80 11:40 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 14:41 57 57 12:15 72 72 12:16 72 72 12:17 82 82 14:16 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:40 33 33 15:00 25 25 15:15 25 25 15:00 24 24 15:15 25 25 15:00 31 31 Hour Total 19 19 16:00 31 31 16:00 31 31 16:00 31 31 16:10 26 26 16:14 26 </td <td></td> <td></td> <td></td>							
11:30 80 80 11:45 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:00 25 25 Hour Total 128 128 Hour Total 128 128 15:15 25 25 15:00 25 25 15:15 26 26 15:15 25 25 15:20 31 31 Hour Total 99 99 16:15 26 26 16:20 31 31 16:00 31 31 16:45 17 17 17:00 16 16	Hour Total	516	516				
11:30 80 80 11:45 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:00 25 25 Hour Total 128 128 Hour Total 128 128 15:15 25 25 15:00 25 25 15:15 26 26 15:15 25 25 15:20 31 31 Hour Total 99 99 16:15 26 26 16:20 31 31 16:00 31 31 16:45 17 17 17:00 16 16	11:15	98	98				
11:45 94 94 12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:00 25 25 Hour Total 128 128 Hour Total 128 128 Hour Total 128 24 15:15 25 25 Hour Total 128 24 15:15 25 25 Hour Total 128 128 15:15 25 25 15:30 31 31 Hour Total 99 99 16:15 26 26 15:30 31 31 16:00 31 31 16:15 26 26 16:45 17 17 <tr< td=""><td></td><td></td><td></td></tr<>							
12:00 85 85 Hour Total 357 357 12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:00 25 25 15:15 25 25 15:15 26 26 15:15 26 26 15:15 26 26 15:15 26 26 15:15 26 26 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17 17 17 17 16<							
12:15 72 72 12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 fs:15 25 25 Hour Total 99 99 16:15 26 26 15:45 19 19 16:00 31 31 16:45 17 17 17:00 16 16							
12:30 82 82 12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:15 25 25 15:15 25 25 15:15 26 24 15:15 26 24 15:00 31 31 Hour Total 99 99 16:15 26 26 16:15 26 26 16:10 31 31 16:15 26 26 16:16 31 31 16:45 17 17 17:00 16 16	Hour Total	357	357				
12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 Hour Total 128 24 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	12:15	72	72				
12:45 57 57 13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 Hour Total 128 24 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	12:30	82	82				
13:00 63 63 Hour Total 274 274 13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:00 48 48 Hour Total 179 179 14:15 36 36 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16		57	57				
13:15 44 44 13:30 54 54 13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:0 25 25 Hour Total 128 128 15:15 25 25 15:20 25 25 Hour Total 128 128 15:15 25 25 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16		63	63				
13:30 54 54 $13:45$ 33 33 $14:00$ 48 48 Hour Total 179 179 $14:15$ 36 36 $14:30$ 34 34 $14:45$ 33 33 $15:00$ 25 25 Hour Total 128 128 $15:15$ 25 25 $15:30$ 24 24 $15:45$ 19 19 $16:00$ 31 31 Hour Total 99 99 $16:15$ 26 26 $16:30$ 31 31 $16:45$ 17 17 $17:00$ 16 16	Hour Total	274	274				
13:45 33 33 14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 Hour Total 128 24 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	13:15	44	44				
14:00 48 48 Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	13:30	54	54				
Hour Total 179 179 14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:00 24 24 15:15 29 29 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	13:45	33	33				
14:15 36 36 14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	14:00	48	48				
14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 31 16:45 17 17 17:00 16 16	Hour Total	179	179				
14:30 34 34 14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 31 16:45 17 17 17:00 16 16	14:15	36	36				
14:45 33 33 15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16							
15:00 25 25 Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16							
Hour Total 128 128 15:15 25 25 15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	15:00	25					
15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	Hour Total		128				
15:30 24 24 15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	15:15	25	25				
15:45 19 19 16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16							
16:00 31 31 Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16							
Hour Total 99 99 16:15 26 26 16:30 31 31 16:45 17 17 17:00 16 16	16:00	31					
16:30 31 31 16:45 17 17 17:00 16 16	Hour Total		99				
16:30 31 31 16:45 17 17 17:00 16 16	16:15	26	26				
16:45 17 17 17:00 16 16							
17:00 16 16							
Hour Total 90 90							
	Hour Total	90	90				

File: SB.prn

Machine #: SB

Machine #: 58 Site ID: SB Description: Visitor Center	Complex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard					
TIME	1	Total					
	SOUTH						
17:15	26	26					
17:30	19	19					
17:45	27	27					
18:00	19	19					
Hour Total	91	91					
18:15	21	21					
18:30	20	20					
18:45	3	3					
19:00	18	18					
Hour Total	62	62					
19:15	10	10					
19:30	6	6					
19:45	3	3					
20:00	4	4					
Hour Total	23	23					
20:15	2	2					
20:30	2	2					
20:45	3	3					
21:00	2	2					
Hour Total	9	9					
21:15	4	4					
21:30	0	0					
21:45	1	1					
22:00	1	1					
Hour Total	6	6					
22:15	1	1					
22:30	0	0					
22:45	0	0					
23:00	0	0					
Hour Total	1	1					
23:15	1	1					
23:30	1	1					
23:45	0	0					
24:00	0	0					
Hour Total	2	2					
 DAY TOTAL	2749	2749					
PERCENTS	100.0%	100%					
AM Times	10:00						
AM Peaks	542						
PM Times	12:15						
PM Peaks	274						

File: SB.prn

Machine #: SB

Site ID: SB Description: Visitor Center	Complex SB s of NASA Pkwy	Street Name: Visitor Center SB County: Brevard
TIME	1 SOUTH	Total
00:15	0	0
00:30	0	0
00:45	0	0
01:00	1	1
Hour Total	1	1
01:15	0	0
01:30	1	1
01:45	2	2
02:00	2	2
Hour Total	5	5
02:15	0	0
02:30	0	0
02:45	0	0
03:00	0	0
Hour Total	0	0
03:15	0	0
03:30	1	1
03:45	6	6
04:00	2	2
Hour Total	9	9
04:15	1	1
04:30	2	2
04:45	4	4
05:00	1	1
Hour Total	8	8
05:15	4	4
05:30	6	6
05:45	14	14
06:00	11	11
Hour Total	35	35
06:15	2	2
06:30	8	8
06:45	20	20
07:00	29	29
Hour Total	59	59
07:15	13	13
07:30	22	22
07:45	29	29
08:00	37	37
Hour Total	101	101
08:15	31	31
08:30	31	31
08:45	59	59

SOUTH 09:00 90 9 Hour Total 211 21 09:15 75 7 09:30 99 9 09:45 103 10 10:00 89 8 Hour Total 368 36 10:15 102 10 10:30 106 10 10:45 117 11 11:00 97 9 Hour Total 422 42 11:15 109 10 11:30 99 9 12:15 85 8 12:15 85 8 12:15 85 8 13:15 45 4 13:00 53 5 13:15 45 4 14:00 46 4 14:00 33 3 14:10 10 10 10 14:15 30 3 3 <th>Machine #: SB Site ID: SB Description: Visitor Center (</th> <th>Complex SB s of NASA Pkwy</th> <th>File: SB.prn Street Name: Visitor Center SB County: Brevard</th>	Machine #: SB Site ID: SB Description: Visitor Center (Complex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
09:00 90 9 Hour Total 211 21 09:13 99 99 09:43 105 100 10:00 89 8 Hour Total 368 36 10:15 102 10 10:30 106 10 10:45 117 11 10:30 106 10 10:45 117 11 11:15 109 10 11:30 99 9 12:00 86 8 Hour Total 390 39 12:10 85 8 13:01 190 39 12:10 85 4 13:00 53 5 13:15 45 4 14:00 46 4 14:00 46 4 14:00 33 3 14:15 26 2 14:16 27 <		1 SOUTH	Total
iour Total 211 21 09:15 75 7 09:45 105 10 10:00 89 8 iour Total 368 36 10:15 102 10 10:15 106 10 10:15 102 10 10:15 106 10 10:15 102 10 10:15 109 10 11:10 97 9 iour Total 422 42 11:15 109 10 11:45 96 9 12:00 86 8 12:15 85 8 12:10 53 5 13:00 53 5 13:10 45 4 13:30 45 5 13:10 25 5 13:10 33 3 14:15 30 3 14:13 31 <td< td=""><td></td><td></td><td>90</td></td<>			90
09:10 99 9 9 10:00 89 8 tour Total 368 36 10:15 102 10 10:30 106 10 10:45 117 11 11:00 97 9 10:15 109 10 11:15 109 10 11:15 109 9 11:15 109 9 11:15 109 9 12:00 86 8 tour Total 390 39 12:15 65 9 12:10 53 5 tour Total 256 25 13:10 53 5 13:10 53 3 13:15 45 4 14:16 30 3 13:10 26 2 14:40 31 3 14:10 33 3 14:40 31<	 Hour Total		211
09:10 99 9 9 10:00 89 8 tour Total 368 36 10:15 102 10 10:30 106 10 10:45 117 11 11:00 97 9 10:15 109 10 11:15 109 10 11:15 109 9 11:15 109 9 11:15 109 9 12:00 86 8 tour Total 390 39 12:15 65 9 12:10 53 5 tour Total 256 25 13:10 53 5 13:10 53 3 13:15 45 4 14:16 30 3 13:10 26 2 14:40 31 3 14:10 33 3 14:40 31<	09.15	75	75
09:45 105 10 10:00 89 8 four Total 368 36 10:15 102 10 10:30 106 10 10:45 117 11 11:00 97 9 four Total 422 42 11:15 109 10 11:30 99 9 12:00 86 8 four Total 390 39 12:15 85 8 13:00 53 5 13:00 53 5 13:15 45 6 13:00 53 5 13:15 45 4 14:00 46 4 14:10 30 3 14:45 31 3 15:00 33 3 15:00 33 3 15:00 33 3 15:15 26 2 <td></td> <td></td> <td>99</td>			99
10:00 89 8 our Total 368 36 10:15 102 10 10:45 117 11 11:00 97 9 our Total 422 42 11:15 109 10 11:30 99 9 11:45 96 9 12:15 86 8 our Total 390 39 12:15 85 8 12:00 86 8 our Total 53 5 our Total 256 25 13:00 53 5 our Total 256 25 13:15 45 4 14:00 46 4 14:00 46 4 14:10 30 33 our Total 117 11 14:15 30 33 14:10 31 33 14:10 37 33 15:00 37 3 15:00			105
10;15 102 10 $10:30$ 106 10 $10:45$ 117 11 $11:00$ 97 99 our Fotal 422 42 $11:15$ 109 10 $11:30$ 99 99 $11:45$ 96 99 $12:00$ 86 86 our Total 390 39 $12:15$ 85 8 $12:10$ 86 8 our Total 390 39 $12:15$ 85 8 $12:10$ 53 55 $0ur$ Total 256 25 $13:10$ 58 51 $13:10$ 45 4 $14:00$ 46 40 $0ur$ Total 190 19 $14:15$ 30 32 $14:45$ 31 33 33 $0ur$ Total 117 111 31 $15:15$ 26 22			89
10:30 106 10 10:45 117 11 11:00 97 99 our Total 422 42 11:15 109 10 11:30 99 99 11:45 96 99 12:00 86 86 our Total 390 39 12:15 85 8 12:145 65 65 13:00 53 5 our Total 256 25 13:15 45 4 14:10 46 4 14:00 46 4 our Total 190 19 14:15 30 3 15:15 26 25 15:15 26 25 0ur Total 117 11 15:15 26 22 16:00 26 22 0ur Total 111 11 16:15 21 22 16:30 19 11	our Total	368	368
10:45 117 11 11:00 97 9 tour Total 422 42 11:15 109 10 11:30 99 9 12:00 86 8 tour Total 390 39 12:15 85 8 12:20 86 8 tour Total 390 39 12:15 85 8 13:00 53 5 13:00 53 5 13:15 45 4 14:15 30 5 13:45 41 4 14:10 46 4 tour Total 190 19 14:15 30 3 15:00 33 3 15:00 33 3 15:15 26 2 16:00 26 2 16:15 21 2 16:45 26 2	10:15	102	102
11:00 97 9 tour Total 422 42 11:15 109 10 11:30 99 9 11:45 96 9 12:00 86 8 tour Total 390 39 12:15 85 8 tour Total 390 39 12:15 85 8 12:30 53 5 12:45 65 6 13:00 53 5 tour Total 256 25 13:15 45 4 13:30 58 5 tour Total 190 19 14:15 30 3 14:45 31 3 15:00 33 3 tour Total 117 11 15:15 26 2 15:45 22 2 16:00 26 2 16:15 21 2 16:45 26 2			106
Jour Total 422 422 11:15 109 10 11:30 99 99 11:45 96 99 12:00 86 8 four Total 390 39 12:15 85 8 12:30 53 5 12:45 65 6 13:00 53 5 13:00 53 5 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 14:10 30 3 14:15 30 3 15:00 31 3 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 16:15 21 2 16:45 26 2			117
11:15 109 10 11:30 99 99 12:10 86 8 our Total 390 39 12:15 85 8 12:00 53 5 12:15 85 8 12:10 53 5 12:15 85 8 12:30 53 5 13:00 53 5 our Total 256 25 13:15 45 4 13:30 58 4 13:45 41 4 14:00 46 4 our Total 190 19 14:15 30 3 3 14:30 33 3 3 15:00 37 3 3 our Total 117 11 11 15:15 26 2 2 16:00 26 2 2 our Total 111 11 11 16:15 21 2 2 <td>11:00</td> <td>97</td> <td>97</td>	11:00	97	97
11:30 99 9 11:45 96 9 12:00 86 8 four Total 390 39 12:15 85 8 12:30 53 5 12:45 65 66 13:00 53 5 our Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 iour Total 190 19 14:15 30 3 15:00 33 3 15:15 26 25 15:16 26 2 16:00 26 2 16:15 21 2 16:45 26 2	lour Total	422	422
11:45 96 9 12:00 86 8 lour Total 390 39 12:15 85 8 12:00 53 5 12:15 85 8 12:20 53 5 12:15 85 8 12:20 53 5 12:45 65 6 13:00 53 5 lour Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 14:00 46 4 14:00 23 2 14:15 30 3 14:30 23 2 14:45 31 3 15:00 37 3 16:00 26 2 16:00 26 2 16:00 26 2 16:00 26 2 16:45 26 2 <			109
12:00 86 8 our Total 390 39 12:15 85 8 12:30 53 5 12:45 65 6 13:00 53 5 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 14:15 30 3 14:15 30 3 15:00 33 3 14:15 30 3 15:00 33 3 16:00 26 2 16:15 21 2 16:00 19 1 16:45 26 2			99
our Total 390 39 12:15 85 8 12:30 53 5 12:45 65 6 13:00 53 5 our Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 our Total 190 19 14:15 30 3 14:40 23 2 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:00 26 2 0ur Total 111 11 15:15 26 2 16:00 26 2 16:00 26 2 16:30 19 1 16:45 26 2 <td></td> <td></td> <td>96</td>			96
12:15 85 8 12:30 53 5 12:45 65 6 13:00 53 5 our Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 our Total 190 19 14:15 30 3 15:00 33 3 our Total 117 11 15:15 26 2 16:00 26 2 0ur Total 111 11 16:15 21 2 16:30 19 1	12:00	86	86
12:30 53 5 12:45 65 6 13:00 53 5 our Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 our Total 190 19 14:15 30 3 14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 16:00 26 2 16:45 20 1	our Total	390	390
12:45 65 65 13:00 53 53 tour Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 14:15 30 3 14:15 30 3 14:45 31 3 15:00 33 3 15:15 26 2 15:45 22 2 16:00 26 2 16:15 21 2 16:30 19 1 16:45 26 2			85
13:00 53 5 Iour Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 Iour Total 190 19 14:15 30 3 14:30 23 2 14:45 31 3 15:00 33 3 Iour Total 117 11 15:15 26 2 16:00 26 2 Iour Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			53
our Total 256 25 13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 our Total 190 19 14:15 30 3 14:30 23 2 14:45 31 3 14:45 31 3 14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 0ur Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			65 53
13:15 45 4 13:30 58 5 13:45 41 4 14:00 46 4 1our Total 190 19 14:15 30 3 14:30 23 2 14:45 31 3 15:00 33 3 10ur Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 16:00 26 2 16:15 21 2 16:30 19 1 16:45 26 2			256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
13:45 41 4 14:00 46 4 four Total 190 19 14:15 30 3 14:30 23 2 14:45 31 3 15:00 33 3 four Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 16:15 21 2 16:30 19 1 16:45 26 2 21 26 2			45
14:00 46 4 iour Total 190 19 14:15 30 3 14:30 23 2 14:45 31 3 15:00 33 3 iour Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 Iour Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			58 41
14:15 30 3 14:30 23 2 14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			41 46
14:30 23 2 14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2	our Total	190	190
14:30 23 2 14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2	14.15	30	30
14:45 31 3 15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			23
15:00 33 3 our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			31
our Total 117 11 15:15 26 2 15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2	15:00	33	33
15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			117
15:30 37 3 15:45 22 2 16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2	15:15	26	26
16:00 26 2 our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			37
our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2			22
our Total 111 11 16:15 21 2 16:30 19 1 16:45 26 2	16:00		26
16:30 19 1 16:45 26 2			111
16:30 19 1 16:45 26 2	16:15	21	21
16:45 26 2			19
17:00 22 2			26
	17:00	22	22
our Total 88 8			88

Machine #: SB Site ID: SB Description: Visitor Center Co	omplex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
TIME	1 South	Total
17:15	18	18
17:13	14	10
17:45	26	26
18:00	26	26
Hour Total	84	84
18:15	15	15
18:30	12	12
18:45	13	13
19:00	6	6
Hour Total	46	46
19:15	5	5
19:30	3	3
19:45	3	3
20:00	2	2
Hour Total	13	13
20:15	2	2
20:30	2	2
20:45	1	1
21:00	1	1
Hour Total	6	6
21:15	1	1
21:30	1	1
21:45	0	0
22:00	1	1
Hour Total	3	3
22:15	1	1
22:30	0	0
22:45	2	2
23:00	1	1
Hour Total	4	4
23:15	0	0
23:30	2	2
23:45	2	2
24:00	0	0
Hour Total	4	4
	2531	2531
DAY TOTAL PERCENTS	100.0%	100%
T DICONTO	T 0.0 • 0.9	T O O.º
AM Times	10:30	
AM Peaks	429	
PM Times	12:15	
PM Peaks	256	

Machine #: SB Site ID: SB Description: Visitor Center Cc	mplex SB s of NASA Pkwy	File: SB.prn Street Name: Visitor Center SB County: Brevard
TIME	1 SOUTH	Total
00:15 00:30 00:45 01:00	0 0 1 0	0 0 1 0
Hour Total	1	1
01:15	0	0
Hour Total	0	0
DAY TOTAL PERCENTS	1 100.0%	1 100%
AM Times AM Peaks	1	

PM Times PM Peaks

														agoi			
								ted- Automob	iles - Com								
			I/A				a Pkwy				mmerce Way				a Pkwy		
		Soutr	nbound	Ann		wes	tbound	A nn		NOR	hbound	Ann		East	bound	Ann	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:00 AM	0	0	0	0	1	6	0	7	6	0	2	8	0	185	63	248	263
06:15 AM	0	0	0	0	1	10	0	11	5	0	4	9	0	276	48	324	344
06:30 AM	0	0	0	0	3	13	0	16	14	0	8	22	0	341	42	383	421
06:45 AM	0	0	0	0	1	10	0	11	11	0	9	20	0	370	38	408	439
Total	0	0	0	0	6	39	0	45	36	0	23	59	0	1172	191	1363	1467
07:00 AM	0	0	0	0	3	8	0	11	15	0	7	22	0	268	17	285	318
07:15 AM	0	0	0	0	4	28	0	32	14	0	5	19	0	221	21	242	293
07:30 AM	0	0	0	0	4	7	0	11	15	0	5	20	0	239	29	268	299
07:45 AM	0	0	0	0	2	10	0	12	21	0	20	41	0	253	17	270	323
Total	0	0	0	0	13	53	0	66	65	0	37	102	0	981	84	1065	1233
09:00 AM	0	0	0	0	0	18	0	18	16	0	31	47	0	162	22	184	249
09:15 AM	0	0	0	0	2	11	0	13	8	0	22	30	0	125	21	146	189
09:30 AM	0	0	0	0	3	15	0	18	8	0	37	45	0	112	16	128	191
09:45 AM	0	0	0	0	5	18	0	23	11	0	37	48	0	125	21	146	217
Total	0	0	0	0	10	62	0	72	43	0	127	170	0	524	80	604	846
10:00 AM	0	0	0	0	6	17	0	23	9	0	24	33	0	135	27	162	218
10:15 AM	0	0	0	0	4	21	0	25	3	0	32	35	0	115	15	130	190
10:30 AM	0	0	0	0	4	21	0	25	13	0	22	35	0	126	13	139	199
10:45 AM	0	0	0	0	4	18	0	22	14	0	17	31	0	118	9	127	180
Total	0	0	0	0	18	77	0	95	39	0	95	134	0	494	64	558	787
04:00 PM	0	0	0	0	27	354	0	381	25	0	6	31	0	11	12	23	435
04:15 PM	0	0	0	0	27	325	0	352	39	0	9	48	0	9	23	32	432
04:30 PM	0	0	0	0	9	326	0	335	29	0	6	35	0	22	20	42	412
04:45 PM	0	0	0	0	14	271	0	285	58	0	7	65	0	14	34	48	398
Total	0	0	0	0	77	1276	0	1353	151	0	28	179	0	56	89	145	1677

														0			
						(Groups Prin	ted- Automob	iles - Comr	nercial							
	N/A Nasa Pkwy								mmerce Wa	y							
		South	bound			West	bound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
05:00 PM	0	0	0	0	27	314	0	341	96	0	9	105	0	17	20	37	483
05:15 PM	0	0	0	0	18	282	0	300	34	0	5	39	0	15	20	35	374
05:30 PM	0	0	0	0	27	251	0	278	48	0	8	56	0	28	34	62	396
05:45 PM	0	0	0	0	26	215	0	241	36	0	2	38	0	21	13	34	313
Total	0	0	0	0	98	1062	0	1160	214	0	24	238	0	81	87	168	1566
Grand Total Apprch %	0 0.0	0 0.0	0 0.0	0	222 8.0	2569 92.0	0 0.0	2791	548 62.1	0 0.0	334 37.9	882	0 0.0	3308 84.8	595 15.2	3903	7576
Total %	0.0	0.0	0.0	0.0	2.9	33.9	0.0	36.8	7.2	0.0	4.4	11.6	0.0	43.7	7.9	51.5	

			N/A hbound		Nasa Pkwy Westbound						mmerce Way	1	Nasa Pkwy Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From			0 AM - F	Peak 1 of 1													
Intersection	06:15 Al	M															
Volume	0	0	0	0	8	41	0	49	45	0	28	73	0	1255	145	1400	1522
Percent	0.0	0.0	0.0		16.3	83.7	0.0		61.6	0.0	38.4		0.0	89.6	10.4		
06:45 Volume	0	0	0	0	1	10	0	11	11	0	9	20	0	370	38	408	439
Peak Factor																	0.867
High Int.	5:45:00	AM			06:30 Al	М			06:30 AM				06:45 AN				
Volume	0	0	0	0	3	13	0	16	14	0	8	22	0	370	38	408	[
Peak Factor								0.766				0.830				0.858	
Peak Hour From	09:00 AN	/I to 12:0	0 PM - F	eak 1 of 1													
Intersection	09:00 Al	М															
Volume	0	0	0	0	10	62	0	72	43	0	127	170	0	524	80	604	846
Percent	0.0	0.0	0.0		13.9	86.1	0.0		25.3	0.0	74.7		0.0	86.8	13.2		
09:00 Volume	0	0	0	0	0	18	0	18	16	0	31	47	0	162	22	184	249
Peak Factor																	0.849
High Int.					09:45 Al	М			09:45 Al	М			09:00 AN	Λ			
Volume	0	0	0	0	5	18	0	23	11	0	37	48	0	162	22	184	[
Peak Factor								0.783				0.885				0.821	

		-	N/A hbound				a Pkwy tbound				mmerce Wa hbound	ıy			a Pkwy tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	03:45 PN	A to 05:4	5 PM - P	eak 1 of 1													,
Intersection	04:15 P	М															
Volume	0	0	0	0	77	1236	0	1313	222	0	31	253	0	62	97	159	1725
Percent	0.0	0.0	0.0		5.9	94.1	0.0		87.7	0.0	12.3		0.0	39.0	61.0		
05:00 Volume	0	0	0	0	27	314	0	341	96	0	9	105	0	17	20	37	483
Peak Factor																	0.893
High Int.					04:15 Pl	Μ			05:00 PI	N			04:45 PN	N			
Volume	0	0	0	0	27	325	0	352	96	0	9	105	0	14	34	48	(
Peak Factor								0.933				0.602				0.828	

														agon	• • •		
								ps Printed- C	ommercial								1
			N/A hbound				a Pkwy tbound			Space Con	nmerce Way				a Pkwy bound		
				App.				App.				App.				App.	
Start Time	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	3	3
06:15 AM	0	0	0	0	1	0	0	1	0	0	0	0	0	2	0	2	3
06:30 AM	0	0	0	0	2	1	0	3	0	0	0	0	0	1	0	1	4
06:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3	3 13
Total	0	0	0	0	3	1	0	4	0	0	0	0	0	8	1	9	13
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2
07:15 AM	0	0	0	0	2	0	0 0	2	0	Ő	0	0	0	2	1	3	5
07:30 AM	0 0	Õ	0 0	0	2	0 0	Ũ	2	Õ	Õ	Õ	0	0	2	3	5	2 5 7
07:45 AM	0 0	Õ	0 0	0	0	2	Ũ	2	Õ	Õ	1	1	0	1	1	2	5
Total	0	0	0	0	4	2	0	6	0	0	1	1	0	7	5	12	19
09:00 AM	0	0	0	0	0	0	0	0	2	0	1	3	0	0	1	1	4
09:15 AM	0	0	0	0	0	1	0	1	0	0	2	2	0	1	1	2	5 7
09:30 AM	0	0	0	0	1	1	0	2	1	0	1	2	0	2	1	3	7
09:45 AM	0	0	0	0	1	1	0	2	0	0	1	1	0	6	1	7	10
Total	0	0	0	0	2	3	0	5	3	0	5	8	0	9	4	13	26
10:00 AM	0	0	0	0	1	3	0	4	1	0	2	3	0	2	5	7	14
10:15 AM	0	0	0	0	0	1	0	1	0	0	1	1	0	2	2	4	6
10:30 AM	0	0	0	0	1	2	0	3	1	0	0	1	0	2	4	6	10
10:45 AM	0	0	0	0	1	2	0	3	1	0	1	2	0	2	3	5	10
Total	0	0	0	0	3	8	0	11	3	0	4	7	0	8	14	22	40
04:00 PM	0	0	0	0	0	6	0	6	2	0	1	3	0	1	0	1	10
04:15 PM	0	0	0	0	1	2	0	3	0	0	1	1	0	1	0	1	5
04:30 PM	0	0	0	0	0	2	0	2	1	0	0	1	0	0	1	1	4
04:45 PM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	2	3 22
Total	0	0	0	0	1	11	0	12	3	0	2	5	0	2	3	5	22

							Grou	ps Printed- C	ommercial					-			
			/A				Pkwy				nmerce Way				a Pkwy		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
05:00 PM	0	0	0	0	0	0	0	0	1	0	0	1	0	1	1	2	3
05:15 PM	0	0	0	0	0	3	0	3	1	0	0	1	0	2	1	3	7
05:30 PM	0	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	2
05:45 PM	0	0	0	0	1	2	0	3	0	0	0	0	0	1	0	1	4
Total	0	0	0	0	1	6	0	7	3	0	0	3	0	4	2	6	16
Grand Total Apprch %	0 0.0	0 0.0	0 0.0	0	14 31.1	31 68.9	0 0.0	45	12 50.0	0 0.0	12 50.0	24	0 0.0	38 56.7	29 43.3	67	136
Total %	0.0	0.0	0.0	0.0	10.3	22.8	0.0	33.1	8.8	0.0	8.8	17.6	0.0	27.9	21.3	49.3	

File Name : Nasa at Visitor Site Code : 0000005 Start Date : 08/10/2017 Page No : 1

							Groups Printe	ed- Automob									_
			I/A Ibound				a Pkwy bound				nter Complex				a Pkwy bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:00 AM	0	0	0	0	2	7	0	9	0	0	1	1	0	169	0	169	179
06:15 AM	0	0	0	0	1	10	0	11	2	0	1	3	0	282	6	288	302
06:30 AM	0	0	0	0	0	14	0	14	3	0	2	5	1	318	9	328	347
06:45 AM	0	0	0	0	5	9	0	14	0	0	0	0	0	386	15	401	415
Total	0	0	0	0	8	40	0	48	5	0	4	9	1	1155	30	1186	1243
07:00 AM	0	0	0	0	1	10	0	11	0	0	1	1	0	216	16	232	244
07:15 AM	0	0	0	0	1	28	0	29	1	0	5	6	0	253	9	262	297
07:30 AM	0	0	0	0	0	9	0	9	3	0	0	3	0	206	23	229	241
07:45 AM	0	0	0	0	4	13	0	17	0	0	1	1	0	225	48	273	291
Total	0	0	0	0	6	60	0	66	4	0	7	11	0	900	96	996	1073
09:00 AM 09:15 AM	0 0	0 0	0 0	0	5 7	13 9	1 0	19 16	6 2	0 0	5 6	11 8	2 1	101 60	94 84	197 145	227 169
09:30 AM	0 0	0	0	0	4	6	0	10	11	Õ	9	20	2	51	89	142	172
09:45 AM	0 0	Ő	0	0	6	11	0	17	9	Ő	5	14	3	42	114	159	190
Total	0	0	0	0	22	39	1	62	28	0	25	53	8	254	381	643	
10:00 AM	0	0	0	0	3	16	0	19	6	0	9	15	2	35	119	156	190
10:15 AM	0	0	0	0	4	19	0	23	8	0	10	18	2	38	104	144	185
10:30 AM	0	0	0	0	12	18	1	31	7	0	5	12	2	30	124	156	199
10:45 AM	0	0	0	0	3	10	2	15	1	0	3	4	0	24	115	139	158
Total	0	0	0	0	22	63	3	88	22	0	27	49	6	127	462	595	732
04:00 PM	0	0	0	0	7	293	0	300	93	0	8	101	0	6	13	19	420
04:15 PM	0	0	0	0	9	265	0	274	63	0	10	73	0	5	10	15	362
04:30 PM	0	0	0	0	8	269	0	277	60	0	9	69	0	7	15	22	368
04:45 PM	0	0	0	0	10	206	0	216	75	0	3	78	0	7	12	19	313
Total	0	0	0	0	34	1033	0	1067	291	0	30	321	0	25	50	75	1463

Groups Printed- Automobiles - Commercial

															0		
						(Groups Prin	ted- Automob	iles - Comr	nercial							
		N	I/A			Nasa	ı Pkwy			Visitor Cen	ter Complex	ĸ		Nasa	a Pkwy		
		South	nbound			West	bound			North	bound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
 05:00 PM	0	0	0	0	7	205	0	212	126	0	4	130	0	15	16	31	373
05:15 PM	0	0	0	0	8	177	0	185	116	0	5	121	0	11	11	22	328
05:30 PM	0	0	0	0	5	154	0	159	106	0	7	113	0	13	16	29	301
 05:45 PM	0	0	0	0	3	146	0	149	103	0	5	108	0	13	6	19	276
Total	0	0	0	0	23	682	0	705	451	0	21	472	0	52	49	101	1278
Grand Total Apprch %	0 0.0	0 0.0	0 0.0	0	115 5.6	1917 94.2	4 0.2	2036	801 87.5	0 0.0	114 12.5	915	15 0.4	2513 69.9	1068 29.7	3596	6547
Total %	0.0	0.0	0.0	0.0	1.8	29.3	0.1	31.1	12.2	0.0	1.7	14.0	0.2	38.4	16.3	54.9	

			N/A hbound				a Pkwy bound				nter Complex	(a Pkwy Ibound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	06:00 AN	1 to 08:0	0 AM - F	eak 1 of 1													
Intersection	06:15 Al	M															
Volume	0	0	0	0	7	43	0	50	5	0	4	9	1	1202	46	1249	1308
Percent	0.0	0.0	0.0		14.0	86.0	0.0		55.6	0.0	44.4		0.1	96.2	3.7		
06:45 Volume	0	0	0	0	5	9	0	14	0	0	0	0	0	386	15	401	415
Peak Factor																	0.788
High Int.	5:45:00	AM			06:30 AM	Л			06:30 Al	Μ			06:45 Al	N			
Volume	0	0	0	0	0	14	0	14	3	0	2	5	0	386	15	401	(
Peak Factor								0.893				0.450				0.779	
Peak Hour From	09:00 AN	1 to 11:0	0 AM - F	eak 1 of 1													
Intersection																	
Volume	0	0	0	0	25	64	1	90	30	0	29	59	9	145	461	615	764
Percent	0.0	0.0	0.0		27.8	71.1	1.1		50.8	0.0	49.2		1.5	23.6	75.0		
10:30 Volume	0	0	0	0	12	18	1	31	7	0	5	12	2	30	124	156	199
Peak Factor																	0.960
High Int.					10:30 AN	Л			10:15 Al	M			09:45 Al	M			
Volume	0	0	0	0	12	18	1	31	8	0	10	18	3	42	114	159	
Peak Factor	-	-	-	-			-	0.726	-	-		0.819	-			0.967	

			N/A hbound				a Pkwy tbound				nter Comple	x			a Pkwy tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	04:00 PN	/I to 05:4	5 PM - P	eak 1 of 1													,
Intersection	04:00 P	М															
Volume	0	0	0	0	34	1033	0	1067	291	0	30	321	0	25	50	75	1463
Percent	0.0	0.0	0.0		3.2	96.8	0.0		90.7	0.0	9.3		0.0	33.3	66.7		
04:00 Volume	0	0	0	0	7	293	0	300	93	0	8	101	0	6	13	19	420
Peak Factor																	0.871
High Int.					04:00 PI	N			04:00 PN	N			04:30 PM	N			
Volume	0	0	0	0	7	293	0	300	93	0	8	101	0	7	15	22	ĺ
Peak Factor								0.889				0.795				0.852	

														10	gonto	• •	
1			1/4			N	Group	os Printed- C	ommercial	<u>) // // C</u>				N	<u> </u>		1
			I/A hbound				Pkwy bound				iter Complex				ı Pkwy bound		
				App.				App.				App.				App.	
Start Time	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
		_		- 1					-	_		- 1				-	
06:30 AM	0	0	0	0	0	1	0	1	2	0	0	2	1	1	0	2 2	5
06:45 AM	0	0	0	0	<u>1</u> 1	0	0	1	0	0	0	0	0	2	0	2	5 3 8
Total	0	0	0	0	1	1	0	2	2	0	0	2	1	3	0	4	8
07:00 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	3	0	3	4
07:15 AM	Ō	Ō	Ō	0	Ō	2	Ō	2	Ō	Ō	2	2	Ō	1	Ō	1	5
07:30 AM	0	0	0	0	0	0	0	0	1	0	0	1	0	2	0	2	5 3
07:45 AM	0	0	0	0	0	2	0	2	0	0	0	0	0	2	1	3	5
Total	0	0	0	0	0	4	0	4	1	0	3	4	0	8	1	9	17
09:00 AM	0	0	0	0	0	1	0	1	0	0	0	0	2	2	0	4	5
09:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	2
09:30 AM	0	0	0	0	0	1	0	1	0	0	1	1	2	2	2	6	8
09:45 AM	0	0	0	0	0	1	0	1	1	0	3	4	3	3	3	9	14
Total	0	0	0	0	0	3	0	3	1	0	4	5	8	8	5	21	29
10:00 AM	0	0	0	0	0	2	0	2	2	0	4	6	2	2	0	4	12
10:15 AM	0	0	0	0	0	0	0	0	0	0	3	3	2	2	0	4	7
10:30 AM	0	0	0	0	3	4	0	7	0	0	3	3	2	2	1	5	15
10:45 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
Total	0	0	0	0	3	6	0	9	2	0	11	13	6	6	1	13	35
04:00 PM	0	0	0	0	6	2	0	8	3	0	5	8	0	1	1	2	18
04:15 PM	0	0	0	0	5	0	0	5	3	0	6	9	0	0	2	2 2	16
04:30 PM	0 0	0	0 0	Ő	3	1	0 0	4	1	Õ	4	5	Õ	0 0	0	0	9
04:45 PM	0	0	0 0	0	8	1	0	9	Ō	0	2	2	0	0	0	0	11
Total	0	0	0	0	22	4	0	26	7	0	17	24	0	1	3	4	54
				'													

															0		
							Grou	ps Printed- C	ommercial								
		-	I/A			Nasa	a Pkwy				nter Complex	(a Pkwy		
		South	bound			West	tbound			Nort	hbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
05:00 PM	0	0	0	0	4	2	0	6	1	0	2	3	0	0	0	0	9
05:15 PM	0	0	0	0	4	1	0	5	0	0	0	0	0	0	0	0	5
05:30 PM	0	0	0	0	2	0	0	2	0	0	1	1	0	0	0	0	3
05:45 PM	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	2
Total	0	0	0	0	11	3	0	14	1	0	4	5	0	0	0	0	19
Grand Total Apprch %	0 0.0	0 0.0	0 0.0	0	37 63.8	21 36.2	0 0.0	58	14 26.4	0 0.0	39 73.6	53	15 29.4	26 51.0	10 19.6	51	162
Total %	0.0	0.0	0.0	0.0	22.8	13.0	0.0	35.8	8.6	0.0	24.1	32.7	9.3	16.0	6.2	31.5	

File Name : Commerce at Blue Site Code : 0000003 Start Date : 08/10/2017 Page No : 1

 						0	Groups Print	ed- Automobi	iles - Comr	nercial							
			I/A				merce Way	,			ed Drwy				nmerce Way		
		South	nbound	A		West	bound	A		North	bound	A		East	bound	A	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
09:00 AM	0	0	0	0	0	37	0	37	0	0	0	0	0	25	0	25	62
09:15 AM	0	0	0	0	0	28	0	28	1	0	0	1	0	23	0	23	52
09:30 AM	0	0	0	0	0	46	0	46	1	0	2	3	0	17	0	17	66
09:45 AM	0	0	0	0	1	47	0	48	0	0	0	0	0	29	0	29	77
 Total	0	0	0	0	1	158	0	159	2	0	2	4	0	94	0	94	257
10:00 AM	0	0	0	0	0	28	0	28	0	0	0	0	0	31	1	32	60
10:15 AM	0	0	0	0	0	38	0	38	0	0	0	0	0	23	1	24	62
10:30 AM	0	0	0	0	0	32	0	32	0	0	0	0	0	14	1	15	47
10:45 AM	0	0	0	0	2	26	0	28	2	0	0	2	0	21	3	24	54
 Total	0	0	0	0	2	124	0	126	2	0	0	2	0	89	6	95	223
04:00 PM	0	0	0	0	0	38	0	38	0	0	0	0	0	27	0	27	65
04:15 PM	0	0	0	0	0	43	0	43	0	0	0	0	0	42	0	42	85
04:30 PM	0	0	0	0	0	41	0	41	2	0	0	2	0	34	1	35	78
 04:45 PM	0	0	0	0	1	56	0	57	1	0	2	3	0	38	0	38	98
Total	0	0	0	0	1	178	0	179	3	0	2	5	0	141	1	142	326
05:00 PM	0	0	0	0	0	94	0	94	1	0	2	3	0	49	0	49	146
05:15 PM	0	0	0	0	0	36	0	36	7	0	4	11	0	51	0	51	98
05:30 PM	0	0	0	0	1	43	0	44	3	0	7	10	0	56	0	56	110
05:45 PM	Õ	Ō	Ō	Ō	0	37	Ō	37	Ō	Ō	4	4	Ō	38	3	41	82
 Total	0	0	0	0	1	210	0	211	11	0	17	28	0	194	3	197	436
	-	-	•	- 1			-	1		•			•		•		
Grand Total	0	0	0	0	5	670	0	675	18	0	21	39	0	518	10	528	1242
Apprch %	0.0	0.0	0.0	-	0.7	99.3	0.0		46.2	0.0	53.8		0.0	98.1	1.9		· _ · _
Total %	0.0	0.0	0.0	0.0	0.4	53.9	0.0	54.3	1.4	0.0	1.7	3.1	0.0	41.7	0.8	42.5	

Groups Printed- Automobiles - Commercial

File Name : Commerce at Blue Site Code : 0000003 Start Date : 08/10/2017 Page No : 2

			I/A nbound				nmerce Way				sed Drwy				mmerce Wa tbound	•	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	09:00 AN	/I to 11:4	5 AM - P	eak 1 of 1													
Intersection	09:30 A	M															
Volume	0	0	0	0	1	159	0	160	1	0	2	3	0	100	2	102	265
Percent	0.0	0.0	0.0		0.6	99.4	0.0		33.3	0.0	66.7		0.0	98.0	2.0		
09:45 Volume	0	0	0	0	1	47	0	48	0	0	0	0	0	29	0	29	77
Peak Factor																	0.860
High Int.	8:45:00	AM			09:45 AM	Λ			09:30 Al	N			10:00 Al	М			
Volume	0	0	0	0	1	47	0	48	1	0	2	3	0	31	1	32	[
Peak Factor								0.833				0.250				0.797	
Peak Hour From	12:00 PN	/l to 05:4	5 PM - P	eak 1 of 1													
Intersection	04:45 P	Μ															
Volume	0	0	0	0	2	229	0	231	12	0	15	27	0	194	0	194	452
Percent	0.0	0.0	0.0		0.9	99.1	0.0		44.4	0.0	55.6		0.0	100.0	0.0		
05:00 Volume	0	0	0	0	0	94	0	94	1	0	2	3	0	49	0	49	146
Peak Factor																	0.774
High Int.					05:00 PM	Λ			05:15 PI	N			05:30 PI	М			
Volume	0	0	0	0	0	94	0	94	7	0	4	11	0	56	0	56	
Peak Factor								0.614				0.614				0.866	

File Name : Commerce at Blue Site Code : 0000003 Start Date : 08/10/2017 Page No : 3

														. «ge .			
							Grou	ps Printed- C	ommercial								_
			I/A nbound				nmerce Way	/			ed Drwy				nmerce Way	,	
				App.			bound	App.			nbound	App.			bound	App.	
Start Time	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Tota
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
09:00 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	
09:15 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	
09:30 AM	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	0	
Total	0	0	0	0	0	4	0	4	0	0	0	0	0	1	0	1	
10:00 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	7	0	7	8
10:15 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	3	1	4	
10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	1
Total	0	0	0	0	0	2	0	2	0	0	0	0	0	13	2	15	17
04:30 PM	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	
04:45 PM	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	
Total	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	1	
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
05:30 PM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
Total	0	0	0	0	0	1	0	1	0	0	0	0	0	2	0	2	
	0	0	0	0	0	8	0	8	1	0	0	1	0	17	2	19	2
Grand Total																	
Grand Total Apprch % Total %	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	100.0 28.6	0.0 0.0	28.6	100.0 3.6	0.0 0.0	0.0 0.0	3.6	0.0 0.0	89.5 60.7	10.5 7.1	67.9	

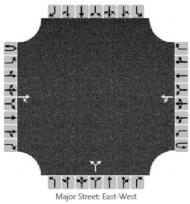
													ı ay	CINU			
							os Printed	- Automot	oiles - Co								_
		Kenne	dy Pkwy			N	I/A			Kenne	dy Pkwy		Sp	ace Cor	nmerce W	'ay]
		South	bound			West	bound			North	bound			East	bound	-	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
09:00 AM	0	6	0	6	0	0	0	0	42	83	0	125	0	0	20	20	151
09:15 AM	0	6	0	6	0	0	0	0	27	67	0	94	0	0	25	25	125
09:30 AM	0	5	1	6	0	0	0	0	60	44	0	104	0	0	19	19	129
09:45 AM	0	3	0	3	0	0	0	0	48	28	0	76	0	0	19	19	98
Total	0	20	1	21	0	0	0	0	177	222	0	399	0	0	83	83	
10:00 AM	0	9	0	9	0	0	0	0	28	39	0	67	0	0	26	26	102
10:15 AM	0	13	0	13	0	0	0	0	35	18	0	53	0	0	21	21	87
10:30 AM	0	14	1	15	0	0	0	0	37	34	0	71	0	0	12	12	98
10:45 AM	0	12	1	13	0	0	0	0	27	17	0	44	0	0	25	25	82
Total	0	48	2	50	0	0	0	0	127	108	0	235	0	0	84	84	369
04:00 PM	0	240	0	240	0	0	0	0	34	6	0	40	0	0	40	40	320
04:15 PM	0	186	0	186	0	0	0	0	25	4	0	29	0	0	42	40	257
04:30 PM	0	217	4	221	0	0	0	0	31	- 5	0	36	0	0	41	41	298
04:45 PM	0	169	1	170	0	0	0	0	37	4	0	41	0	0	43	43	254
Total	0	812	5	817	0	0	0	0	127	19	0	146	0	0	166	166	1129
05:00 PM	0	193	0	193	0	0	0	0	37	5	0	42	0	0	77	77	312
05:15 PM	0	169	1	170	0	0	0	0	34	7	0	41	0	0	78	78	289
05:30 PM	0	149	0	149	0	0	0	0	26	3	0	29	0	0	79	79	257
05:45 PM	0	93	1	94	0	0	0	0	27	2	0	29	0	0	54	54	177
Total	0	604	2	606	0	0	0	0	124	17	0	141	0	0	288	288	1035
Grand Total	0	1484	10	1494	0	0	0	0	555	366	0	921	0	0	621	621	3036
Apprch %	0.0	99.3	0.7		0.0	0.0	0.0		60.3	39.7	0.0		0.0	0.0	100.0		
Total %	0.0	48.9	0.3	49.2	0.0	0.0	0.0	0.0	18.3	12.1	0.0	30.3	0.0	0.0	20.5	20.5	

			dy Pkwy bound				l/A bound				dy Pkwy Ibound		Sp		nmerce V bound	Vay	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From (09:00 AM	to 11:45	5 AM - Pe	ak 1 of 1													
Intersection	09:00 AM																
Volume	0	20	1	21	0	0	0	0	177	222	0	399	0	0	83	83	503
Percent	0.0	95.2	4.8		0.0	0.0	0.0		44.4	55.6	0.0		0.0	0.0	100.0		
09:00 Volume	0	6	0	6	0	0	0	0	42	83	0	125	0	0	20	20	151
Peak Factor																	0.833
High Int.	09:00 AM	l			8:45:00	AM			09:00 Al	M			09:15 Al	М			
Volume	0	6	0	6	0	0	0	0	42	83	0	125	0	0	25	25	[
Peak Factor				0.875								0.798				0.830	
Peak Hour From 1	12:00 PM	to 05:45	5 PM - Pe	ak 1 of 1													
Intersection																	
Volume	0	748	6	754	0	0	0	0	139	21	0	160	0	0	239	239	1153
Percent	0.0	99.2	0.8	_	0.0	0.0	0.0		86.9	13.1	0.0		0.0	0.0	100.0		
05:00 Volume	0	193	0	193	0	0	0	0	37	5	0	42	0	0	77	77	312
Peak Factor	-		•		-	·	÷	-		-	•			•			0.924
High Int.	04·30 PM	1							05:00 PI	М			05:15 PI	М			0.02.
Volume	0	217	4	221	0	0	0	0	37	5	0	42	0	0	78	78	
Peak Factor	Ũ		•	0.853	5	0	Ű	0		0	Ŭ	0.952	5	Ŭ		0.766	

File Name : Kennedy at Commerce Site Code : 00000004 Start Date : 08/10/2017 Page No : 3

								s Printed- C	commerc								
			dy Pkwy				/A				dy Pkwy		Sp		nmerce W	/ay	
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
09:00 AM	0	0	0	0	0	0	0	0	2	1	0	3	0	0	1	1	4
09:15 AM	0	0	0	0	0	0	0	0	1	1	0	2	0	0	1	1	3
09:30 AM	0	2	0	2	0	0	0	0	2	0	0	2	0	0	0	0	4
09:45 AM	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1
Total	0	2	0	2	0	0	0	0	6	2	0	8	0	0	2	2	12
10:00 AM	0	1	0	1	0	0	0	0	1	1	0	2	0	0	2	2	5
10:15 AM	0	1	0	1	0	0	0	0	1	0	0	1	0	0	4	4	6
10:30 AM	0	1	0	1	0	0	0	0	0	2	0	2	0	0	1	1	4
10:45 AM	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
Total	0	3	0	3	0	0	0	0	2	4	0	6	0	0	7	7	16
04:00 PM	0	1	0	1	0	0	0	0	2	1	0	3	0	0	0	0	4
04:15 PM	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	2
04:30 PM	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
04:45 PM	0	2	0	2	0	0	0	0	0	0	0	0	0	0	1	1	3 10
Total	0	5	0	5	0	0	0	0	3	1	0	4	0	0	1	1	10
05:00 PM	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Total	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2	2	3
Grand Total Apprch % Total %	0 0.0 0.0	11 100.0 26.8	0 0.0 0.0	11 26.8	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0 0.0	11 61.1 26.8	7 38.9 17.1	0 0.0 0.0	18 43.9	0 0.0 0.0	0 0.0 0.0	12 100.0 29.3	12 29.3	41
	0.0	20.0	0.0	20.0	0.0	0.0	0.0	0.0	20.0	17.1	0.0	45.9	0.0	0.0	29.5	29.3	I

Groups Printed- Commercial


NB Approach SB Approach SB Approach SB Approach	
EB Approach	
Space Commerce Way At Kennedy Pkwy Brevard Cou	ounty
	Sheet umber: 4

APPENDIX C

Unsignalized Intersection HCS Worksheets – Existing Conditions

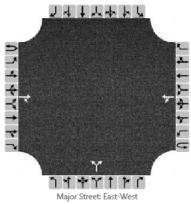
	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	SD	Intersection	Space Commerce at Entranc
Agency/Co.	LTG	Jurisdiction	NASA
Date Performed	8/8/2017	East/West Street	Space Commerce Way
Analysis Year	2017	North/South Street	Proposed S Entrance
Time Analyzed	Existing AM Pk-Hr	Peak Hour Factor	0.83
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	4324.03 KSC Space Commerce Wa	ay	·

Lanes

Vehicle Volumes an	d Adjustments
--------------------	---------------

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume, V (veh/h)			95	2		1	165			2		2				
Percent Heavy Vehicles (%)						2				2		3				
Proportion Time Blocked																
Percent Grade (%)										(0					
Right Turn Channelized		N	lo			N	lo			N	lo			N	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)						1					4					
Capacity, c (veh/h)						1472					785					
v/c Ratio						0.00					0.01					
95% Queue Length, Q_{95} (veh)						0.0					0.0					
Control Delay (s/veh)						7.4					9.6					
Level of Service, LOS						Α					Α					
Approach Delay (s/veh)			-			0	.0			9	.6					
Approach LOS											4					

Copyright © 2017 University of Florida. All Rights Reserved.


HCS7 M TWSC Version 7.2.1

Generated: 9/7/2017 2:14:03 PM

4. Space Commerce Way at Proposed S Entrance - Existing AM PK.xtw.xtw

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	SD	Intersection	Space Commerce at Entranc
Agency/Co.	LTG	Jurisdiction	NASA
Date Performed	8/8/2017	East/West Street	Space Commerce Way
Analysis Year	2017	North/South Street	Proposed S Entrance
Time Analyzed	Existing PM Pk-Hr	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	4324.03 KSC Space Commerce Wa	y .	

Lanes

V	e	hi	ic	e	V	0	umes	and	ŀ	١d	jus	tments	5
---	---	----	----	---	---	---	------	-----	---	----	-----	--------	---

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume, V (veh/h)			185	0		2	238			12		15				
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked																
Percent Grade (%)										(0					
Right Turn Channelized		N	lo			N	lo			N	lo			N	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)						2					29					
Capacity, c (veh/h)						1364					681					
v/c Ratio						0.00					0.04					
95% Queue Length, Q_{95} (veh)						0.0					0.1					
Control Delay (s/veh)						7.6					10.5					
Level of Service, LOS						Α					В					
Approach Delay (s/veh)						0	.1			10).5					
Approach LOS											В					

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7700 TWSC Version 7.2.1

Generated: 9/7/2017 2:14:40 PM

4. Space Commerce Way at Proposed S Entrance - Existing PM PK.xtw

APPENDIX D

Signalized Intersection HCS Worksheets – Existing Conditions

HCS7 Signalized Intersection Results Summary

		HCS	7 Sig	nalize	a int	ersec	tion F	kesu	Its :	Sun	nmary	/				_
General Inform	nation								Inte	react	tion Info	ormatio	'n		1 석 거 야	124
	ation	ITC						-				0.25	<i></i>	- 1		
Agency		LTG		Amelia	in Data		147			ation,						
Analyst		SD		-		8/2/20				а Тур -	e	Other				-
Jurisdiction		NASA		Time F		_	ng AM F	′к-нг	PHF			0.85			4	~
Urban Street		NASA Pkwy				2017				-	Period	1> 7:(1		
Intersection		NASA Pkwy at Com		File Na		1. Na	sa Pkwy	at Sp	ace	Com	merce V	Vay - E	xisting	-	٦	*
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	ay										1414	MAL
Demand Inform	nation				EB			W	R			NB			SE	2
Approach Move				L	T	R	ΙL.	T	_	R	L	T	R	L	T	
Demand (v), v					503	85	12	3	_		41	<u>+</u>	126	<u>+</u>	÷	
Demand (V), V	CHIM				000	00	12				41		120	i.	in a	
Signal Informa	ation		_					T								
Cycle, s	40.4	Reference Phase	2	1	2	= ≨		7	- 1				· · ·			
Offset, s	0	Reference Point	End	<u> </u>	7			ſ _				_	1	2		3
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		20.0 4.5	5.3 3.5	0.0		0.0	0.0	_				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0		0.0	0.0			₹ 。		7 8
Timer Results	_			EBI		EBT	WB	L	WB	вт	NBL		NBT	SBL		SBT
Assigned Phas	e					6	5		2	_			4		\neg	
Case Number						7.3	1.0		4.0	5			9.0		\rightarrow	
Phase Duration	1. S					25.5	4.6		30.	_			10.3		\rightarrow	
Change Period		c). S				5.5	4.0	_	5.5	_		-	5.0		\rightarrow	
Max Allow Hea		,				3.4	2.9	_	3.4	_			3.1			
Queue Clearan	• •	· · · · · · · · · · · · · · · · · · ·			-	6.1	2.2	_	2.0	_		+	5.6		\rightarrow	
Green Extensio						2.0	0.0	_	2.0	_		_	0.3		-	
Phase Call Pro		(90), 5			-	1.00	0.15	_	1.0	_		-	0.89		\rightarrow	
Max Out Proba				_		0.00	0.00	_	0.0	_			0.00	<u> </u>	-+	
Max Out Floba	Dinty					0.00	0.00		0.0	0			0.00		and a	
Movement Gro	oup Res	ults			EB			WE	;			NB			SE	3
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Assigned Move					6	16	5	2			7		14			
Adjusted Flow I	Rate (v), veh/h			592	100	14	4			48		148			1
		w Rate (s), veh/h/l	n		1781	1547	1527	1643	3		1711		1560			
Queue Service		· · ·			4.1	1.4	0.2	0.0	_	_	1.0		3.6			
Cycle Queue C					4.1	1.4	0.2	0.0	+-		1.0		3.6			_
Green Ratio (g					0.49	0.49	0.56	0.61		_	0.13		0.15			
Capacity (c), v					1762	765	479	999	_		226		229			1
Volume-to-Cap		tio (X)			0.336	_	0.029	0.00	_		0.213		0.648			<u> </u>
		In (95 th percentile))		28	8.9	0.7	0.1	_		14		45.7			1
		eh/In (95 th percenti			1.1	0.3	0.0	0.0			0.5		1.8			<u> </u>
		RQ) (95 th percent			0.00	0.02	0.00	0.00			0.02		0.00			1
Uniform Delay			,		6.2	5.5	4.4	3.1	_		15.7		16.3			<u> </u>
Incremental De					0.1	0.1	0.0	0.0	_		0.2		1.2			1
Initial Queue De		,			0.0	0.0	0.0	0.0	_		0.0		0.0			<u> </u>
Control Delay (· ·			6.3	5.6	4.5	3.1	+-		15.8		17.4			+
Level of Service					A	A	A	A			B		В			_
Approach Delay				6.2	_	A	4.2	_	A		17.0		В	0.0	<u> </u>	_
Intersection De	-			0.2			.5		A				_	0.0 A		
													-			
Multimodal Re	sults				EB			WE				NB			SE	5
Pedestrian LOS		/LOS		2.2		В	0.6	_	A		2.7		С	2.4		B
Bicycle LOS So				1.1		A	0.5	_	A	_			F		\rightarrow	_
2.0,00 200 00				- 1.1			0.0				_					

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7 Signalized Intersection Results Summary

		HCS	7 Sig	nalize	aint	ersec		tesu	its -	Sun	nmary	<u>/</u>				
General Inform	nation							.	Inte	rsect	tion Info	ormatic	on	1 1	~~~~~~	ով վուկլ
	ation	LTG								ation,		0.25	<i>/</i> //	-		
Agency		SD		Apoly	ie Detr	0/2/20	17		_	alion, a Type		O.25 Other				
Analyst Jurisdiction		NASA		Time F		e 8/2/20	ng PM F				8	0.89			w	+
				-				′K-⊓I			Deried	-				
Urban Street		NASA Pkwy				r 2017				-	Period	1> 7:0				
Intersection	41	NASA Pkwy at Com		File Na		1. Nas	за Ркwy	atsp	ace	Com	merce v	vay - E	xisting	- 1	٦	ſ
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	ay										1414	m P n
Demand Inform	nation				EB		1	W	В		1	NB		T	S	B
Approach Move	ement			L	T	R	L	T	_	R	L	Т	R	L	T	
Demand (v), v					56	106	79	2	9		222	<u> </u>	28		-	
(in a second	in a		i and a state		
Signal Informa	ation				4			\top						_		
Cycle, s	45.5	Reference Phase	2		è	. I⇒`°	2	2								5
Offset, s	0	Reference Point	End	Green	27	20.0	8.3	0.0	\rightarrow	0.0	0.0	_	1	2		3
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0		0.0	0.0	_				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0		0.0	0.0		5	7 6		7
Timer Results				EBL	-	EBT	WB	L	WB	3T	NBL		NBT	SBL	_	SBT
Assigned Phas	е					6	5		2				4			
Case Number						7.3	1.0		4.0	כ			9.0			
Phase Duration	1, S					25.5	6.7		32.	.2			13.3			
Change Period	, (Y+R	c), S				5.5	4.0		5.5	5			5.0			
Max Allow Hea	dway (/	ИАН), s				3.5	2.9		3.5	5			3.0			
Queue Clearan	ce Time	e (g s), s				4.1	3.1		2.3	3			8.1			
Green Extensio	n Time	(ge),s				0.6	0.1		0.6	6			0.4			
Phase Call Pro	bability					1.00	0.67	7	1.0	0			0.97			
Max Out Proba	bility					0.00	0.00	5	0.0	0			0.00			
Mayamant Cr					EP							NID	_		C1	-
Movement Gro	•	Juits			EB T	R		WE T	_	R		NB T	R	L	SE	_
Assigned Move				<u> </u>	6	16	L 5	2	+-		L 7	-	14		┝──	R
Adjusted Flow) yeh/h			63	119	89	33			249		31	'		—
		·						_		_				'		+
-		ow Rate (s), veh/h/li	n		1766	1560	1781	187			1781		1572	'	┝──	+
Queue Service		- /			0.5	2.1	1.1	0.3			6.1		0.7			
		e Time (<i>g c</i>), s			0.5	2.1	1.1	0.3			6.1		0.7			
Green Ratio (g					0.44	0.44	0.54	0.59			0.18		0.24			
Capacity (c), v					1554	686	840	109			324		379			
Volume-to-Cap					0.040	-	0.106	0.03			0.771		0.083		<u> </u>	
		/In (95 th percentile)			4.6	19.1	7.5	1.9			90		8.4			
		eh/In (95 th percenti			0.2	0.7	0.3	0.1			3.5		0.3			+
		RQ) (95 th percent	liie)		0.00	0.05	0.02	0.00			0.15		0.00			
Uniform Delay					7.3	7.7	5.1	3.9			17.7		13.4			<u> </u>
Incremental De		•			0.0	0.1	0.0	0.0			1.5		0.0			_
Initial Queue D					0.0	0.0	0.0	0.0			0.0		0.0			_
Control Delay (7.3	7.8	5.1	3.9	4		19.2		13.4		—	_
Level of Service					A	A	Α	A	┶		В		В		L	
Approach Dela	-			7.6		Α	4.8		Α		18.5		В			
Intersection De	lay, s/ve	h / LOS				12	2.3							0.0 B		
Multimodal Re					EB	_		WE				NB			SE	
Pedestrian LOS Score / LOS		2.2		В	0.7	- I	A		2.7	1	С	2.4		В		
Bicycle LOS So				0.6		Α	0.7		Α				F		-	

Copyright © 2017 University of Florida, All Rights Reserved.

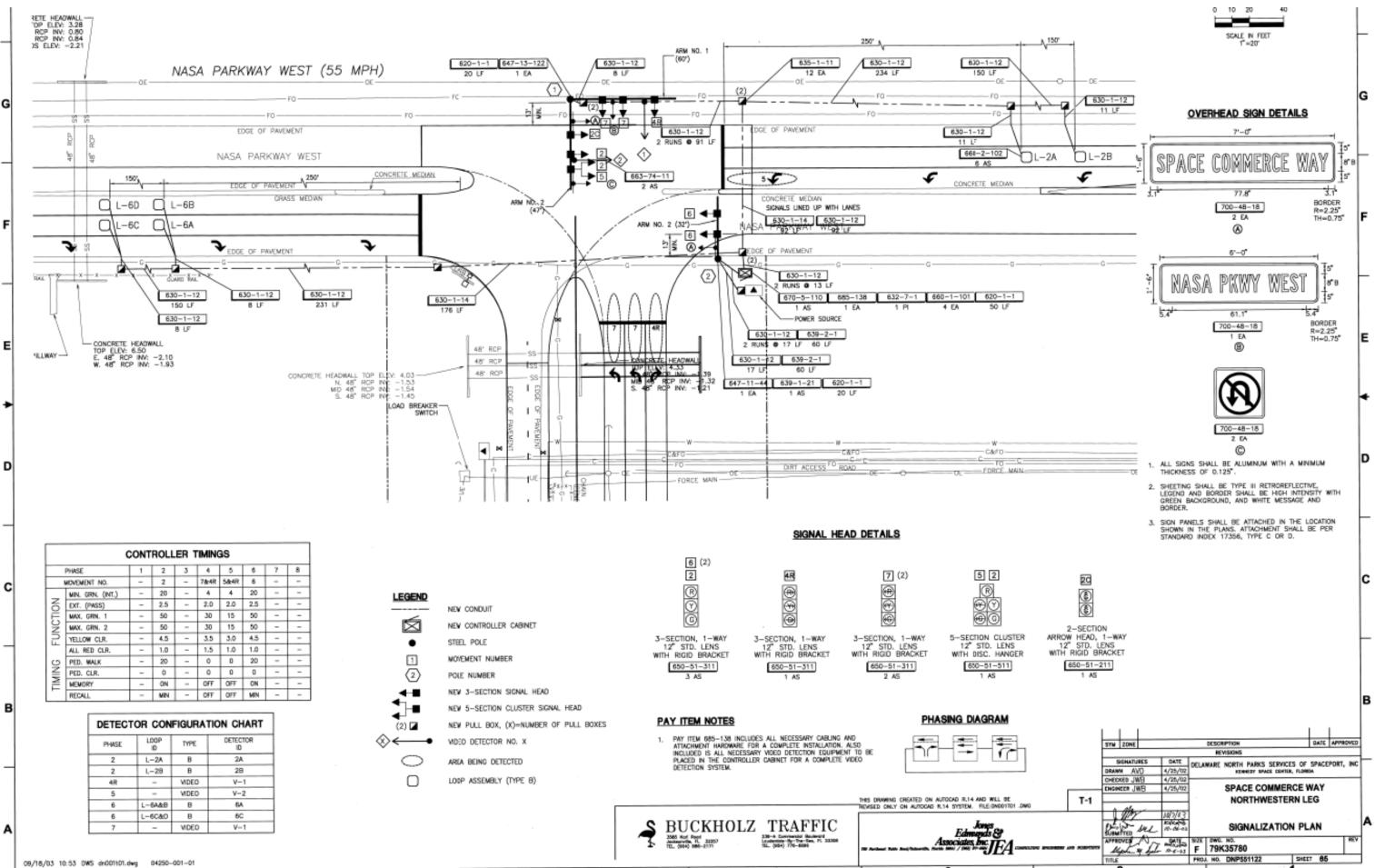
HCS7™ Streets Version 7.2.1

HCS7 Signalized Intersection Results Summary

		HCS	7 Sig	nalize	a inte	ersec		(esu	its Su	mmar	У				
General Inform	nation							Interse	L R	444	1 14 14				
									Intersection Information Duration, h 0.25						
			Analysis Date 8/2/2017								0.25 Other				
Analyst SD Jurisdiction NASA)k Lir	Area Type		_	0.95		w+e	-		
		Analysis Year			Existing AM Pk-Hr										
Urban Street NASA Pkwy					-						1> 7:00				
Intersection NASA Pkwy at Visitor C Project Description 4324.03 KSC Space Comm					File Name 2. Nasa Pkwy at Visitor Center Complex - Existing.									ำา	
Project Descrip	tion	4324.03 KSC Spac	e Comn	herce vv	ay									1414	
Demand Information				EB			W		/В		NB	NB		SB	
Approach Movement				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h					151	478	25	0		27		29			
Signal Informa	ation						_								
Cycle, s	40.8	Reference Phase	2		l é			2				`⊢⊣	₹.		$ \mathbf{Y}$
Offset, s	0	Reference Point	End	Green	13	21.0	2.9	0.0) 0.0	0.0	_	•	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	4.0	0.0							
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0) 0.0	0.0		5	6	7	
Timer Desults				EDI		EDT			MDT	ND		NDT	0.01		ODT
Timer Results				EBL		EBT	WBL		WBT	NBI	-	NBT 4	SBI	-+-	SBT
Assigned Phase				_	2	1		6					\rightarrow		
Case Number					7.3	2.0		4.0		_	9.0				
Phase Duration, s					26.5	6.3		32.8		_	7.9		-		
Change Period, (Y+R c), s					5.5	5.0 5.5				_	5.0		\rightarrow		
Max Allow Headway (MAH), s					_	7.1	5.9	_	0.0	-	_	3.1		\rightarrow	
Queue Clearance Time (g s), s				<u> </u>	_	11.2	2.6		0.0		_	3.1			
Green Extension Time (g e), s						9.8	0.1	_	0.0	-	_	0.1		-	
Phase Call Probability						1.00	0.26			-		0.49		\rightarrow	
Max Out Proba	bility					0.03	0.00	ונ				0.00			
Movement Gro	oup Res	ults			EB			WE	;		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Movement				2	12	1	6		7		14				
Adjusted Flow Rate (v), veh/h				159	503	26	0	<u> </u>	28		31			-	
Adjusted Saturation Flow Rate (s), veh/h/ln				1724	1585	1640	173	7	1620		1045			1	
Queue Service Time ($g s$), s				1.0	9.2	0.6	0.0		0.3		1.1			<u> </u>	
Cycle Queue Clearance Time (g_c), s				1.0	9.2	0.6	0.0	_	0.3		1.1			+	
Green Ratio (g/C)				0.52	0.52	0.03	0.67	_	0.07		0.10			1	
Capacity (c),					1780	818	52	116		234		109			1
Volume-to-Capacity Ratio (X)					0.089	0.615	0.504	0.00		0.122	_	0.281			-
Back of Queue (Q), ft/ln (95 th percentile))		6.6	78.1	20	0		4.7		12.7			+
		h/ln (95 th percenti			0.3	3.1	0.7	0.0		0.2		0.4			-
	V . V	RQ) (95 th percent	· ·		0.00	0.07	0.04	0.00		0.00		0.02			+
					5.0	7.0	19.4	0.0	_	17.7		16.9			-
-	(- ,), 3				0.1	2.7	15.1	0.0	_	0.1		0.5			+
Uniform Delay	lav (d a				0.1		0.0	0.0		0.0		0.0			
Uniform Delay Incremental De		,			0.0	0.0				0.0					
Uniform Delay Incremental De Initial Queue D	elay (d	3), s/veh			0.0 5.1	0.0 9.7			-	17.8		17.4			
Uniform Delay Incremental De Initial Queue D Control Delay (elay(d d), s/ve	3), s/veh			5.1	9.7	34.6	0.0	-	17.8 B		17.4 B			-
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic	elay(d d), s/ve e (LOS)	3), s/veh 9h		86	5.1 A	9.7 A	34.6 C	0.0		В		В	0.0	Ę	
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	elay (d d), s/ve e (LOS) y, s/veh	/ LOS		8.6	5.1 A	9.7 A A	34.6 C 34.6	0.0	-		6	B	0.0		
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic	elay (d d), s/ve e (LOS) y, s/veh	/ LOS		8.6	5.1 A	9.7 A A	34.6 C	0.0		В	6	B	0.0 B		
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela	elay (<i>d</i> <i>d</i>), s/ve e (LOS) y, s/veh lay, s/ve	/ LOS		8.6	5.1 A	9.7 A A	34.6 C 34.6	0.0	C	В	5 NB	B		SB	
Uniform Delay Incremental De Initial Queue D Control Delay (Level of Servic Approach Dela Intersection De	elay (d d), s/ve e (LOS) y, s/veh lay, s/ve esults	/ LOS h / LOS		8.6	5.1 A EB	9.7 A A	34.6 C 34.6	0.0	C	В	NB	B		SB	c

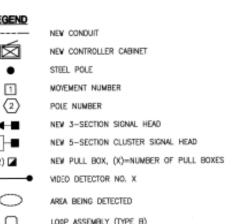
Copyright © 2017 University of Florida, All Rights Reserved.

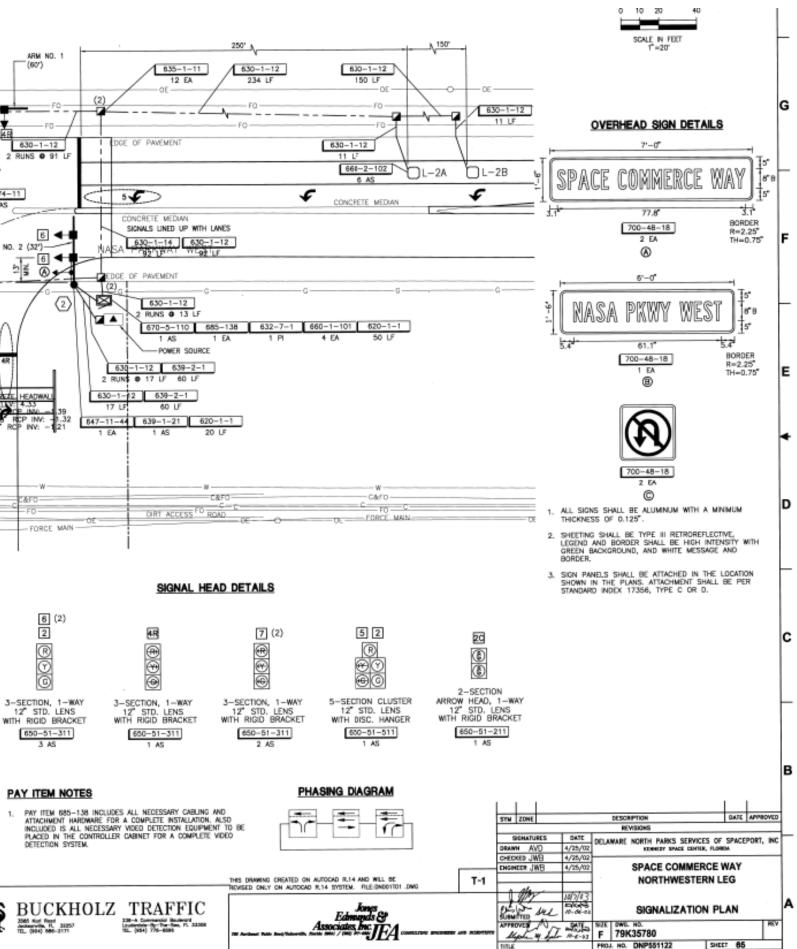
HCS7™ Streets Version 7.2.1

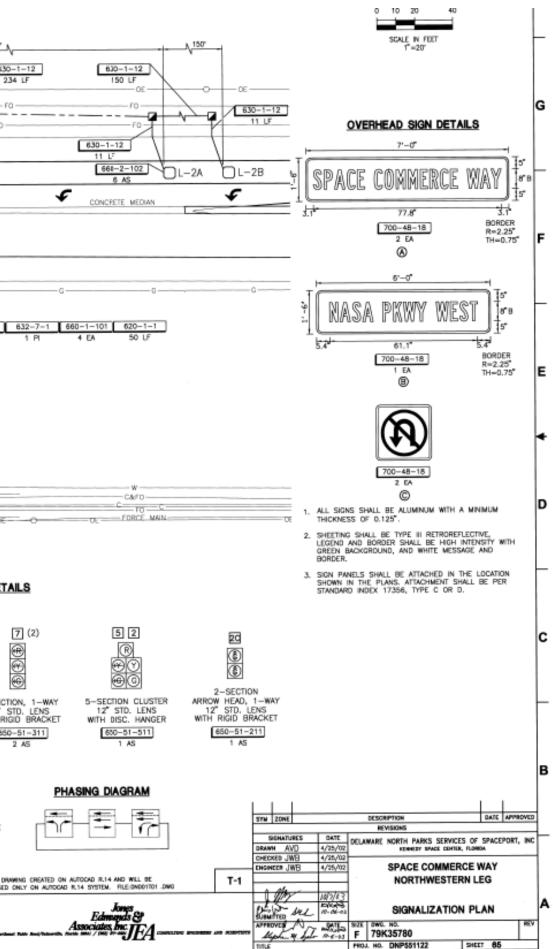

	ΗCS7 Sig														
General Inform	nation								Intersed	tion Inf	ormatio	n		4.44	ւլեւն
Agency	ation	LTG						-	Duration		0.25	<i></i>			
• •		SD		Anolyc	via Data	8/2/20	17	-	Area Typ		O.25 Other		1		
Analyst Jurisdiction		NASA		Time F		_	ng PM P)e	0.87		\rightarrow	w	-
Urban Street										Deried	1> 7:0	20	- Y - Y		· ·
		NASA Pkwy			sis Year	-		-1.) (Analysis				ň.,		
Intersection	4i a m	NASA Pkwy at Visit 4324.03 KSC Spac		File Na		2. Nas	sa Pkwy	at vi	sitor Cen	ter Com	DIEX - E	xisting	- 19	<u>)</u>] বাৰ	ľ
Project Descrip	tion	4324.03 KSC Spac	e Comn	ierce w	ay										
Demand Inform	nation				EB			W	В	_	NB			S	В
Approach Move				L	Т	R	L	Т		L	Т	R	L	Т	
Demand (v), v					28	56	34	0		290	<u> </u>	30	<u> </u>	<u> </u>	
(<i>µ</i>															
Signal Informa	ation				6			Т							
Cycle, s	32.8	Reference Phase	2	1	2	∎≓`	2	7					→		5
Offset, s	0	Reference Point	End	Green	7	10.5	5.8	0.0	0.0	0.0	_	Î Î	Y 2		3
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0		•			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0		0.0		5	6		7
Timer Results				EBL	-	EBT	WB	L	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	e					2	1		6			4			
Case Number						7.3	2.0		4.0			9.0			
Phase Duration	n, s					15.5	6.5		22.0			10.8			
Change Period	, (Y+R a					5.5	5.0		5.5			5.0			
Max Allow Hea	dway (<i>N</i>	//AH), s				7.1	5.9		0.0			3.0			
Queue Clearan	ce Time	(gs),s				3.0	3.4					4.9			
Green Extensio	on Time	(g _{e)} ,s				1.1	0.2		0.0			0.8			
Phase Call Pro	Probability					1.00	0.30					0.96			
Max Out Proba	bility					0.00	0.00					0.00			
Movement Gro	un Boo	ulto			EB			WB		_	NB	_		SE	2
Approach Move		uits			T	R	L	T	R	L	T	R	L	T	R
						ĸ	L L		K	7	-				
Assigned Move	mont				2	12	1							<u> </u>	
Assigned Move) vob/b			2	12	1	6	+			14		<u> </u>	-
Adjusted Flow	Rate (v				32	64	39	0		333		34			-
Adjusted Flow I Adjusted Satura	Rate(<i>v</i> ation Flo	w Rate (s), veh/h/l	n		32 1752	64 1535	39 892	0 1870		333 1730		34 894			
Adjusted Flow Adjusted Satura Queue Service	Rate(<i>v</i> ation Flo Time(g	ow Rate(s), veh/h/l g s), s	n		32 1752 0.2	64 1535 1.0	39 892 1.4	0 1870 0.0		333 1730 2.9		34 894 1.0			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C	Rate(<i>v</i> ation Flo Time(g learance	ow Rate(s), veh/h/l g s), s	n		32 1752 0.2 0.2	64 1535 1.0 1.0	39 892 1.4 1.4	0 1870 0.0		333 1730 2.9 2.9		34 894 1.0 1.0			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g	Rate (<i>v</i> ation Flo Time (<u>c</u> learance	ow Rate(s), veh/h/l g s), s	'n		32 1752 0.2 0.2 0.30	64 1535 1.0 1.0 0.30	39 892 1.4 1.4 0.05	0 1870 0.0 0.0		333 1730 2.9 2.9 0.18		34 894 1.0 1.0 0.22			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v	Rate (v ation Flo Time (g learance I/C) veh/h	ow Rate (<i>s</i>), veh/h/l g s), s e Time (<i>g</i> c), s	in		32 1752 0.2 0.2 0.30 1069	64 1535 1.0 1.0 0.30 468	39 892 1.4 1.4 0.05 41	0 1870 0.0 0.50 941		333 1730 2.9 2.9 0.18 611		34 894 1.0 1.0 0.22 199			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap	Rate (<i>v</i> ation Flo Time (<u>c</u> learance I/C) veh/h acity Ra	w Rate (<i>s</i>), veh/h/l g s), s e Time (<i>g c</i>), s tio (<i>X</i>)			32 1752 0.2 0.2 0.30 1069 0.030	64 1535 1.0 1.0 0.30 468 0.138	39 892 1.4 1.4 0.05 41 0.955	0 1870 0.0 0.50 941 0.00		333 1730 2.9 2.9 0.18 611 0.545		34 894 1.0 0.22 199 0.173			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue	Rate (<i>v</i> ation Flo Time (<u>g</u> learance t/C) veh/h acity Ra (Q), ft/	w Rate (s), veh/h/l g s), s e Time (g c), s tio (X) 'In (95 th percentile))		32 1752 0.2 0.30 1069 0.030 2	64 1535 1.0 1.0 0.30 468 0.138 10.2	39 892 1.4 0.05 41 0.955 78.3	0 1870 0.0 0.50 941 0.00 0		333 1730 2.9 2.9 0.18 611 0.545 30.5		34 894 1.0 0.22 199 0.173 7.8			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue	Rate (v ation Flo Time (g learance v/C) veh/h acity Ra (Q), ft/ (Q), ve	w Rate (<i>s</i>), veh/h/l g _s), s e Time (<i>g</i> _c), s tio (<i>X</i>) In (95 th percentile) eh/ln (95 th percenti) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1	64 1535 1.0 0.30 468 0.138 10.2 0.4	39 892 1.4 1.4 0.05 41 0.955 78.3 2.1	0 1870 0.0 0.50 941 0.00 0 0.00		333 1730 2.9 2.9 0.18 611 0.545 30.5 1.2		34 894 1.0 0.22 199 0.173 7.8 0.2			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage	Rate (v ation Flo Time (g learance t/C) veh/h acity Ra (Q), ft/ (Q), ve	w Rate (s), veh/h/l gs), s e Time (g c), s tio (X) (In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percent) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16	0 1870 0.0 0.50 941 0.00 0 0.00 0.00		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	Rate (v ation Flo Time (\underline{c} learance t/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/	w Rate (<i>s</i>), veh/h/l g <i>s</i>), s e Time (<i>g c</i>), s tio (<i>X</i>) /In (95 th percentile) eh/in (95 th percenti <i>R</i> Q) (95 th percenti) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6	0 1870 0.0 0.50 941 0.00 0 0.0 0.0 0.00 0.00		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	Rate (v ation Flo Time (g learance //C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s/ lay (d 2	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/in (95 th percenti RQ) (95 th percent /veh), s/veh) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	Rate (v ation Flo Time (g learance v/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2	w Rate (s), veh/h/l gs), s e Time (g c), s tio (X) (In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percenti /veh), s/veh 3), s/veh) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 0.0	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0		333 1730 2.9 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Rate (v ation Flo Time (c learance t/C) veh/h acity Ra (Q), tf/ (Q), ve Ratio ((d_1), s/ lay (d_2 elay (d_2	w Rate (s), veh/h/l g s), s e Time (gc), s tio (X) (In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percenti /veh), s/veh 3), s/veh) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.030 8.0 0.0 0.0 8.0 8.0	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	Rate (v ation Flo Time (g learance v/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_3	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) (In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percent /veh), s/veh 3), s/veh eh) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 0.0 8.0 8.0 8.0 A	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8 A	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7 F	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6 B		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5 B			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay	Rate (v ation Flo Time (g learance v/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio (d_2 , ft/ (d_1), s/ve elay (d_2 elay (d_2 elay (d_3 elay (d_2) veh/h	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) 'In (95 th percentile) eh/in (95 th percentile) eh/in (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) RQ), s/veh g_3), s/veh eh / LOS) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 0.0 8.0 8.0 8.0 A	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8 A A A	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7 F 99.7	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5 B B			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	Rate (v ation Flo Time (g learance v/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio (d_2 , ft/ (d_1), s/ve elay (d_2 elay (d_2 elay (d_3 elay (d_2) veh/h	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) 'In (95 th percentile) eh/in (95 th percentile) eh/in (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) RQ), s/veh g_3), s/veh eh / LOS) ile)	8.5	32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 0.0 8.0 8.0 8.0 A	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8 A A A	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7 F	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0		333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6 B		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5 B B	0.00		
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay Intersection De	Rate (v ation Flo Time (\underline{c} learance t/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_2 elay (d_3 s/ve e (LOS) y, s/veh lay, s/ve	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) 'In (95 th percentile) eh/in (95 th percentile) eh/in (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) RQ), s/veh g_3), s/veh eh / LOS) ile)		32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 8.0 8.0 A	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8 A A A	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7 F 99.7	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F	333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6 B		34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5 B B			
Adjusted Flow I Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), V Volume-to-Cap Back of Queue Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay	Rate (v ation Flo Time (g learanco /C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d 1), s/ elay (d 2 elay (d 2 e	w Rate (s), veh/h/l g s), s e Time (gc), s tio (X) In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percent /veh), s/veh 3), s/veh eh / LOS eh / LOS) ile)	8.5	32 1752 0.2 0.30 1069 0.030 2 0.1 0.00 8.0 0.0 0.0 8.0 8.0 8.0 4	64 1535 1.0 0.30 468 0.138 10.2 0.4 0.01 8.3 0.5 0.0 8.8 A A A	39 892 1.4 0.05 41 0.955 78.3 2.1 0.16 15.6 84.0 0.0 99.7 F 99.7	0 1870 0.0 0.50 941 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	F	333 1730 2.9 0.18 611 0.545 30.5 1.2 0.00 12.3 0.3 0.3 0.0 12.6 B	NB	34 894 1.0 0.22 199 0.173 7.8 0.2 0.01 10.3 0.2 0.0 10.5 B B			

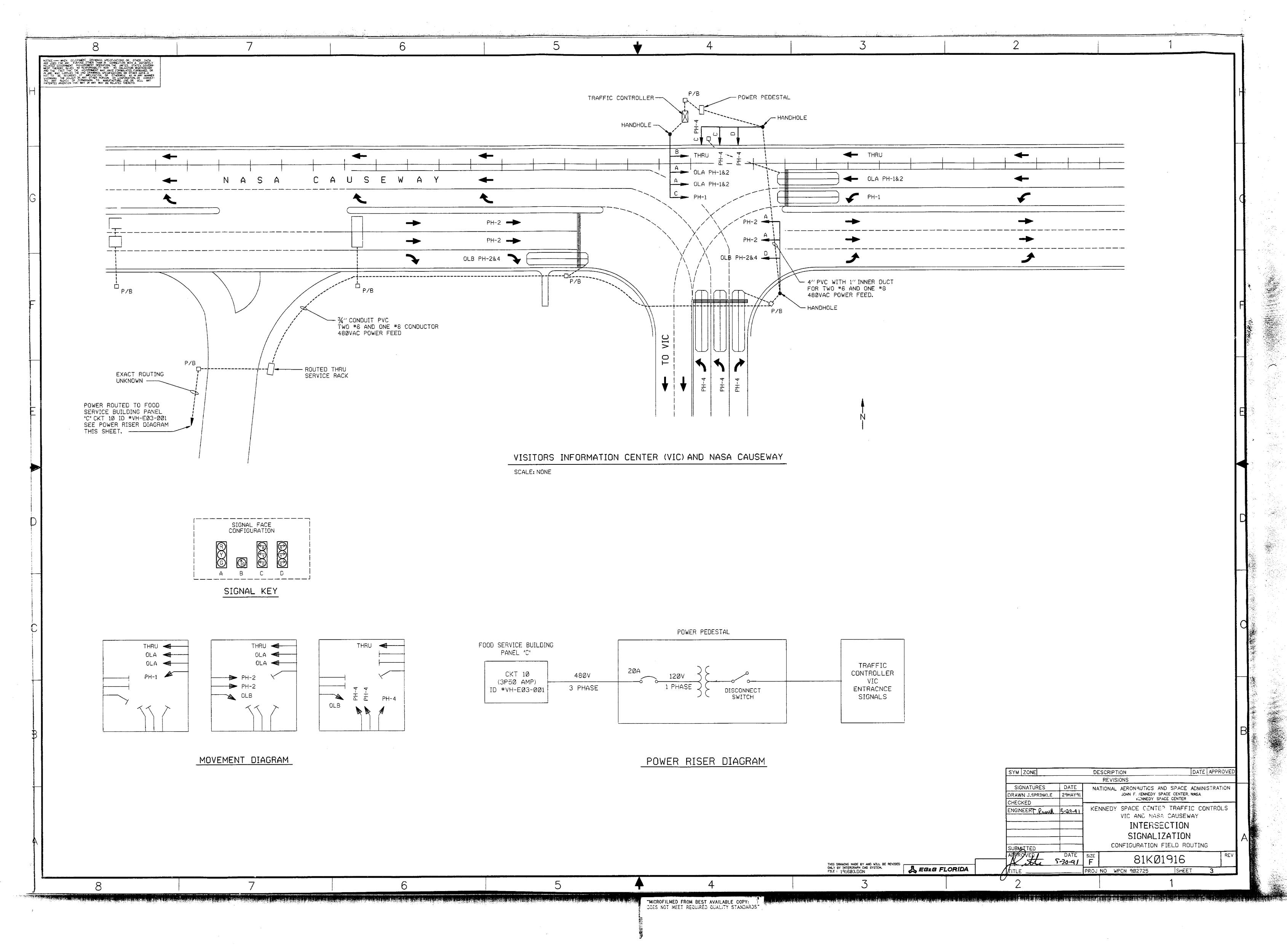
Copyright © 2017 University of Florida, All Rights Reserved.

	HCS7 SI			nalize	ea in	tersec		esi	lits	Sun	nmar	y				
General Inform	ation								Into	read	tion Inf	ormatic		1	4.441	b L
<u> </u>	ation	170											л	- 1	111	
Agency		LTG		Amelia			47		_	ation,		0.25		-		
Analyst		SD				te 8/2/20			Area Type PHF			Other			w∔e	2
Jurisdiction		NASA		Time F			ng AM F	νκ-Hr	_			0.83				÷
Urban Street		Kennedy Pkwy				ar 2017					Period	1> 7:0		T A		1 1
Intersection		Space Commerce V		File Na		3. Spa	ace Con	nmer	ce Wa	ay at	Kenned	y Pkwy	- Exis	- 8	<u>1</u> ††	
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	/ay										ነዳ ተቀጥ	14
Demand Inform	nation				EB	2		١٨	/B			NB			SB	
Approach Move				L	Т Т	R	Τ.	-	гΤ	R	ΙL.	T	R	L	T	R
Demand (v), v				<u> </u>	0	83	<u> </u>	+-	-+		177	222	+	<u> </u>	20	1
Demand (V), V	Chin					00									20	
Signal Informa	tion					21		T								
Cycle, s	44.4	Reference Phase	2	1	51		\rightarrow						<u>רו ר</u>		-	→
Offset, s	0	Reference Point	End	Green			2.5		_	0.0		_	1 1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		19.5 4.5	3.5 3.5	0.		0.0 0.0	0.0	-		+		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.		0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WE	ЗΤ	NBI	-	NBT	SBI	L	SBT
Assigned Phase	e					4					1		6			2
Case Number						12.0					2.0		4.0			7.3
Phase Duration	, s					8.5					10.9)	35.9			25.0
Change Period,	(Y+R	c), S				5.0					4.0		5.5			5.5
Max Allow Head	dway (<i>N</i>	MAH), s				3.2					2.9		2.9			2.9
Queue Clearan	ce Time	e (g s), s				4.8					7.1		3.1			2.2
Green Extensio	n Time	(g.e.),s			0.2						0.3		0.6			0.6
Phase Call Prol	bability					0.71					0.93	3	1.00			0.97
Max Out Proba	bility					0.00					0.00)	0.00			0.00
	_								_							
Movement Gro	•	sults			EB			W	3	-		NB			SB	
Approach Move				L	Т	R	L	Т		R	L	T	R	L	T	R
Assigned Move)			4	14		<u> </u>		_	1	6			2	12
Adjusted Flow F		,	-		100	_				_	213	267			24	1
		ow Rate (s), veh/h/l	n		1585	_				_	1767	1781		<u> </u>	1668	1585
Queue Service					2.8	-				_	5.1	1.1			0.2	0.0
Cycle Queue C		e lime (g c), s			2.8			-		_	5.1	1.1			0.2	0.0
Green Ratio (g					0.08					_	0.16	0.68			0.44	0.44
Capacity (c), v		tio (V)			125	_					276	2438			1462	695
Volume-to-Capa					0.799	_				_	0.773	0.110			0.016	
		/In (95 th percentile)			42.8						77.4	0.1			1.7	0.2
		eh/In (95 th percenti			1.7	_				_	3.0	0.0			0.1	0.0
		RQ) (95 th percent	uie)		0.00	_		_		_	0.15	0.00		-	0.00	0.00
Uniform Delay (. ,				20.1	_			_		18.0	2.4			7.1	7.0
Incremental De					4.4						1.8	0.0			0.0	0.0
Initial Queue De					0.0	_			-	_	0.0	0.0			0.0	0.0
Control Delay (24.5						19.7	2.4			7.1	7.0
Level of Service					С			_			В	A			A	A
Approach Delay	-			24.5	5	С	0.0				10.1		В	7.1		Α
Intersection De	lay, s/ve	h / LOS				1:	2.3							В		
Multimedal D	oultr							14/	2			NID			00	
Multimodal Re Pedestrian LOS		/1.05		2.0	EB	С	2.8	W	B C		1.8	NB	В	2.1	SB	В
Bicycle LOS Sc				2.8 0.7		A	2.8	-	U	·	1.8	_	A	0.5	_	A
Dicycle LOS SC				0.7		~					0.9		~	0.5		~


	HCS7 SI										, 					
General Information								Inte		tion Inf				4.441	b L	
	1.70											n	- í	ŢŢŢ	- <u>x</u>	
Agency	LTG								ration,		0.25				-	
Analyst	SD		-		e 8/2/20				а Тур	e	Other		→ →		2	
Jurisdiction	NASA		Time F			ng PM P	'k-Hr				0.77		* -*	wţe	÷	
Urban Street	Kennedy Pkwy				r 2017					Period	1> 7:0		7			
Intersection	Space Commerce \		File Na		3. Spa	ace Con	nmero	ce W	ay at	Kenned	y Pkwy	- Exis	· 7	<u>1</u> ††		
Project Description	4324.03 KSC Spac	e Comn	nerce W	ay									1	14144	* (*	
Demand Information				EB			W	/D			NB			SB		
Approach Movement			L	T	R	L.		г	R	L.		R	L	<u>зв</u>	R	
Demand (v), veh/h				0	239		+	-	IX.	139	21			748	6	
Demand (V), Ven/m					235					155	21		1 m	740	0	
Signal Information					21	1	T								_	
Cycle, s 54.3	Reference Phase	2	1	1 54		\rightarrow						<u>רו ר</u>		_		
Offset, s 0	Reference Point	End	-	11		- 40.7					_	1 1	2	3	Y 4	
Uncoordinated Yes	Simult. Gap E/W	On	Green Yellow		20.0 4.5	12.7 3.5	0.0		0.0	0.0	-					
Force Mode Fixed		On	Red	1.0	1.0	1.5	0.0		0.0	0.0	_	5	6	7	8	
					1.1.2			-		1 - 1 -						
Timer Results			EBL	- 1	EBT	WB	L	W	BT	NBL		NBT	SBI	L	SBT	
Assigned Phase					4					1		6			2	
Case Number					12.0					2.0		4.0			7.3	
Phase Duration, s					17.7					11.1		36.6			25.5	
Change Period, (Y+R	(c), S				5.0		-			4.0		5.5			5.5	
Max Allow Headway (3.2					2.9		3.3			3.3	
Queue Clearance Tim					12.1		-			7.3		2.2			14.9	
Green Extension Time					0.6		-			0.2		3.3			3.2	
Phase Call Probability					0.99					0.93	;	1.00			1.00	
Max Out Probability					0.00			_		0.00)	0.00			0.00	
Movement Group Re	sults			EB			WE	3	_		NB			SB		
Approach Movement			L	Т	R	L	Т	_	R	L	Т	R	L	Т	R	
Assigned Movement				4	14			_	_	1	6			2	12	
Adjusted Flow Rate (,			310	<u> </u>			_	_	181	27			971	8	
Adjusted Saturation F	N 72	n		1585					_	1781	1781			1781	1585	
Queue Service Time (10.1				_	_	5.3	0.2			12.9	0.2	
Cycle Queue Clearand	ce Time (<i>g</i>			10.1						5.3	0.2			12.9	0.2	
Green Ratio (g/C)				0.23				_	_	0.13	0.57			0.37	0.37	
Capacity (c), veh/h				370						233	2041			1312	584	
Volume-to-Capacity R	. ,			0.838						0.773	0.013			0.740		
Back of Queue (Q), f				142.5	,					89.3	1.5			174.2	2	
Back of Queue (Q), V				5.6						3.5	0.1			6.9	0.1	
Queue Storage Ratio		tile)		0.00						0.18	0.00			0.00	0.00	
Uniform Delay (d 1), 9				19.8				_		22.8	5.0			14.9	10.9	
Incremental Delay (d	· ·			2.0				4		2.1	0.0			0.6	0.0	
Initial Queue Delay (a				0.0						0.0	0.0			0.0	0.0	
Control Delay (d), s/\				21.8						24.9	5.0			15.5	10.9	
Level of Service (LOS	,			С						С	Α			В	В	
Approach Delay, s/veh			21.8	3	С	0.0				22.3	3	С	15.5	5	В	
Intersection Delay, s/v	eh / LOS				17	7.7							В			
											ALD.					
Multimodal Results	(1.00			EB	-		WE				NB	_		SB	_	
Multimodal Results Pedestrian LOS Score Bicycle LOS Score / L			2.8 1.0		C A	2.8		с С	:	1.9 0.7		B A	2.1 1.3		B	

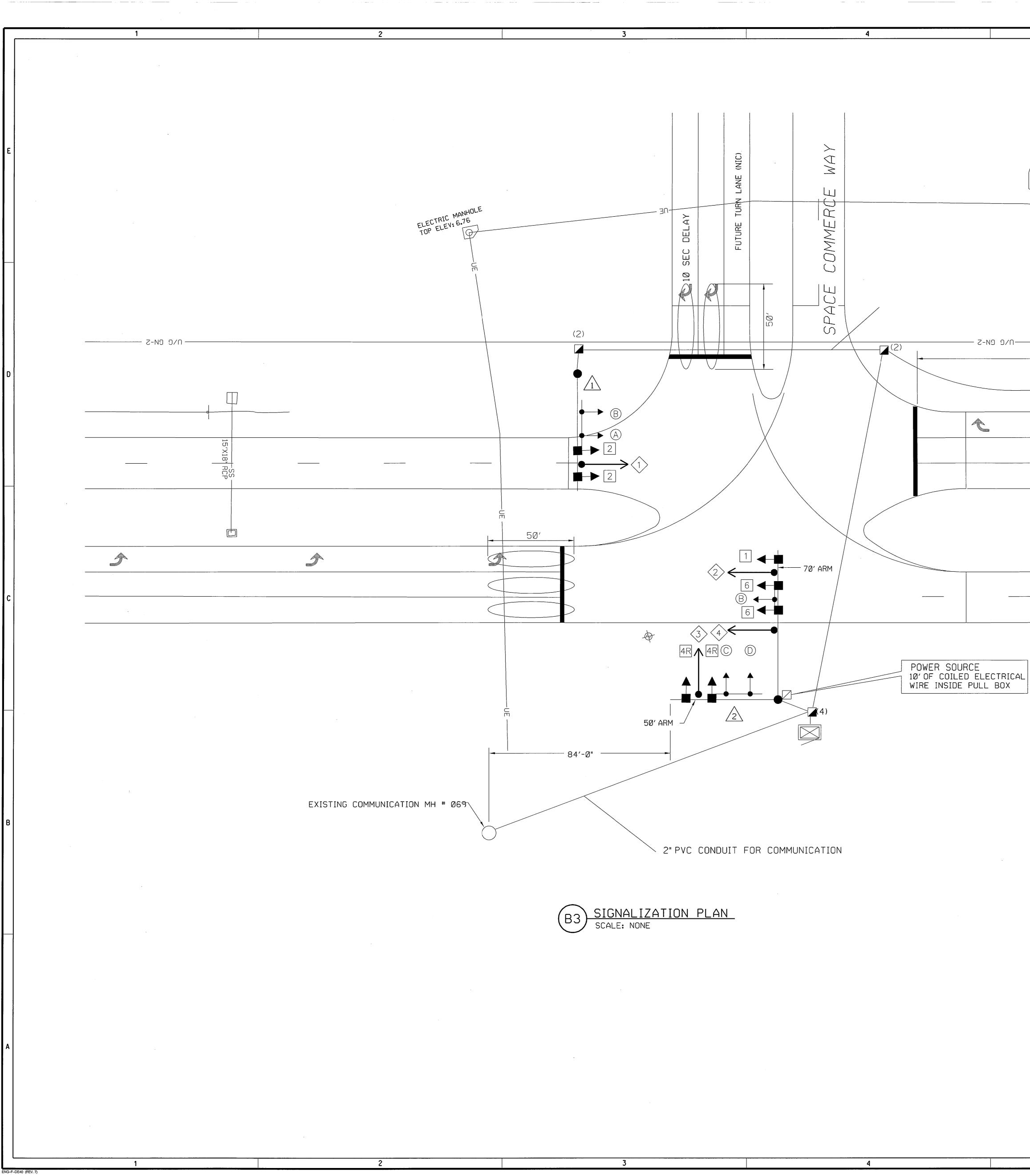

APPENDIX E Signal Timings




PHWSE	LOOP ID	TYPE	DETECTOR
2	L-2A	В	2A
2	L-28	в	28
4R		VIDEO	V-1
5	-	VIDEO	V-2
6	L-6A&B	в	6A
6	L-6C&0	в	6C
7	-	VIDED	V-1

09/18/03 10:53 DWS dn001t01.dwg 04250-001-01

William & State and Strand and and



	0			/		<u></u>			6					5			
NOTICE WHEN GO AC USED FOR ANY P ELETED GOVERNMENT WENT THEREBY INCLES IN THE FAOT THAT A ANY MAY SUPPLED NOT TO BE REGARDE OCINSING THE HOUSE NO ANY REGARDE AG ANY REGARDE PATENTED INVENTION T	ERMILENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA BRODE OTHER TAM IN CONNECTION WITH A DEFINITELY PROCEEDING SPECIFICATION, THE UNITED STITES COLUER- PROCEEDINGS OF THE ANY OBLICATION MENTSOLVER THE SAD DRAWINGS, SPECIFICATIONS OR OTHER DATA IS D BY LIBULATION OR OTHER DATA IS D BY LIBULATION OR OTHER WISE AS IN ANY MANER R OR ANY OTHER PERSON OR CORPORATION, OR CONVEY- INT MAY MANY WAY BE RELATED THERETO.											· · · · ·					
	1880EL CONTROLLER SE	TTINGS (O	N DISK) - Y	VIC NASA	CAUSEWAY	′ (# 2) 11-Ø	8-1990	14:3 0: 11				SPLIT P	LAN FOR	ЕАСН СҮСІ	LE/OFFSET	COMBINA	TION:
	UNIT INITIALIZATION SE START UP PHASE - RINO START UP PHASE - RINO START UP IN ALL RED? ALL RED START TIME (1	6 1: 6 2:		2 Ø N Ø								CY 1 - I CY 1 - 4 CY 1 - 6 CY 1 - 6 CY 1 - 7 CY 2 -	IVY INB.O NBOUND 0 VERAGE C UTBOUND IVY OUT.C HVY INB.(INBOUND (FFSET OFFSET OFFSET OFFSET OFFSET	2 2 2 2 2 2 2 2	CY CY CY CY CY	4 - HVY I 4 - INBOU 4 - AVERA 4 - OUTBO 4 - HVY O 5 - HVY I 5 - INBOU
	ACTIVATE DOUBLE CLEA DUAL ENTRY - PH.12567 DUAL ENTRY - PH.3478 SIMULTANEOUS GAP OUT OVERLAPS YELLOW AT S	? ? (IF QUAD)		N N N N								CY 2 - CY 2 - CY 3 - CY 3 - CY 3 -	AVERAGE OUTBOUND HVY OUT. HVY INB. (INBOUND (AVERAGE)	OFFSET OFFSET OFFSET OFFSET OFFSET	2 2 2 2 2 2	CY CY CY CY CY CY	5 - AVERA 5 - OUTBO 5 - HVY C 6 - HVY I 6 - INBOU 6 - AVERA
	SEQUENTIAL INIT./PASS 2 SEC.MIN.RED REVERT RED REVERT TIME (IF U	?		Y Y Ø								CY 3 -	OUTBOUND HVY OUT.	OFFSET	2	CY	6 - OUTBO 6 - HVY O NVY SIDE S
	R1 PH. TO BE GREEN BER R2 PH. TO BE GREEN BE R1 PH. TO BE GREEN AF R2 PH. TO BE GREEN AF OVERRIDE HOLD IF UCF LAST CAR PASS. ACTIVE	FORE UCF: TER UCF: TER UCF: ACTIVE?		4 Ø 2 Ø Y	·							COORDIN HOLD PH PHASE(S) PHASE(S)	ATED PHA: IASE(S) ASS) TO BE ON) TO BE ON	SE RELATI SOCIATED MITTED DU MITTED DU) 1:) 1:) 2:	0-0 0-0 0-0 0-0
-	BASIC INTERVAL SETTIN	GS PH 1	PH 2	РН З	PH 4	PH 5	PH 6	PH 7	PH 8			ADDIT. P ADDIT. P	HASES TO HASES TO	BE OMITT BE OMITT	ED DURING ED DURING	G HOLD 3: G HOLD 3:	0-0
	INITIAL PASSAGE YELLOW RED CLEARANCE MAX.GREEN #1 MAX.GREEN #2 WALK	5 5 4 1 25 3Ø Ø	1Ø 6 4.5 1 55 3Ø Ø	Ø 4 1 Ø Ø	1Ø 6 4 1 35 3Ø Ø	Ø 4 1 Ø Ø	Ø 4 1 Ø Ø	Ø 4 1 Ø Ø	Ø 4 1 Ø Ø			NON-EAR ADDITIO ADDITIO PHASE(S) ADDIT. P PED. PHA	ILY RELEA NAL NON-E NAL NON-E) TO BE ON HASES TO NSES TO B	SE PHASE(ARLY REL ARLY REL MITTED WH BE OMITTE E OMITTEI	(S) DURING EASE PHAS EASE PHAS EN AUX. C ED WHEN D WHEN CO JT OF STE	COORD.: SES: SES: CT. 9 ON: CCT. 9 ON: CT. 9 ON:	0-0 0-0 0-0 0-0 : 0-0 0-0
	PED. CLEARANCE RECALLS, OMITS, CNA, FL	Ø ASHING WA	Ø ALKS	Ø	Ø	Ø	Ø	Ø	Ø						COORDINA		
-	MIN. RECALL ON? MAX. RECALL ON? PED. RECALL ON? DET. NON-LOCK ON? CNA I ACTIVE? CNA II ACTIVE? FLASHING WALK?	PH 1 N N Y N N N	PH 2 Y N N N N N	PH 3 N N N N N N	PH 4 N N Y N N N	PH 5 N N N N N N N	PH 6 N N N N N N	PH 7 N N N N N N	PH 8 N N N N N N			INVERT ENABLE CYCLE 4 ENABLE ENABLE ENABLE	FREE OUTI AUTOMATI FELASH FULL DWE MAX 2 VI COND. SER	PUT? C PERMISS ? CLL OPERA A TOD OUT V.VIA OUT	TPT 1? N N SIVES? N TION? N TPT 9? N F. 9? N	ENA NON ENA UNU CCT CYC	SPLIT MA BLE YEL.C I-CLOSED L B.4 SPLIT ISED CYC.T .4 TO AUX
	PHASE OMIT ACTIVE? PED.OMIT ACTIVE? SOFT RECALL ON?	N Y N	N Y N	Y Y N	N Y N	Y Y N	Y Y N	Y Y N	Y Y N			CALL CN ENABLE INHIBIT ENAB.EN	WALK RES MAX TERM IHAN PERM	COORDINA ST MODIFIE 1INATION? IS (FL LVL	ER? N N . 3)? N	ENA SPL FL/	Y ZERO OP BLE OFFSE IT 2 = 2 FREE TOD .Ø ON-ISO
)	OFFSET SETTINGS: CYCLE 1 - HVY INB. OFF CYCLE 1 - INBOUND OFF CYCLE 1 - AVERAGE OFF CYCLE 1 - OUTBOUND OF CYCLE 2 - HVY OUT. OFF CYCLE 2 - HVY INB. OFF CYCLE 2 - AVERAGE OFF CYCLE 2 - AVERAGE OFF CYCLE 2 - HVY OUT. OFF CYCLE 3 - HVY INB. OFF CYCLE 3 - INBOUND OFF CYCLE 3 - AVERAGE OFF CYCLE 3 - OUTBOUND OFF CYCLE 3 - OUTBOUND OFF CYCLE 3 - OUTBOUND OFF	SET Ø SET Ø SET Ø SET Ø SET Ø SET Ø FSET Ø SET Ø SET Ø FSET Ø	90% 90% 90% 90% 90% 90% 90% 90% 90% 90%		E 4 - INE E 4 - AVI E 4 - OU E 5 - HV E 5 - INE E 5 - AVI E 5 - AVI E 6 - INE E 6 - OU E 6 - OU	Y INB. OFF BOUND OFF ERAGE OFF TBOUND OFF Y OUT. OFF BOUND OFF ERAGE OFF Y OUT. OFF SOUND OFF ERAGE OFF TBOUND OFF ERAGE OFF TBOUND OFF	SET Ø SET Ø	0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0X 0				PHASE R REVERSE REVERSE REVERSE REVERSE REVERSE REVERSE	EVERSAL PHASES PHASES PHASES PHASES PHASES PHASES PHASES	1 & 2 DUR 1 & 2 DUR 5 & 6 DU 5 & 6 DU 3 & 6 DU 3 & 4 DU 3 & 4 DU 7 & 8 DU	RING THIS RING THIS RING THIS RING THIS RING THIS RING THIS RING THIS	CYCLE/OF CYCLE/OF CYCLE/OF CYCLE/OF CYCLE/OF CYCLE/OF CYCLE/OF	FSET ALSO FFSET: FFSET ALS FFSET: FFSET ALS
2	SPLIT PLAN SETTINGS:	PH 1	PH 2	РН З	PH 4	РН 5	PH 6	PH 7	PH 8	PH 9	PH 1Ø	PH 11	PH 12	PH 13	PH 14	PH 15	PH 16
3	PHASE 1 SPLIT PHASE 2 SPLIT PHASE 3 SPLIT PHASE 4 SPLIT PHASE 5 SPLIT PHASE 6 SPLIT PHASE 7 SPLIT PHASE 8 SPLIT START PERM #1 START PERM #1 START PERM #2 END PERM #2	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00X 00X 00X 00X 00X 00X 00X 00X 00X 00X	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	90% 90% 90% 90% 90% 90% 90% 90% 90% 90%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	90% 90% 90% 90% 90% 90% 90% 90% 90% 90%	00% 00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%	90% 90% 90% 90% 90% 90% 90% 90% 90% 90%
	START PERM #3 END PERM #3	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%	00% 00%
		ANNELS - FAILURL PIMMED?	RESU	REPORT :(ME NORMAL ' IMMED?		CLOSED LI	DOP SYSTE	MS ONLY)									
	CONFLICT FLASH MANUAL/AUTO FLASH MANUAL CONT.ENABLE PRE-EMPTION CHANNEL 5 CHANNEL 6	N N N N N N N		N N N N N N N					:								
	CHANNE 7 CHANNEL 8 CAB.DOOR OPEN	N N N		N N													
T																	

6	<u> </u>	3 1
	SPLIT PLAN FOR EACH CYCLE/OFFSET COMBINATION:CY 1 - HVY INB. OFFSET2CY 1 - INBOUND OFFSET2CY 1 - INBOUND OFFSET2CY 1 - AVERAGE OFFSET2CY 1 - AVERAGE OFFSET2CY 1 - OUTBOUND OFFSET2CY 1 - HVY OUT. OFFSET2CY 1 - HVY OUT. OFFSET2CY 2 - HVY INB. OFFSET2CY 2 - INBOUND OFFSET2CY 2 - AVERAGE OFFSET2CY 5 - AVERAGE OFFSET2	IMPLEMENTATION OF SPECIAL EVENT DAY PLANS: NONE PROGRAMMED
PH 8 Ø Ø 4 1 Ø Ø	CY 2 - OUTBOUND OFFSET 2 CY 5 - OUTBOUND OFFSET 2 CY 2 - HVY OUT.OFFSET 2 CY 5 - HVY OUT.OFFSET 2 CY 3 - HVY INB.OFFSET 2 CY 6 - HVY INB.OFFSET 2 CY 3 - INBOUND OFFSET 2 CY 6 - INBOUND OFFSET 2 CY 3 - AVERAGE OFFSET 2 CY 6 - AVERAGE OFFSET 2 CY 3 - OUTBOUND OFFSET 2 CY 6 - OUTBOUND OFFSET 2 CY 3 - OUTBOUND OFFSET 2 CY 6 - OUTBOUND OFFSET 2 CY 3 - HVY OUT.OFFSET 2 CY 6 - HVY OUT.OFFSET 2 I = HEAVY ARTERIAL 2 = AVERAGE 3 = HEAVY SIDE ST. 4-16 = SPECIAL COORDINATED PHASE RELATIONSHIPS: HOLD PHASE(S) ASSOCIATED WITH HOLD 1: Ø-Ø PHASE(S) TO BE OMITTED DURING HOLD 1: Ø-Ø PHASE(S) TO BE OMITTED DURING HOLD 2: Ø-Ø ADDIT.PHASES TO BE OMITTED DURING HOLD 3: Ø-Ø ADDIT.PHASES TO BE OMITTED DURING HOLD 3: Ø-Ø PED.PHASE(S) TO BE OMITTED DURING HOLD 3: Ø-Ø ADDIT.PHASES TO BE OMITTED DURING HOLD 3: Ø-Ø PED.PHASE(S) TO BE OMITTED DURING HOLD 3: Ø-Ø ADDIT.PHASES TO BE OMITTED DURING HOLD 3: Ø-Ø PED.PHASE(S) TO BE OMITTED DURING HOLD 3: Ø-Ø ADDIT.PHASES TO BE OMITTED DURING HOLD 3: Ø-Ø PED.PHASE(S) TO BE OMITTED DURING HOLD 3: Ø-Ø PED.PHASE(S) TO BE OMITTED DURING HOLD 3: Ø-Ø ADDITIONAL NON-EARLY RELEASE PHASES: Ø-Ø ADDIT.PHASES TO BE OMITTED WHEN CCT. 9 ON: Ø-Ø	WEEKPLAN STRUCTURES: WKPL Ø WKPL 1 WKPL 2 WKPL 4 WKPL 5 WKPL 6 WKPL 7 WKPL 8 WKPL 9 SUNDAY'S DAYPLANS: 0
Ø PH 8 N N N N N N Y Y N	REFERENCE PHASE(S) FOR OUT OF STEP CHECK: 0-0SPECIAL FUNCTIONS DURING COORDINATED OPERATIONENABLE FLASH VIA TOD OUTPT 1? N USE SPLIT MATRIX?INVERT FREE OUTPUT? N ENABLE YEL. OFFSET TIMER?ENABLE AUTOMATIC PERMISSIVES? N NON-CLOSED LOOP INTERCONNECT?CYCLE 4 = FLASH? N ENABLE YEL OPERATION? N UNUSED CYC. TIME TO SIDE ST?ENABLE FULL DWELL OPERATION? N UNUSED CYC. TIME TO SIDE ST?ENABLE MAX 2 VIA TOD OUTPT 9? N CCT. 4 TO AUX TOD?ENABLE COND. SERV. VIA OUT. 9? N CYCLE 4 = 2 A.M. SYNCH?INVERT FREE INPUT? N CITY ZERO OPERATION?ENABLE WALK REST MODIFIER? N SPLIT 2 = 2 A.M. SYNCH?INHIBIT MAX TERMINATION? N FL/FREE TOD CONTROLLED?ENABLE SHORT WAY OFFSET? NPHASE REVERSAL SETTINGSREVERSE PHASES 1 & 2 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 1 & 2 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 5 & 6 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 5 & 6 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 3 & 4 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 3 & 4 DURING THIS CYCLE/OFFSET: Ø ØREVERSE PHASES 3 & 4 DURING THIS CYCLE/OFFSET: Ø ØREVERSE PHASES 3 & 4 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 7 & 8 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 7 & 8 DURING THIS CYCLE/OFFSET ALSO: Ø ØREVERSE PHASES 7 & 8 DURING THIS CYCLE/OFFSET ALSO: Ø Ø	CYCLE 6 200 SEC. 99 YEAR CLOCK SETTINGS CURRENT MONTH (1-12): 18 N CURRENT TAR (00-99): 90 CURRENT YEAR (00-99): 90 N MONTH TO DAYLIGHT SAVINGS (1-12): 4 N MONTH TO DAYLIGHT SAVINGS (1-12): 18 SUNDAY FROM DAYLIGHT SAVINGS (1-12): 18 N MONTH FROM DAYLIGHT SAVINGS (1-12): 18 N SUNDAY FROM DAYLIGHT SAVINGS (1-12): 18 N SUNDAY FROM DAYLIGHT SAVINGS (1-12): 18 N SUNDAY FROM DAYLIGHT SAVINGS (1-2): 18 N CLTY SYNC OFFSET FROM 12 AM - CY 1 (0-255) 0 CLTY SYNC OFFSET FROM 12 AM - CY 3 (0-255) 0 CLTY SYNC OFFSET FROM 12 AM - CY 3 (0-255) 0 CLTY SYNC OFFSET FROM 12 AM - CY 3 (0-255) 0 CLTY SYNC OFFSET FROM 12 AM - CY 6 (0-255) 0 CLTY SYNC OFFSET FROM 12 AM - CY 6 (0-255) 0 SYNC REFERENCE HOUR (0-2): 0 SYNC REFERENCE HOUR (0-23): 0 SYNC REFERENCE HOUR (0-51): 0 SYNC VIA EVENT TIME? N
ØØ% ØØ% ØØ% ØØ%	H 10 PH 11 PH 12 PH 13 PH 14 PH 15 PH 16 00% <	
		SYM ZONE DESCRIPTION DATE APPROVED REVISIONS SIGNATURES DATE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DRAWN J.SPRINKLE 29MAY3J JOHN F. KENNEDY SPACE CENTER, NASA CHECKED REVISION S-29-41 KENNEDY SPACE CENTER TAFFFIC CONTROLS VIC AND NASA CAUSEWAY INTERSECTION SUBMITTED TIMING SCHEDULE APPROVEDY DATE SUBMITTED TIMING SCHEDULE APPROVEDY DATE SIZE 81KØ1916
		THIS DRAWING MADE BY AND WILL BE REVISED ONLY BY INTERGRAPH CAD SYSTEM. FILE : 191607.DGN KEV SIZE

.

•

· · · ·

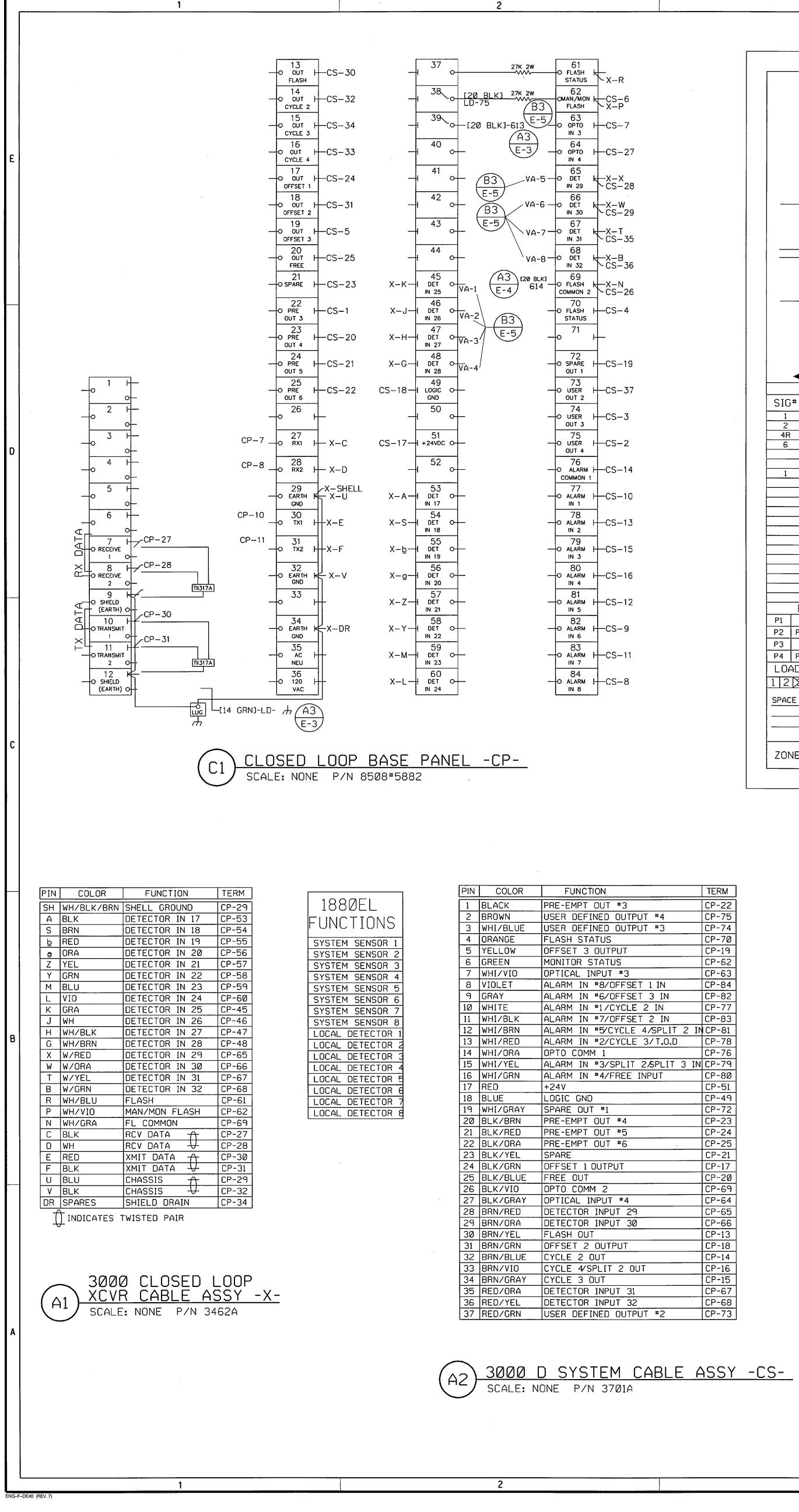
. . . .

. . .

· · · · ·

. .

5 6 INSTITUTIONAL P.O. BOX KENNEDY SPACE CONSULTANT: E HAZARDOUS MATEL LISTED BELOW ARE THE MATERIALS RELATED TO SPECIFICATIONS FOR AD REQUIREMENTS. SUSPECTED HEAVY SUSPECTED ASBES SUSPECTED PCB'S IF THE CONTRACTOR EN ANY UNIDENTIFIED HAZAI PREVENTS THEM FROM WORK, CONTRACTOR IS I MATERIAL IN QUESTION ADMINISTRATOR AT ONCI SPECIFICATION: "SP HAVE BEEN INCORPORAT DRAWINGS AND A SEPAT HAS NOT BEEN ISSUED BAR SCALES: KENNEDY PARKWAY 250'-0" 150'-0" $\overline{}$ NATIONAL AERONAUTICS AND SPACE ADMINISTRAT JOHN F. KENNEDY SPACE CENTER, NASA KENNEDY SPACE CENTER, FLORIDA R Ċ L-2A L-2C L-2B L-2D 🗍 \bigcup


•

5 6

. . . *

	INSTITUTIONA P.O. E KENNEDY SPAC	30X 21025, IS	C-001
	HAZARDOUS M. LISTED BELOW ARE MATERIALS RELATED SPECIFICATIONS FOR REQUIREMENTS. SUSPECTED HE SUSPECTED AS SUSPECTED PC IF THE CONTRACTOR ANY UNIDENTIFIED H PREVENTS THEM FR WORK, CONTRACTOR MATERIAL IN QUEST ADMINISTRATOR AT SPECIFICATION: HAVE BEEN INCORP DRAWINGS AND A S HAS NOT BEEN ISS	THE KNOWN H TO THIS PROJE ADDITIONAL IN ADDITIONAL IN EAVY METALS BESTOS CB'S R ENCOUNTERS HAZARDOUS MAT AZARDOUS MAT AZARDOUS MAT AZARDOUS MAT ROM PERFORMIN IS NOT TO DIS ION AND NOTIFY ONCE. "SPECIFICATION CORATED WITHIN SEPARATE DOCU	ECT. REFER TO FORMATION AND YES NO IN IN IN IN IN IN IN IN IN IN IN IN IN IN I
D	ce administration center, nasa r, florida	ENTER E COMMERCE WAY	aHT DRAWING
C	NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JOHN F. KENNEDY SPACE CENTER, NASA KENNEDY SPACE CENTER, FLORIDA	KENNEDY SPACE CENTER KENNEDY PARKWAY AND SPACE COMMERCE WAY	TRAFFIC LIGHT CONFIGURATION DRAWING
3	NOTICE — WHEN GOVER DATA ARE USED FOR ANY O DEFINITIVELY RELATED GOVER DATA ARE USED FOR ANY O DEFINITIVELY RELATED GOVER MAY HAVE FORMULATED, FUU DRAWINGS, SPECIFICATIONS OF IMPLICATION OR OTHERWISE OR ANY OTHER PERSON OF PERMISSION TO MANUFACTI MAY IN ANY WAY BE RELATI PREPARED FOR AND WITH L SERVICES, INC. COPYRIGHT 2010 AU ANY FORM OR BY ANY MEAI WITHOUT WRITTEN PERMISSIC TO CRIMINAL PROSECUTION.	RNMENT PROCUREMENT BY INCURS NO RESPOI ND THE FACT THAT THI RNISHED, OR IN ANY WA OR OTHER DATA IS NO CAS IN ANY MANNER L A CORPORATION, OR CO JRE, USE, OR SELL ANY ED THERETO. INLIMITED RIGHTS TO NA ↓ RIGHTS RESERVED. RE NS - GRAPHIC, ELECTRON	IN CONNECTION WITH A OPERATION, THE UNITED VSIBILITY NOR ANY E GOVERNMENT Y SUPPLIED THE SAID T TO BE REGARDED BY ICENSING THE HOLDER NVEYING ANY RIGHTS OR PATENTED INVENTION THAT ASA BY URS FEDERAL PRODUCTION OR USE IN IIC, MECHANICAL, ETC
4	GOPAL N. HEGE THIS SIGNATURE CERTIFIES TH SHEET TITLE: SIGNA	CO193200.00 SIGNATU DVD Mass DVD DVD	RE DATE 8/18/11 RE 8/18/11 8/18/11 See 8-19-11 8/18/11 8/18/11 8/19/11 NE
		E—2 HEET 3	REV

. . .

..

.

.

. . .

. . .

.

A3 DETECTOR INPUT SCHEDULES SCALE: NONE

. .

4

. .

.

5

. .

. . .

FUI "4	UF - 70
PUT #3	CP-74
	CP-70
	CP-19
	CP-62
	CP-63
SET 1 IN	CP-84
SET 3 IN E 2 IN SET 2 IN	CP-82
E 2 IN	CP-77
SET 2 IN	CP-83
E 4/SPLIT 2 IN	ICP-81
E 3/T.O.D	CP-78
	CP-76
T 2/SPLIT 3 IN	
E INPUT	CP-80
	CP-51
	CP-49
	CP-72
	CP-23
	CP-24
	CP-25
	CP-21
	CP-17
	CP-20
	CP-69
- · · - · · · · · · ·	CP-64
29	CP-65
30	CP-66
	CP-13
	CP-18
	CP-14
OUT	CP-16
	CP-15
31	CP-67
32	CP-68
TPUT #2	CP-73

TERM

CP-22

CP-75

NOTE: CONTROLLER PROGRAMMING IS REQUIRED FOR PHASE AND SYSTEM NUMBER ASSIGNMENT. SEE CONTROLLER MANUAL FOR PROGRAMMING INSTRUCTIONS.

			PHAS	SE AN	INPU D SYS Ssigni	STEM	
	1	DET #	PHASE #	SYS #	DET #	PHASE #	SYS #
α	_	1	1		17		
CONTROLLER A,B,C		2	2		18		
		3	3		19		
		4	4		2Ø		
		5	5		21		
TR		6	6		22		
NO		7	7		23		
	_	8	8		24		
	-	9			25		
		1Ø			26		
AB		11			27		
		12			28		
Γ Γ		13			29		
PRE-EMPT CABLE		14			3Ø		
Ц Н П		15			31		
		16			32		

. .

	(GRAP	HICS	С	OR INPUTS 25-32 HANNELS) TO MOVE CORRELATION CH	MENT
	DET # GPH	PH # #		LOOP LOCATION	MOVEMENT
	25 1	1	7	MAIN ST. Left turn	
	26 2	2	2	MAIN ST. Thru	←
л Г Г	27	3			
L J r	28 4	4	/	SIDE ST. THRU	¥
	29 5	5	/		
	30 6	6	7 6	MAIN ST. THRU	-
	31 7	7	7		
:	32 8	8			
	CABINE LOCAT				

	KENNE PARKW	DY YAY	0-1			SPACE COMMERCE WAY		L 1	2				RING $\begin{bmatrix} I & I \\ 4 & 3 & 2 \\ 1 & I & I \\ \end{bmatrix}$ $\begin{bmatrix} M & A \\ -3 & 3 \\ -4 & 3 \\ -5 & 3 \\ -5 & 3 \\ -5 & 3 \\ -5 & 3 \end{bmatrix}$	1 RING I I I I 1 876 I I I I	5-6 6 5-7 6 5-8 6	C RING []]] 876 []]] PRO	DLB 2 RING 1 1 1 1 1 1 1 1 1 1 1 1 1 DGRAM 8 8-9 9 8-10 0	RING 8 7 6 	RD 0-11 1
	•	•1 •6 6			5		-0	PAF	INEDY IKWAY			• • • • • • • • • • • • • • • • • • •	~8 3 ~9 3 ~9 3 ~10 3	5-8 4-9 5-9 4-10 5-10 4-11 5-11 4-12 5-12		• FOR CONT AMMED A AWING. II IST PROP		PMENT TED ACC GES ARE RAM ALI	DPERAT MUST CORDING MADE, L CONT
	t US	ED OI	NLY I	FLE	FT TL SIGN			IS 3 CTION	<u>SECTIO</u> S	IN		1–12 °]		DP C	ONNE	CTIC	DNS
SIG#	PH	G	Y	R	∢- 6		<mark>∢</mark> R				WI	< D'	WF		LOOP	- <u> </u>		MIN	
1	1\6	518	517	516	503	502								Y	2	2	LD-1		LD-3
2	2	506 512	505 511	504 510										Y R	6	6	LD-4		LD-6
4R	1 4										1			1.1					
	6	512	517	516		<u> </u>								Y					
4R																			
4R					503	502	501												
4R	6				503	502	501							Y					
4R	6				503	502	501							Y					
4R	6				503	502	501			· · · · · ·				Y					
4R	6				503	502	501							Y					
4R	6				503	502	501							Y					
4R	6				503	502	501							Y					
4R	6				503	502	501							Y					
4R 6		518	517		503									Ŷ <- R-					
4R 6		518	517	516		k	EYBC		PHASE	OMI	TS/			Ŷ <- R-					
4R 6		518 	517	516	503	k	EYBC	DARD F	PHASE	OMI	TS/	SEQU		Ŷ <- R-					
4R 6		518 	517	516		k	EYBC			OMI	TS/			Ŷ <- R-					
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 	518 	517	516	PHASES	k 3.5.7.	EYBC			OMI	TS/	SEQU		Y ← R-					
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 	518 	517 - - PIP-15 - PIP-16	516	PHASES X=UNL	k 3.5.7.		PROVALS	DAT	E	TS/			Y ←R- 					
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 	518 	517 	516	PHASES X=UNL	k 3.5.7.		PROVALS BY M	DATI LG 02-04	е -02				Y ←R- CE		ASSE	EE, FLO		
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 - ED C - P-13 - P-14 SWIT(14 5	518 	517 - PIP-15 - PIP-16	516	PHASES	3.5.7,		PROVALS BY M	DAT	е -02 -02		PE R A F		Y ←R- CE	TALLAH (850)	IASSE 562-	EE, FLO 2253	RIDA	
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 - ED C - P-13 - P-14 SWIT(14 5	518 	517 - PIP-15 - PIP-16	516	PHASES	3.5.7,		PROVALS BY MI D BY B	DATI LG 02-04 B 02-04	е -02 -02		PE R A F		Υ	TALLAH (850) B• CONT	IASSE 562– TROLL	EE, FLO	RIDA	
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 - ED C - P-13 - P-14 SWIT(14 5	518 	517 - PIP-15 - PIP-16	516	PHASES	3.5.7,		PROVALS BY MI D BY B	DATI LG 02-04 BB 02-04 B501#1199	е -02 -02	DESCR	PE R A F		Υ ← R-	TALLAH (850) B• CONI FLORID	IASSE 562– IROLL A	EE, FLO 2253 .ER FOF	RIDA	
4R 6 1 1 P P P P P P P P P P P P P P P P P	6 1 - ED C - P-13 - P-14 SWIT(14 5	518 	517 	516	PHASES	3.5.7,	EYBC B DRAWN CHECKE CONF AD#	PROVALS BY MI D BY B IG # E	DATI LG 02-04 B 02-04	е -02 -02 4		PE R A F		Υ ← R-	TALLAH (850) B• CONT	IASSE 562– IROLL A	EE, FLO 2253 .ER FOF	RIDA	323

4

3

	CONTROLL	ER TIMINGS					INSTITUTIONAL P.O. B
PHASEMOVEMENT NO.MIN. GRN. (INT.)EXT. (PASS)MAX. GRN. 1MAX. GRN. 2YELLOW CLR.ALL RED CLR.YED. WALKPED. WALKPED. CLR.MEMORYRECALL	1 2 1&4R&6 2 4 20 2.0 2.5 25 50 25 50 3.0 4.5 1.0 1.0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6&4R - 4 - 2.0 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 3.5 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	5 6 6 6 1 20 0 2.0 1 50 1 50 3.0 4.5 0 1.0 - 0 - 0 - 0 - - FF ON - -	7 8 2.6 1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - OFF OFF - -		Ε	KENNEDY SPAC CONSULTANT: HAZARDOUS MA LISTED BELOW ARE MATERIALS RELATED SPECIFICATIONS FOR REQUIREMENTS. SUSPECTED HE SUSPECTED HE SUSPECTED PC IF THE CONTRACTOF ANY UNIDENTIFIED H PREVENTS THEM FR WORK, CONTRACTOR MATERIAL IN QUESTI ADMINISTRATOR AT (SPECIFICATION: HAVE BEEN INCORPOR DRAWINGS AND A S HAS NOT BEEN ISSU
DETE PHAN PHAN PHAN PHAN 2 2 2 4 6 NOTE: DURING GATE CLO CONTRACTING OFF USED FOR PHASES WILL REST IN REP	SE LOOP ID - L2A&B L2C&D - - - - SURE PERIODS (ICER) THE MINIM S 2 AND 6. DURI	VIDEO B B VIDEO VIDEO VIDEO VIDEO	TECTOR ID 1 2A 2C 4 6 D BY THE TINGS SHAL			D	E ADMINISTRATION NTER, NASA FLORIDA
6 (2) 2 (2) R Y				$4\mathbb{R}$ (2) $\widehat{\mathbb{P}}$		С	NATIONAL AERONAUTICS AND SPACE ADMINISTR JOHN F. KENNEDY SPACE CENTER, NASA KENNEDY SPACE CENTER, FLORIDA
G 3-SECTION, 1-WA 12" STD. LENS WITH RIGID BRAC 650-1-131 4 AS	12"		12 WITH (ECTION, 1-WAY "STD. LENS RIGID BRACKE 650-1-131 2 AS	Т	В	SUCIES
				MODE 2 REST			DATA ARE USED FOR ANY PI DEFINITIVELY RELATED GOVER STATES GOVERNMENT THEREI OBLIGATION WHATSOEVER: AN MAY HAVE FORMULATED, FUR DRAWINGS, SPECIFICATIONS O IMPLICATION OR OTHERWISE OR ANY OTHER PERSON OR PREMISSION TO MANUFACTU MAY IN ANY WAY BE RELATE PREPARED FOR AND WITH UN SERVICES, INC. COPYRIGHT 2010 ALL ANY FORM OR BY ANY MEAN: WITHOUT WRITTEN PERMISSION TO CRIMINAL PROSECUTION. WON NO: CAD DWG NO: CAD FILE NO: NAME DESIGNED BY: J. VANSCIVER DRAWN BY: M. MASSON
	LS1 PHASE 1 P] S4 LB & 4	LS6 OLA 4 & 6		ŀ	C. RAMER APPROVED BY: G. HEGDE

X 21025, IS CENTER ERIALS: HE KNOWN O THIS PRO ADDITIONAL I VY METAL ESTOS	HAZARDOUS JECT. REFER TO NFORMATION AND YES NO
ZARDOUS MA M PERFORMI S NOT TO D N AND NOTI ICE. SPECIFICATIC PARATE DOC D FOR THE	NTERIAL THAT NG THE CONTRACT ISTURB THE FY THE CONTRACT IN REQUIREMENTS N THESE
KENNEDY SPACE CENTER	CONFIGURATION DRAWING
	APPROVAL
INCURS NO RESP THE FACT THAT T HED, OR IN ANY ' OTHER DATA IS N IN ANY MANNER DRPORATION, OR C USE, OR SELL AN THERETO. MITED RIGHTS TO IGHTS RESERVED. • GRAPHIC, ELECTRI	DATE DESCRIPTION OF THE AND SUBJECT
BIKO1932 CO193200.0 SIGNAT JULAS ARcun JULA SCOM	JRE DATE $8/18/11$ $10-8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$ $8/18/11$
T ASSE WIRING —7 8 of 8	

CABINE

SHEET

. . .

APPENDIX F KSC VIC Growth Data

KSC GROWTH ASSUMPTION yrs 2016 - 2035

	Growth														
Year	%	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Year
2016	Base	103,654	140,826	214,642	130,976	118,684	162,240	171,922	147,585	102,400	83,744	108,644	171,600	1,656,917	2016
2017	3%	106,764	145,051	221,081	134,905	122,245	167,107	177,080	152,013	105,472	86,256	111,903	176,748	1,706,625	2017
2018	3%	109,967	149,402	227,714	138,952	125,912	172,120	182,392	156,573	108,636	88,844	115,260	182,050	1,757,823	2018
2019	3%	113,266	153,884	234,545	143,121	129,689	177,284	187,864	161,270	111,895	91,509	118,718	187,512	1,810,558	2019
2020	5%	118,929	161,579	246,272	150,277	136,174	186,148	197,257	169,334	117,490	96,085	124,654	196,888	1,901,086	2020
2021	3%	122,497	166,426	253,661	154,785	140,259	191,733	203,175	174,414	121,015	98,967	128,394	202,794	1,958,118	2021
2022	3%	126,172	171,419	261,270	159,429	144,467	197,485	209,270	179,646	124,645	101,936	132,246	208,878	2,016,862	2022
2023	3%	129,957	176,561	269,108	164,212	148,801	203,409	215,548	185,035	128,385	104,994	136,213	215,144	2,077,368	2023
2024	3%	133,855	181,858	277,182	169,138	153,265	209,511	222,014	190,586	132,236	108,144	140,299	221,599	2,139,689	2024
2025	10%	147,241	200,044	304,900	186,052	168,591	230,463	244,216	209,645	145,460	118,959	154,329	243,759	2,353,658	2025
2026	3%	151,658	206,045	314,047	191,634	173,649	237,376	251,542	215,934	149,823	122,527	158,959	251,071	2,424,267	2026
2027	3%	156,208	212,227	323,468	197,383	178,858	244,498	259,089	222,413	154,318	126,203	163,728	258,603	2,496,996	2027
2028	3%	160,894	218,593	333,172	203,304	184,224	251,833	266,861	229,085	158,948	129,989	168,640	266,362	2,571,905	2028
2029	3%	165,721	225,151	343,168	209,403	189,751	259,388	274,867	235,957	163,716	133,889	173,699	274,352	2,649,063	2029
2030	5%	174,007	236,409	360,326	219,873	199,238	272,357	288,611	247,755	171,902	140,584	182,384	288,070	2,781,516	2030
2031	3%	179,227	243,501	371,136	226,469	205,215	280,528	297,269	255,188	177,059	144,801	187,855	296,712	2,864,961	2031
2032	3%	184,604	250,806	382,270	233,264	211,372	288,944	306,187	262,844	182,371	149,145	193,491	305,613	2,950,910	2032
2033	3%	190,142	258,330	393,738	240,261	217,713	297,612	315,373	270,729	187,842	153,619	199,296	314,782	3,039,437	2033
2034	3%	195,846	266,080	405,550	247,469	224,245	306,540	324,834	278,851	193,477	158,228	205,275	324,225	3,130,620	2034
2035	10%	215,431	292,688	446,105	272,216	246,669	337,194	357,317	306,736	212,825	174,051	225,802	356,648	3,443,682	2035

APPENDIX G NASA/Cape Canaveral Growth Data

- Traffic Analysis Zone (TAZ) No. 2990 (VAB Area)
 - o Commercial Employment
 - Year 2020 0
 - Year 2040 0
 - o Industrial Employment
 - Year 2020 968
 - Year 2040 2,905
 - o Service Employment
 - Year 2020 1
 - Year 2040 4
- TAZ 2992 (Canaveral Air Force Station)
 - o Commercial Employment
 - Year 2020 1
 - Year 2040 2
 - o Industrial Employment
 - Year 2020 9
 - Year 2040 26
 - o Service Employment
 - Year 2020 2,526
 - Year 2040 2,548
- TAZ 2993 (Blue Origins, Space Florida)
 - o Commercial Employment
 - Year 2020 0
 - Year 2040 0
 - o Industrial Employment
 - Year 2020 0
 - Year 2040 0
 - Service Employment
 - Year 2020 0
 - Year 2040 0
- TAZ 2994 (Visitor Complex)
 - o Commercial Employment
 - Year 2020 0
 - Year 2040 0
 - o Industrial Employment
 - Year 2020 0
 - Year 2040 06
 - o Service Employment
 - Year 2020 0
 - Year 2040 0
- TAZ 2995 (NASA East of Kennedy Blvd, South of NASA Blvd)
 - o Commercial Employment
 - Year 2020 0
 - Year 2040 0
 - o Industrial Employment
 - Year 2020 53
 - Year 2040 60
 - o Service Employment
 - Year 2020 2,595
 - Year 2040 3,036

APPENDIX H

Signalized Intersection HCS Worksheets – 2018 Opening Year Conditions

General Inform	nation								Intersec	tion Inf	ormatio	n		日子中	1 b L
		LTG						_	Duration,		0.25		-		
Agency				Amelia	- D-(-		47	_					2		
Analyst		SD		_		8/2/20			Area Typ	e	Other			w	÷
Jurisdiction		NASA		Time F			AM Pk-H	_	PHF		0.85		1	W.T.E	
Urban Street		NASA Pkwy			sis Year				Analysis		1> 7:0		7		
Intersection		NASAPkwy at Com				1. Nas	sa Pkwy	at Sp	ace Com	merce V	Vay - 2	018 A	-	11	
Project Descrip	otion	4324.03 KSC Spac	e Comn	nerce W	ay								h	414	Y # 1
Demand Inform	mation				EB			WE	2		NB			SE	2
Approach Move				L	T	R	L.		, R	L L		R	L	<u>з</u> г	R
Demand (v), v					190	467	0	57		76	<u> </u>	13		<u> </u>	
Demand (V), V					130	407		57		70		15			
Signal Informa	ation							1						_	
Cycle, s	34.3	Reference Phase	2	1	1 E	=L, É		2				1			
Offset, s	0	Reference Point	End	<u> </u>	7	<u></u>	<u> </u>		_		_	1	2	:	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		20.0 4.5	3.8 3.5	0.0	0.0	0.0	_				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0	0.0	0.0			7 6		, .
													_		
Timer Results				EBI		EBT	WB	L	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	е					6	5		2			4			
Case Number						7.3	1.0		4.0			9.0			
Phase Duration	se Duration, s					25.5	0.0		25.5			8.8			
	ange Period, ($Y+Rc$), s					5.5	4.0	_	5.5			5.0		-	
Max Allow Hea						3.6	0.0		3.6			3.0			
Queue Clearan	• •	· · · · · · · · · · · · · · · · · · ·				9.9			2.3		+	3.7		-	
Green Extensio						2.6	0.0		2.6		_	0.1			
Phase Call Pro		(3 °), -				1.00			1.00		-	0.63		-	
Max Out Proba						0.00			0.00		_	0.00			
	,														
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement				6	16	5	2		7		14			
Adjusted Flow						540	-	67		89		15			
Adjusted Satur	Rate (v), veh/h			224	549	0		_						
- ajustou outun), veh/h w Rate (s), veh/h/l	n		224 1781	549 1547	0 1527	1651		1711		1560			-
Queue Service	ation Flo	w Rate (s), veh/h/l	n					_							
-	ation Flo Time (g	w Rate(s), veh/h/l g s), s	'n		1781	1547	1527	1651		1711		1560			
Queue Service	ation Flo Time (g learance	w Rate(s), veh/h/l g s), s	n		1781 1.0	1547 7.9	1527 0.0	1651 0.3		1711 1.7		1560 0.3			
Queue Service Cycle Queue C	ation Flo Time (g learance p/C)	w Rate(s), veh/h/l g s), s	İn		1781 1.0 1.0	1547 7.9 7.9	1527 0.0 0.0	1651 0.3 0.3		1711 1.7 1.7		1560 0.3 0.3			
Queue Service Cycle Queue C Green Ratio (g	ation Flo Time (g clearance p/C) veh/h	w Rate(s), veh/h/l g s), s e Time(g c), s	in		1781 1.0 1.0 0.58	1547 7.9 7.9 0.58	1527 0.0 0.0 0.52	1651 0.3 0.3 0.58		1711 1.7 1.7 0.11		1560 0.3 0.3 0.11			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap	ation Flo Time (g clearance ŋ/C) veh/h acity Ra	w Rate(s), veh/h/l g s), s e Time(g c), s			1781 1.0 1.0 0.58 2077	1547 7.9 7.9 0.58 902	1527 0.0 0.0 0.52 766	1651 0.3 0.3 0.58 1926		1711 1.7 1.7 0.11 189		1560 0.3 0.3 0.11 173			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue	ation Flo Time (<u>c</u> clearance q/C) veh/h acity Ra (Q), ft/	w Rate (<i>s</i>), veh/h/l g s), s e Time (<i>g</i> c), s tio (<i>X</i>))		1781 1.0 1.0 0.58 2077 0.108	1547 7.9 7.9 0.58 902 0.609	1527 0.0 0.0 0.52 766 0.000	1651 0.3 0.3 0.58 1926 0.035		1711 1.7 1.7 0.11 189 0.472		1560 0.3 0.3 0.11 173 0.089			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue	ation Flo Time (g clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve	w Rate (s), veh/h/l g s), s e Time (g c), s tio (X) In (95 th percentile)) ile)		1781 1.0 0.58 2077 0.108 0.2	1547 7.9 7.9 0.58 902 0.609 5.8	1527 0.0 0.52 766 0.000 0	1651 0.3 0.58 1926 0.035 0.1		1711 1.7 1.7 0.11 189 0.472 21.6		1560 0.3 0.3 0.11 173 0.089 3.4			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue	ation Flo Time (<u>c</u> learance t/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio (w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) ln (95 th percentile) eh/ln (95 th percenti RQ) (95 th percent) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0	1547 7.9 7.9 0.58 902 0.609 5.8 0.2	1527 0.0 0.52 766 0.000 0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0		1711 1.7 1.7 0.11 189 0.472 21.6 0.8		1560 0.3 0.3 0.11 173 0.089 3.4 0.1			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve a Ratio ((d 1), s/	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percent /veh) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00	1547 7.9 0.58 902 0.609 5.8 0.2 0.01	1527 0.0 0.52 766 0.000 0 0.00 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.00		1711 1.7 0.11 189 0.472 21.6 0.8 0.04		1560 0.3 0.11 173 0.089 3.4 0.1 0.00			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/in (95 th percenti RQ) (95 th percent /veh), s/veh) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6	1527 0.0 0.52 766 0.000 0 0.0 0.0 0.00 0.00	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.00 3.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3		1560 0.3 0.11 173 0.089 3.4 0.1 0.00 13.7			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percenti QQ) (95 th percenti y (y (g) () ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5	1527 0.0 0.52 766 0.000 0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.00 3.0 0.00		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7		1560 0.3 0.11 173 0.089 3.4 0.1 0.00 13.7 0.1			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percenti QQ) (95 th percenti y (y (g) () ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 0.0	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.00 3.0 0.0 0.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0		1560 0.3 0.11 173 0.089 3.4 0.1 0.00 13.7 0.1 0.0			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ve elay (d_2 elay (d_2 elay (d_3 elay (d_4)	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/in (95 th percenti RQ) (95 th percent /veh), s/veh 3), s/veh eh) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 3.2 0.0 3.2 A	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0 5.1	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0 15.0		1560 0.3 0.3 0.11 173 0.089 3.4 0.1 0.00 13.7 0.1 0.0 13.8			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_3 elay (d_2 elay (d_3), s/ve e (LOS) y, s/veh	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percentile) eh/ln (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) x (veh), s/veh g_3), s/veh eh / LOS) ile)	4.6	1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 3.2 0.0 3.2 A	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0 5.1 A A	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0 15.0 B		1560 0.3 0.11 173 0.089 3.4 0.1 0.0 13.7 0.1 0.0 13.8 B B			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay	ation Flo Time (\underline{c} clearance p/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_3 elay (d_2 elay (d_3), s/ve e (LOS) y, s/veh	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percentile) eh/ln (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) x (veh), s/veh g_3), s/veh eh / LOS) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 3.2 0.0 3.2 A	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0 5.1 A A	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0 15.0 B		1560 0.3 0.11 173 0.089 3.4 0.1 0.0 13.7 0.1 0.0 13.8 B B			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay	ation Flo Time (\underline{c} Clearance q/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_3 d), s/ve e (LOS) y, s/veh elay, s/veh	w Rate (s), veh/h/l g_s), s e Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percentile) eh/ln (95 th percentile) RQ) (95 th percentile) RQ) (95 th percentile) x (veh), s/veh g_3), s/veh eh / LOS) ile)		1781 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 3.2 0.0 3.2 A	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0 5.1 A A	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0 15.0 B	NB	1560 0.3 0.11 173 0.089 3.4 0.1 0.0 13.7 0.1 0.0 13.8 B B			
Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Cap Back of Queue Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue D Control Delay (Level of Service Approach Delay	ation Flo Time (\underline{c} clearance q/C) veh/h acity Ra (Q), ft/ (Q), ve Ratio ((d_1), s/ elay (d_2 elay (d_2 elay (d_3 d), s/ve e (LOS) y, s/veh elay, s/ve esults	w Rate (s), veh/h/l g_s), s = Time (g_c), s tio (X) In (95 th percentile) eh/ln (95 th percenti RQ) (95 th percenti Q), s/veh g_i , s/veh) ile)		1781 1.0 1.0 0.58 2077 0.108 0.2 0.0 0.00 3.2 0.0 0.0 3.2 A A EB	1547 7.9 0.58 902 0.609 5.8 0.2 0.01 4.6 0.5 0.0 5.1 A A	1527 0.0 0.52 766 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1651 0.3 0.58 1926 0.035 0.1 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 ×		1711 1.7 0.11 189 0.472 21.6 0.8 0.04 14.3 0.7 0.0 15.0 B	NB	1560 0.3 0.11 173 0.089 3.4 0.1 0.0 13.7 0.1 0.0 13.8 B B		SB	

General Information Agency Analyst Jurisdiction	LTG													
Agency Analyst Jurisdiction	LTG							Intersec	tion Inf	ormatic		1 V	4744	L La L
Analyst Jurisdiction	LIG						_				on	- 1		
Jurisdiction						-	_	Duration	-	0.25		1		
	SD NASA		-		8/2/20			Area Typ)e	Other			wŧe	÷
			Time F		_	PM Pk-ł	_	PHF	D	0.89		1	4	-
Urban Street	NASA Pkwy			is Year				Analysis		1> 7:				
Intersection	NASA Pkwy at Com		File Na		1. Nas	sa Pkwy	at Spa	ace Com	imerce V	Vay - 2	018 P	- 88	ጎ٢	
Project Description	4324.03 KSC Space	e Comn	nerce W	ay									1 ላ 1 ቀካ	1 19 10
Demand Information				EB			WE	3	1	NB			SB	
Approach Movement		_	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h				29	161	7	107	3	445	<u> </u>	0	<u> </u>	<u> </u>	+
													in a	
Signal Information				6								<u> </u>		
Cycle, s 51.4	Reference Phase	2		È	T⇒ °		2							Y
Offset, s 0	Reference Point	End	Green	04	20.0	16.4	0.0	0.0	0.0	_	1	2	3	
Uncoordinated Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0		0.0					
Force Mode Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0		0.0		5	Y 6	7	8
Timer Results			EBL	·	EBT	WB	L	WBT	NBL	·	NBT	SBL		SBT
Assigned Phase					6	5		2			4		\rightarrow	
Case Number					7.3	1.0		4.0			9.0			
Phase Duration, s					25.5	4.4	_	29.9			21.4		\rightarrow	
Change Period, (Y+R					5.5	4.0	_	5.5			5.0			
Max Allow Headway (· · · · · · · · · · · · · · · · · · ·				3.4	2.9		3.4			2.9		\rightarrow	
Queue Clearance Tim					6.1	2.1		15.8			15.6		_	
Green Extension Time					5.1	0.0	_	5.0			0.8		\rightarrow	
Phase Call Probability	·				1.00	0.11		1.00		_	1.00			
Max Out Probability					0.00	0.00)	0.00			0.00			
Movement Group Re	sults			EB			WB			NB			SB	
Approach Movement		_	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement				6	16	5	2		7	-	14			
Adjusted Flow Rate (v), veh/h			33	181	8	1206		500		0			
Adjusted Saturation F		n		1766	1560	1781	1781	-	1781		1572			+
Queue Service Time (0.3	4.1	0.1	13.8		13.6		0.0			+
Cycle Queue Clearan				0.3	4.1	0.1	13.8		13.6		0.0			1
Green Ratio (g/C)				0.39	0.39	0.44	0.48		0.32		0.33			1
Capacity (c), veh/h				1375	607	684	1693	-	570		517			
Volume-to-Capacity R	atio (X)			0.024	0.298	0.012	0.712		0.877		0.000			1
Back of Queue (Q), f)		3.6	46.1	1.5	149.2	-	193.3		0			
Back of Queue (Q),				0.1	1.8	0.1	5.9		7.6		0.0			1
Queue Storage Ratio				0.00	0.11	0.00	0.00		0.32		0.00			
Uniform Delay (d 1),				9.7	10.8	8.2	10.7	-	16.5		0.0			
Incremental Delay (d				0.0	0.2	0.0	0.4		1.7		0.0			
Initial Queue Delay (d	· ·			0.0	0.0	0.0	0.0		0.0		0.0			
				9.7	11.0	8.2	11.1		18.3		0.0			
Control Delay (d), s/)			Α	В	Α	В		В					
Control Delay (d), s/v Level of Service (LOS			10.8		В	11.1		В	18.3		В	0.0		
• • • •	1/LOS					2.9								
Level of Service (LOS					12							В		
Level of Service (LOS Approach Delay, s/vel					12							В		
Level of Service (LOS Approach Delay, s/vel				EB	12		WB			NB		В	SB	
Level of Service (LOS Approach Delay, s/vel Intersection Delay, s/v	eh / LOS		2.2		B	0.7		A	2.8	_	С	B 2.8		С

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.2.1

Pedestrian LOS	S Score /			2.4 0.7	_	B A	0.6	_	A A	2.8	_	C F	2.8	_	С
Multimodal Re					EB			WB			NB			SB	
Intersection De	lay, s/ve	h / LOS				7	.8						4		
Approach Dela	y, s/veh	/LOS		6.1		Α	10.0)	A	13.1		В	0.0		
Level of Service	e (LOS)				Α	Α	С	Α				В			
Control Delay (d), s/ve	eh			6.1	6.1	26.3	2.6		0.0		13.1			T
Initial Queue D		•			0.0	0.0	0.0	0.0		0.0		0.0			
Incremental De	. ,				0.2	0.2	13.1	0.0		0.0		1.0			1-
Uniform Delay					6.0	5.9	13.2	2.6		0.0		12.1			\top
		RQ) (95 th percent			0.00	0.00	0.03	0.00		0.00		0.01			\top
		h/ln (95 th percenti			0.2	0.2	0.5	0.0		0.0		0.2			-
		In (95 th percentile))		5	4	14.9	0.3		0		7.5			+
Volume-to-Cap		tio (X)			0.130	0.090	0.484	0.032		0.000		0.371			
Capacity (c), v					1242	571	57	1901	_	152		85			+
Green Ratio (g		(g-n-			0.36	0.36	0.03	0.57		0.05		0.08			
Cycle Queue C		· ·			0.9	0.6	0.5	0.2	1	0.0		0.8			+
Queue Service					0.9	0.6	0.5	0.2		0.0		0.8			1
-		w Rate (s), veh/h/l	n		1724	1585	1640	1654		1620		1045			+
Adjusted Flow), veh/h			162	52	27	60		0		32			1-
Assigned Move					2	12	1	6		7	1	14	-	-	+
Movement Gro Approach Move	•	uits		L	Т	R	L	Т	R	L	Т	R	L	T	R
Movement Cr		ulte			EB			WB			NB			SB	
Max Out Proba	bility					0.00	0.00		0.00			0.00			
Phase Call Pro						1.00	0.19		0.90			0.22			
Green Extensio		(ge),s				3.3	0.1		3.3			0.0			
Queue Clearan						2.9	2.5		2.2			2.8			
Max Allow Hea						6.9	5.9		6.9			3.2			
Change Period	ge Period, (Y+R c), s					5.5	5.0		5.5			5.0			
Phase Duration	1, S				15.5	6.0		21.5			6.3				
Case Number						7.3	2.0		4.0			9.0			
Assigned Phas	e					2	1		6			4			
Timer Results				EBL		EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0		0.0		5	6	7	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		10.0 4.5	1.3 4.0	0.0	0.0	0.0					
Offset, s	0	Reference Point	End	0	7	<u></u>							2	3	
Cycle, s	27.8	Reference Phase	2	1	é	=_→	-	2					→		5
Signal Informa	ation														
Demand (v), v	/eh/h			_	154	49	26	57		0		30	_		
Approach Move				L	Т	R	L .	Т	R	L	Т	R	L.	Т	R
Demand Inform					EB		<u> </u>	WE			NB		<u> </u>	SB	_
				_											
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	ay								ĥ	4144	141
Intersection		NASA Pkwy at Visit	or C	File Na			sa Pkwy	_	itor Cent		olex - 2	018 A		<u>ካ</u> ካ ሰ	*
Urban Street		NASA Pkwy				2018			Analysis	Period	1> 7:0	00	7		
Jurisdiction		NASA		Time F		_	AM Pk-H		PHF		0.95		$\rightarrow \rightarrow $	w+e	
Analyst		SD		Analys	is Date	8/2/20	17	_	Area Typ		Other		ے بے		
Agency		LTG						-	Duration		0.25	/11			
General Inforn									Intersec	tion Inf	ormatic	n n		4 244 1	1 24 4

Copyright © 2017 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	a int	ersec	tion F	kesu	its Su	mmar	У				_
General Inform	nation							-	Interse	ction Inf	ormatio	on		4 사사	• ↓ ↓• \ <u>\</u>
		LTG						\rightarrow	Duratio		0.25		-		
Agency				Amelia	in Data		47	\rightarrow				-	2		
Analyst		SD		-		8/2/20		_	Area Ty	pe	Other	r	→ <u>→</u>	w	. :
Jurisdiction		NASA		Time F			PM Pk-l	Hr	PHF		0.95				· ·
Urban Street		NASA Pkwy				2018				s Period	1> 7:		T I		
Intersection		NASA Pkwy at Visit		File Na		2. Na	sa Pkwy	at Vis	sitor Cer	ter Com	plex - 2	018 P	- 8	11	٢
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	/ay								n	1414	Y F I
Demand Inform	nation				EB			W	В		NB			S	В
Approach Move	ement			L	Т	R	L	Т		L	Т	R	L	Т	R
Demand (v), v					29	0	35	105	50	30	<u> </u>	31		-	
Signal Informa	ation				6			Т							
Cycle, s	43.2	Reference Phase	2]	l è		2	2					↔		
Offset, s	0	Reference Point	End	Green	18	22.7	3.2	0.0	0.0	0.0	_	1 T	Y 2		3
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	4.0	0.0							
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0				5	6		7 8
Timer Results				EBL	-	EBT	WB		WBT	NB		NBT	SBL	-+	SBT
Assigned Phas	e				_	2	1	-	6	-	_	4		\rightarrow	
Case Number					_	7.3	2.0		4.0		_	9.0		\rightarrow	
Phase Duration		N			_	28.2	6.8	_	35.0	-	_	8.2		\rightarrow	
-	nge Period,(Y+R ː), s Allow Headway(MAH), s					5.5	5.0	_	5.5	-		5.0	<u> </u>	\rightarrow	
Queue Clearan						6.8 2.2	5.9 3.0		6.8 8.9	-		3.1 3.2		-+	
Green Extensio					-	2.2	0.1		19.5	-		0.1		-+	
Phase Call Pro		(ge),s			_	1.00	0.36	_	1.00	-		0.54		\rightarrow	
Max Out Proba			_			0.12	0.00	_	0.17	-		0.00		-+	
Max Out 100a	onity					0.12	0.00	· .	0.17			0.00		ani:	
Movement Gro	oup Res	ults			EB			WB			NB			SE	3
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		7		14			
Adjusted Flow	Rate (v), veh/h			31	0	37	1105	5	32		33			
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1724	1585	1640	1654	1	1620		1045			
Queue Service	Time (g	g s), s			0.2	0.0	1.0	6.9		0.4		1.2			
Cycle Queue C	learance	e Time (g c), s			0.2	0.0	1.0	6.9		0.4		1.2			
Green Ratio (g	/C)				0.53	0.53	0.04	0.68	;	0.07		0.12			
Capacity (c), v	/eh/h				1811	832	68	2257	7	242		122			
Volume-to-Cap	acity Ra	itio (X)			0.017	0.000	0.541	0.49	D	0.130		0.268			
Back of Queue	(Q), ft/	/In (95 th percentile)			1.4	0	26.6	9.2		5.6		14.4			
		eh/In (95 th percenti			0.1	0.0	1.0	0.3		0.2		0.4			
		RQ) (95 th percent			0.00	0.00	0.06	0.00		0.00		0.02			
Uniform Delay	(d1), s	/veh			4.9	0.0	20.3	3.3		18.7		17.4			
Incremental De	lay (d 2), s/veh			0.0	0.0	13.5	0.6		0.1		0.4			
Initial Queue D	elay (d	3), s/veh			0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (d), s/ve	eh			4.9	0.0	33.8	3.9		18.8		17.9			
Level of Service	. ,				Α		С	Α		В		В			
Approach Dela	y, s/veh	/LOS		4.9		Α	4.8		Α	18.3	3	В	0.0		
Intersection De	lay, s/ve	eh / LOS				5	.5						A		
Multimodal Re					EB	_		WB			NB			SE	
Pedestrian LOS				2.4		B	0.6		A	2.8		c	2.8	\rightarrow	С
Bicycle LOS So	ore / LC	5		0.5		Α	1.4		Α			F			

Copyright © 2017 University of Florida, All Rights Reserved.

		HUS	7 Sig	nalize	ea in	tersec		esi	lits	Sur	nmar	У				
General Inform	ation								Inte	oreod	tion Inf	ormatic			작거야 1	5 L
	ation	ITC							_				n	- 1	ĨŤŤ	
Agency		LTG		Arrele			47		-	ration,		0.25		7		KX
Analyst		SD		-		te 8/2/20		l		еа Тур	e	Other			wije	2
Jurisdiction		NASA		Time F			AM Pk-l	٦r	PH		Devie	0.83				
Urban Street		Kennedy Pkwy				ar 2018				-	Period	1> 7:				4
Intersection		Space Commerce	-	File Na		3. Spa	ace Con	nmer	ce w	/ay at	Kenned	ly Pkwy	- 201		<u>111</u>	
Project Descrip	tion	4324.03 KSC Spac	e Comn	nerce W	/ay										ΝΙΨΥ	21 1
Demand Inform	nation				EB	3	1	V	/B			NB			SB	
Approach Move	ement			L	Т	R	L	T	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				0	91					211	226			20	1
Signal Informa	tion					21										
Cycle, s	46.6	Reference Phase	2		51	\uparrow 1 1	R						Ì.I*⁴	2	3	\rightarrow
Offset, s	0	Reference Point	End	Green	8.5	19.6	4.1	0.	0	0.0	0.0	_	•	~		_ ~
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.		0.0	0.0			1		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.	0	0.0	0.0		5	6	7	8
Timer Desults				EDI		EDT				DT	ND		NDT	ODI		ODT
Timer Results				EBI	-+-	EBT	WB	-+	VV	вт	NBI	-	NBT	SBI		SBT
Assigned Phase	e				+	4		\rightarrow		_	1	_	6		_	2
Case Number	-			-	\rightarrow	12.0		\rightarrow		_	2.0		4.0	<u> </u>	_	7.3
Phase Duration		\ -			-	9.1		\rightarrow		_	12.5	_	37.5		_	25.1
Change Period, Max Allow Head		· ·		-	-	5.0 3.2		\rightarrow		_	4.0 2.9	_	5.5 2.9			5.5 2.9
Queue Clearan	• •	· ·			+	5.2		\rightarrow		_	8.4	_	3.2		-	2.9
Green Extensio				-	-	0.2	-	-		_	0.4		0.6			0.6
Phase Call Prol		(ge), s			+	0.2		\rightarrow		_	0.96	_	1.00		-	0.98
Max Out Proba					-	0.00		-	_	_	0.00		0.00		_	0.00
	onity					0.00					0.00	·	0.00			0.00
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment				4	14					1	6			2	12
Adjusted Flow F	Rate (v), veh/h			110						254	272			24	1
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1585	5					1767	1781			1668	1585
Queue Service	Time (g	gs), s			3.2						6.4	1.2			0.2	0.0
Cycle Queue C	learanc	e Time (<i>g c</i>), s			3.2						6.4	1.2			0.2	0.0
Green Ratio (g					0.09)					0.18	0.69			0.42	0.42
Capacity (c), v					139						321	2448			1401	666
Volume-to-Capa	-				0.79						0.792	0.111			0.017	0.002
		In (95 th percentile)			48.6	_			4		96.7	0.3			2.1	0.2
		eh/In (95 th percenti			1.9	_					3.8	0.0			0.1	0.0
		RQ) (95 th percent	tile)		0.00	_			_		0.19	0.00			0.00	0.00
Uniform Delay (20.9	_			_		18.2	2.5			7.9	7.9
Incremental De					3.8				+		1.7	0.0			0.0	0.0
Initial Queue De					0.0	_			_		0.0	0.0			0.0	0.0
Control Delay (24.7		-		+		19.9	2.5			7.9	7.9
Level of Service					C			L			B	A			A	A
Approach Delay	-			24.7		C	0.0				10.9	,	В	7.9		Α
Intersection De	ay, s/ve	en / LOS				13	3.1							В		
Multimodal Re	sulte				EB			W	R			NB			SB	
Pedestrian LOS		/105		2.8	_	С	2.8			c	1.8		В	2.1		В
Bicycle LOS Sc				0.7	_	A	2.0	+		_	0.9	_	A	0.5	_	A
2.0,0.0 200 00				0.1							0.0		~	0.0		

		HCS	7 Sig	nalize	ain	ersec		esi	lits	Sun	nmar	y				
General Inform	action								Into	reed	tion Inf	ormatia			4.441	a L
	ation	1.70											n	- 1	TTT	
Agency		LTG					-		-	ation,		0.25				-
Analyst		SD		-		e 8/2/20				а Тур -	e	Other			w∔e	1 ×
Jurisdiction		NASA		Time F		_	PM Pk-ł	Hr	PHF			0.77			W+E 0	‡ +
Urban Street		Kennedy Pkwy				r 2018					Period	1> 7:0		7		1
Intersection		Space Commerce V		File Na		3. Spa	ace Con	nmer	ce Wa	ay at	Kenned	y Pkwy	- 201	- 8	<u>1</u> ††	
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	/ay									1	14144	* (*
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move				L	<u>т</u>	R	L		тТ	R	L	T	R	Τ.	T	R
Demand (v), v					0	216	-	+-	\rightarrow		154	21	-		763	6
Signal Informa	tion					21		Т								
Cycle, s	53.7	Reference Phase	2		51		₿						\ ^ĸ 4			\rightarrow
Offset, s	0	Reference Point	End	Green	77	20.0	11.5	0.	0	0.0	0.0	_	•	2	3	¥ 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.		0.0	0.0	_		†		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.		0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WE	BT	NBI	-	NBT	SBI	L	SBT
Assigned Phase	e					4		\rightarrow			1		6			2
Case Number						12.0					2.0		4.0			7.3
Phase Duration						16.5		\rightarrow		_	11.7		37.2			25.5
Change Period		· ·				5.0		\rightarrow			4.0	_	5.5			5.5
Max Allow Head					_	3.2		\rightarrow		_	2.9		3.3		_	3.3
Queue Clearan						11.1		\rightarrow		_	7.8		2.2			15.0
Green Extensio		(ge),s			_	0.5		\rightarrow		_	0.3	_	3.3		_	3.3
Phase Call Pro					\rightarrow	0.98		\rightarrow		_	0.95		1.00		_	1.00
Max Out Proba	bility					0.00					0.00		0.00			0.00
Movement Gro	oup Res	ults			EB			W	в			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment				4	14					1	6			2	12
Adjusted Flow I	Rate (v), veh/h			281						200	27			991	8
		w Rate (s), veh/h/l	n		1585						1781	1781			1781	1585
Queue Service					9.1					_	5.8	0.2			13.0	0.2
Cycle Queue C					9.1						5.8	0.2			13.0	0.2
Green Ratio (g					0.21					_	0.14	0.59			0.37	0.37
Capacity (c), v	/eh/h				340						257	2103			1325	590
Volume-to-Cap	acity Ra	itio (X)			0.826	5					0.780	0.013			0.748	0.013
Back of Queue	(Q), ft/	/In (95 th percentile))		128.6	i					96.8	1.3			173.4	2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		5.1						3.8	0.1			6.8	0.1
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00						0.19	0.00			0.00	0.00
Uniform Delay	(d1), s	/veh			20.2						22.2	4.5			14.7	10.7
Incremental De	l ay (d 2), s/veh			2.0						2.0	0.0			0.6	0.0
Initial Queue D	elay (<i>d</i>	3), s/veh			0.0						0.0	0.0			0.0	0.0
Control Delay (d), s/ve	eh			22.1						24.1	4.5			15.3	10.7
Level of Service	e (LOS)				С						С	Α			В	В
Approach Delay	-			22.1		С	0.0				21.8	3	С	15.3	3	В
Intersection De	lay, s/ve	h / LOS				17	7.5							В		
Multimodal Re					EB	-		W				NB	_		SB	_
Pedestrian LOS				2.8		c	2.8		С	;	1.9		В	2.1	_	B
Bicycle LOS So	ore / LC	JS		1.0		A					0.7		A	1.3		A

		1100	/ Sig		a mu	CI 3CC		tesu	113 04	mma	' y				
General Inform	nation							_	Interse	tion l	formati	on		14741	لمه ليا مع
Agency		LTG							Duratio		0.25			74	
Analyst		CAM		Analys	sis Date	e Sep 1	2017	_	Area Ty	-	Othe	r	-3 -3-		2
Jurisdiction		NASA		Time F		_	AM Pk-I	_	PHF		0.86		→ <u>→</u>	wļe	
Urban Street		Space Commerce \	Nav		sis Yea	_		_	Analysis	Perio			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · ·
Intersection		Space Commerce	-	File Na			ace Con					ntranc			-
Project Descrip	tion	4324.03 KSC Space	-			4. Sp		interc	e way a	riopo	Seu S L	nuane	- 8	1414Y	20
Project Descrip	lion	4324.03 KSC Spac	e Comin	lerce w	ay										
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			327	131	9	5	65	5 116	5 2	0	1	6	0	22
				_											
Signal Informa	tion				7	π	E E	921	5						
Cycle, s	58.8	Reference Phase	2		P. 4	TÉ.	R	7	32		· · ·	<	₹.	3	KÎ X
Offset, s	0	Reference Point	End	Green	0.5	0.9	15.0	2.5		0.	2		⊾ _		~
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		5.1	5.1	3.4				>			512
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.5	2.5	2.5	5.0	5.0	0.)	5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	N	BL	NBT	SB	<u> </u>	SBT
Assigned Phase	e			5		2	1		6	L		8			4
Case Number				2.0	_	4.0	2.0		3.0			12.0			11.0
Phase Duration	-			16.6	5	31.1	8.1		22.6			8.7			10.9
Change Period		· ·		7.6		7.6	7.6		7.6			8.4			8.4
Max Allow Head	• •	,		3.0		3.1	3.0		3.1			3.1			3.2
Queue Clearan	ce Time	e (g s), s		8.2		5.7	2.2		6.1			2.1			2.9
Green Extensio	n Time	(ge),s		0.8		0.6	0.0		0.6			0.0			0.0
Phase Call Pro	bability			1.00)	1.00	0.09	9	1.00			0.06			0.41
Max Out Proba	bility			0.00)	0.00	0.00	ו	0.00			0.00			0.00
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		380	163		6	76	135	1	3			7	26
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1730	1732		1781	1856	5 1585	1	1738			1810	1585
Queue Service	Time (g	g s), s		6.2	3.7	1	0.2	1.9	4.1		0.1			0.2	0.9
Cycle Queue C	learanc	e Time (g c), s		6.2	3.7		0.2	1.9	4.1		0.1			0.2	0.9
Green Ratio (g	/C)			0.15	0.40		0.01	0.26	0.26		0.01			0.04	0.04
Capacity (c), v	/eh/h			528	693		14	474	405		10			76	67
Volume-to-Capa	acity Ra	tio (X)		0.721	0.235		0.422	0.16	0.333		0.353			0.091	0.382
		(In (95 th percentile)		102.8	55.1		4.7	31.6			2.9			3.9	15.2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.0	2.0		0.2	1.2	2.3		0.1			0.2	0.6
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00		0.00	0.00	0.00		0.00			0.00	0.00
Uniform Delay	(d1), s	/veh		23.7	11.7		29.0	17.0	17.8		29.1			27.1	27.4
Incremental De	l ay (d 2), s/veh		0.7	0.1		7.4	0.1	0.2		7.8			0.2	1.3
Initial Queue De	elay (<i>d</i>	3), s/veh		0.0	0.0		0.0	0.0	0.0		0.0			0.0	0.0
Control Delay (d), s/ve	eh		24.4	11.7		36.5	17.1	18.0		36.9			27.3	28.7
Level of Service	e (LOS)			С	В		D	В	В		D			С	С
Approach Delay	y, s/veh	/LOS		20.6	6	С	18.2	2	В	36	.9	D	28.4	4	С
Intersection De	lay, s/ve	h / LOS				2	0.3						С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS	S Score	/LOS		2.1		В	2.7		С	2	5	В	2.4		В
Bicycle LOS Sc	ore / LC	DS		1.4		Α	0.8		Α	0	5	Α	0.5		Α
			_												

Copyright © 2017 University of Florida, All Rights Reserved.

		1100	r olg		a int				113 04	mma	J				
General Inform	nation								Interse	tion In	formatio	on	1.1	14741	bi lu
Agency		LTG							Duration	1. h	0.25			14	
Analyst		CAM		Analys	sis Date	e 8/2/20)17	-	Area Ty	-	Other	r	4		
Jurisdiction		NASA		Time F			PM Pk-I	_	PHF		0.77		- - *	wļe	↓
Urban Street		Space Commerce	Nav		sis Yea	_		_	Analysis	Period		00	4 4		× •
Intersection		Space Commerce	-	File Na			ace Con		e Way a						-
Project Descrip	tion	4324.03 KSC Spac	•			1. 00			e may a	in topo		in arro	- 8	1 14149	t= (*
Troject Descrip		1021.00 K00 Opuc	e oomin		ay										
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h			29	135	4	2	23	8 29	5	0	3	67	0	202
Signal Informa					7	_ 7	5	<u>1</u> 21	5						\mathbf{F}
Cycle, s	63.0	Reference Phase	2			Ŕ	R		17				₹ 2	3	· • •
Offset, s	0	Reference Point	End	Green	0.2	2.2	15.0	12.		0.0)		<u> </u>		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	5.1	0.0	5.1	3.4	3.4	0.0		~			_ v⊅z
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.5	0.0	2.5	5.0	5.0	0.0		5	6	7	8
Times Descrit						CDT	14/25		MOT			NDT	0.51		OPT
Timer Results				EBI	-	EBT	WB		WBT	NE	SL	NBT	SB		SBT
Assigned Phase Case Number	5			5 2.0		2 4.0	1 2.0		6 3.0		_	8 12.0			4
Phase Duration				2.0		24.8	7.8		22.6	-	_	9.4	<u> </u>		21.0
Change Period,		-) •		7.6		7.6	7.6	_	7.6	-	_	9.4 8.4		_	8.4
Max Allow Head		· ·		3.0		3.0	3.0	_	3.0	-		3.0			3.1
Queue Clearan		•		2.7		6.9	2.1	_	11.5	-	_	2.4			12.0
Green Extensio				0.1		0.9	0.0		0.9	-	_	0.0		_	0.6
Phase Call Prol		(ge), s		0.48	_	1.00	0.04	_	1.00			0.17	<u> </u>		1.00
Max Out Proba				0.00		0.00	0.00	_	0.00	-		0.00			0.00
Max Out 1 100a	onity			0.00	, I.	0.00	0.00	, I	0.00			0.00			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		38	181		3	309	38		10			87	262
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1730	1861		1781	1870) 1585		1729			1810	1585
Queue Service	Time (g	g s), s		0.7	4.9		0.1	9.5	1.2		0.4			2.5	10.0
Cycle Queue C	learanc	e Time (<i>g</i>		0.7	4.9		0.1	9.5	1.2		0.4			2.5	10.0
Green Ratio (g				0.04	0.27		0.00	0.24	_		0.02			0.20	0.20
Capacity (c), v				133	508		6	445			27			362	317
Volume-to-Capa	-			0.283			0.410	0.694			0.378			0.240	-
		In (95 th percentile)		11.9	84.7		2.9	169.4	_		7.3			41.7	151.8
		eh/In (95 th percent		0.5	3.3	L	0.1	6.7	0.7	<u> </u>	0.3			1.7	6.0
		RQ) (95 th percent	tile)	0.00	0.00		0.01	0.00			0.00			0.00	0.00
Uniform Delay (29.5	18.5		31.3	21.9	_		30.7			21.2	24.2
Incremental De		,		0.4	0.2		15.0	0.7	0.0		3.2			0.1	2.1
Initial Queue De				0.0	0.0		0.0	0.0	0.0		0.0			0.0	0.0
Control Delay (29.9	18.6		46.4	22.7	_		33.9			21.3	26.3
Level of Service				C	В	<u> </u>	D	C	В			<u> </u>	05	C	C
Approach Delay				20.6		C	22.4	+	С	33	9	С	25.1		С
Intersection De	ay, s/ve					2	3.1						С		
Multimodal Re	sulte				EB			WB			NB			SB	
Pedestrian LOS		/105		2.1	_	в	2.7	_	С	2.	_	В	2.4	_	В
Bicycle LOS Sc				0.8		A	1.1	_	A	0.	_	A	1.1	_	A
Dicycle LOG St		~		0.0		A	1.1		A	0.		A	1.1		Λ

Copyright © 2017 University of Florida, All Rights Reserved.

APPENDIX I

Signalized Intersection HCS Worksheets – 2035 Design Year Conditions

		HCS	7 Sig	nalize	aint	ersec	tion F	esu	ts Sur	mmar	/				
General Inform	nation								Intersec	tion Inf	ormatio	on	2	日子子	l la la
Agency		LTG							Duration		0.25	<i></i>			
		SD		Anoly	in Data		17	_		-	-		1		
Analyst				-		8/2/20			Area Typ	be	Other			wŧe	+
Jurisdiction		NASA		Time F		_	AM Pk-l	_	PHF		0.85		1		-
Urban Street		NASA Pkwy			sis Year				Analysis		1> 7:0				
Intersection		NASAPkwy at Com				1. Nas	sa Pkwy	at Spa	ace Com	imerce \	vay - 2	035 A	- 1	ነሰ	
Project Descript	tion	4324.03 KSC Space	e Comn	nerce W	ay								n	1414*	חייז
Demand Inform	nation				EB			WE	3	1	NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				276	1010	0	76		81		26			
Signal Informa	tion				6	- 6							<u> </u>		
Cycle, s	65.9	Reference Phase	2		l è	≓⊨ [€]		2							Y
Offset, s	0	Reference Point	End	Green	00	50.0	5.4	0.0	0.0	0.0	_	1	2	3	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0		0.0		5	7 6	7	ξ
Time an Desculta				50		CDT			MDT	ND		NDT	0.01		ODT
Timer Results				EBI		EBT	WB		WBT	NBL		NBT	SBL	·	SBT
Assigned Phase	e			<u> </u>	_	6	5	_	2	<u> </u>		4		\rightarrow	
Case Number				<u> </u>	_	7.3	1.0		4.0			9.0		-+-	
Phase Duration						55.5	0.0	_	55.5	<u> </u>		10.4		\rightarrow	
	nge Period,(Y+R c), s Allow Headway(<i>MAH</i>), s					5.5	4.0	_	5.5	<u> </u>	_	5.0		\rightarrow	
		•			_	3.6 52.0	0.0	-	3.6 2.4	<u> </u>	+-	3.0 5.6		\rightarrow	
Queue Clearan Green Extensio						0.0	0.0	-	8.3			0.2		-+-	
		(ge), s					0.0	-						-+-	
Phase Call Prot						1.00 1.00	-	-	1.00 0.01			0.90 0.00		-+-	
Max Out Proba	onity					1.00			0.01			0.00		and a	
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2		7		14			
Adjusted Flow F	Rate (v), veh/h			325	1188	0	89		95		31			
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1781	1547	1527	1651		1711		1560			
Queue Service	Time (g	g s), s			1.6	50.0	0.0	0.4		3.6		1.2			1
Cycle Queue C	learance	e Time (g c), s			1.6	50.0	0.0	0.4		3.6		1.2			
Green Ratio (g	/C)				0.76	0.76	0.73	0.76		0.08		0.08			
Capacity (c), v					2702	1174	776	2506		140		128			
Volume-to-Capa		tio (X)			0.120	1.012	0.000	0.036	_	0.679		0.239			
		In (95 th percentile))		3.5	453.8	0	0.9		65.4		19.1			
		eh/In (95 th percenti			0.1	17.5	0.0	0.0		2.5		0.7			
		RQ) (95 th percent			0.00	1.08	0.00	0.00		0.11		0.00			
Uniform Delay ((d1), s	/veh			2.1	8.0	0.0	2.0		29.4		28.3			1
Incremental De	. ,				0.0	29.3	0.0	0.0		2.2		0.4			
Initial Queue De		•			0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (2.1	37.3	0.0	2.0		31.6		28.7			+-
Level of Service					A	F		A		С		С			<u> </u>
	. ,	/105		29.7	_	С	2.0	_	A	30.9		С	0.0		-
Approach Delay	y, s/veh						3.4					_	0		
Approach Delay						20									
Approach Delay Intersection Del						20									
	lay, s/ve				EB			WB			NB			SB	
Intersection De	lay, s/ve sults	h/LOS		2.2		B	0.6	_	A	2.9		С	2.9		С

		HCS	7 Sig	nalize	ain	tersec	tion F	kesu	ts Su	mmary	/				
General Inform	action							-	Interne	tion Inf	rmoti		1.1.1	オンや	150
	hation	170								tion Info		on	- í	4 24 4	* * <u>*</u>
Agency		LTG				0 10 100		_	Duration	-	0.25		1		
Analyst		SD		-		e 8/2/20			Area Typ	be	Other	r	\rightarrow	wļe	
Jurisdiction		NASA		Time F			PM Pk-l		PHF		0.89		4	W+E	€
Urban Street		NASA Pkwy				ar 2035			Analysis		1> 7:		2		T T
Intersection		NASA Pkwy at Con		File Na		1. Nas	sa Pkwy	at Sp	ace Corr	nmerce V	Vay - 2	035 P	-	11	
Project Descrip	tion	4324.03 KSC Spac	e Comn	nerce W	ay								h	4 1 4	ሻኑሰ
Demand Inform	nation				EB			W	3		NB			SE	3
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v					38	125	15	144	3	718		0			+
							i a								
Signal Informa	tion														
Cycle, s	82.2	Reference Phase	2	1	l è			2							
Offset, s	0	Reference Point	End	Green	12	36.4	30.0	0.0	0.0	0.0	_	1	2		4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0		0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0		0.0			↓ ⁶	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phase	e					6	5		2			4			
Case Number						7.3	1.0		4.0			9.0			
Phase Duration	1, S					41.9	5.3		47.2			35.0			
Change Period	, (Y+R	c), S				5.5	4.0		5.5			5.0			
Max Allow Hea	dway(/	ИАН), s				3.4	2.9		3.4			2.9			
Queue Clearan	ce Time	e (gs), s				6.5	2.4		35.9			32.0			
Green Extensio	n Time	(ge),s				7.7	0.0		5.8			0.0			
Phase Call Pro	bability					1.00	0.32	2	1.00			1.00			
Max Out Proba	bility					0.00	0.00	כ	0.24			1.00			
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	т	R	L	Т	R
Assigned Move	ment				6	16	5	2		7		14			
Adjusted Flow I	Rate (v), veh/h			43	140	17	1621		807		0			
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1766	1560	1781	1781		1781		1572			
Queue Service		· · ·			0.6	4.5	0.4	33.9		30.0		0.0			
Cycle Queue C	learanc	e Time (<i>g</i> c), s			0.6	4.5	0.4	33.9		30.0		0.0			
Green Ratio (g	/C)				0.44	0.44	0.48	0.51		0.37		0.38			
Capacity (c), v	/eh/h				1564	691	710	1806	;	650		599			
Volume-to-Cap	acity Ra	itio (X)			0.027	0.203	0.024	0.898	3	1.240		0.000			
Back of Queue	(Q), ft	/In (95 th percentile))		8.7	63.3	6.1	447.2	2	1218. 2		0			
Back of Queue	(Q), V	eh/In (95 th percent	ile)		0.3	2.5	0.2	17.6		48.0	_	0.0			
		RQ) (95 th percent	-		0.00		0.01	0.00	_	2.03		0.00			
Uniform Delay					12.9	14.0	11.1	18.3		26.1		0.0			
Incremental De					0.0	0.1	0.0	4.6		120.9		0.0			
Initial Queue De					0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (d), s/ve	eh			12.9	14.1	11.1	22.9		147.0		0.0			
Level of Service	e (LOS)				В	В	В	С		F					
Approach Delay	y, s/veh	/LOS		13.8	3	В	22.8	3	С	147.0)	F	0.0		
Intersection De	lay, s/ve	h / LOS				60).3						E		
Multimodal Re	sulte				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.3	_	В	0.7		Α	2.9		С	2.9	_	С
Bicycle LOS So				0.6	_	A	1.8		В	2.3	-	F	2.3		~
210,010 200 30				0.0		~~	1.0		5						

Pedestrian LOS	S Score /			2.4 0.7	_	B A	0.6	_	A A	2.8		C F	2.8	\rightarrow	С
Multimodal Re					EB			WB			NB			SB	
Intersection De	lay, s/ve	h / LOS				8	.9						4		
Approach Dela	y, s/veh	/LOS		7.4		Α	11.0)	В	12.3	3	В	0.0		
Level of Service	e (LOS)				Α	Α	С	Α				В			
Control Delay (d), s/ve	eh			7.3	7.6	23.0	2.9		0.0		12.3			
Initial Queue D		•			0.0	0.0	0.0	0.0		0.0		0.0			
Incremental De	. ,				0.3	0.6	9.5	0.0		0.0		0.7			1
Uniform Delay					7.0	7.0	13.6	2.9		0.0		11.6			
		RQ) (95 th percent			0.00	0.01	0.05	0.00		0.00		0.02			+
		h/ln (95 th percenti			0.4	0.5	0.8	0.0		0.0		0.4			-
		In (95 th percentile))		10	11.5	23.1	0.4		0		14.1			+
Volume-to-Cap		tio (X)			0.186	0.191	0.541	0.043		0.000		0.419			1
Capacity (c), v					1161	534	99	1870	_	264		148			+
Green Ratio (g		(g-n-			0.34	0.34	0.06	0.57		0.08		0.14			
Cycle Queue C					1.3	1.4	0.9	0.3	1	0.0		1.6			+
Queue Service					1.3	1.4	0.9	0.3		0.0		1.6			1
-		w Rate (s), veh/h/l	n		1724	1585	1640	1654		1620		1045			+
Adjusted Flow), veh/h			216	102	54	80		0		62			1
Assigned Move					2	12	1	6		7	1	14	-		+-^
Movement Gro Approach Move	•	uits		L	Т	R	L	T	R	L	Т	R	L	SB T	R
Movement Cr	up Bee	ulte			EB			WB			NB			SB	
Max Out Proba	bility					0.00	0.00)	0.00			0.00			
Phase Call Pro	bability					1.00	0.36	5	0.98			0.40			
Green Extensio	n Time	(ge), s				5.0	0.2		5.0			0.1			
Queue Clearan						3.4	2.9		2.3			3.6			
Max Allow Hea	dway (<i>N</i>	//AH), s				6.9	5.9		6.9			3.2			
Change Period	, (Y+R a	e), S				5.5	5.0		5.5			5.0			
Phase Duratior	1, S					15.5	6.8		22.3			7.4			
Case Number						7.3	2.0		4.0			9.0			
Assigned Phas	е					2	1		6			4			
Timer Results				EBL	-	EBT	WB		WBT	NBL	-	NBT	SBL	-	SBT
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	4.5	1.0	0.0		0.0		5	6	7	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		10.0 4.5	2.4	0.0		0.0					
Offset, s	0	Reference Point	End		7	rš.		Ű					2	3	
Cycle, s	29.7	Reference Phase	2	1	2	=∟ ←		_					<u> </u>		5
Signal Informa	ation														
Demand (v), v	/eh/h				205	97	51	76	5	0		59			
Approach Move				L	Т	R	L .	Т	R	L	Т	R	L.	Т	R
Demand Inform					EB			W			NB			SB	_
···					,										
Project Descrip		4324.03 KSC Space		nerce W	ay	-							h	4141	7 4 7
Intersection		NASA Pkwy at Visit	or C	File Na			a Pkwy		itor Cen					55	~ ~
Urban Street		NASA Pkwy			is Year	_			Analysis	Period	1> 7:0	00	4 1		*
Jurisdiction		NASA		Time F			AM Pk-l		PHF		0.95		$\rightarrow \rightarrow $	wŤe	:
Analyst		SD		Analys	is Date	8/2/20	17	_	Area Typ	-	Other		ے بے		
Agency		LTG						_	Duration		0.25	/11			
General Inform									Intoreog	tion Inf	ormatic	n n		4444	AL 197 14

Copyright © 2017 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	a int	ersec	tion F	kesu	Its Su	mmar	У				
General Inform	nation								Intersed	tion Inf	ormatio	n		444	ւ է եր կլ
	ation	LTG							Duration		0.25		-		
Agency				Amelia	in Data		47			-	-				
Analyst		SD		-		8/2/20		_	Area Ty	be	Other	-	→ <u>→</u>		. :
Jurisdiction		NASA		Time F		_	PM Pk-l	Hr	PHF	<u> </u>	0.95		1		•
Urban Street		NASA Pkwy	-			2035			Analysis		1> 7:		1		
Intersection		NASA Pkwy at Visit		File Na		2. Nas	sa Pkwy	at Vis	sitor Cen	ter Com	plex - 2	035 P		11	٢
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	ay								1	1414	Y F F
Demand Inform	nation				EB		1	W	В	1.1	NB			SE	В
Approach Move	ement			L	Т	R	ΤL	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h				38	0	69	139	99	59		61		\square	
Signal Informa	ation				6							_			
Cycle, s	57.5	Reference Phase	2		Ŭ Ž	∣ ≓`	2	2				`⊷	₹.		J Y
Offset, s	0	Reference Point	End	Green	34	33.4	5.2	0.0	0.0	0.0	_	•	¥ 2		3
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	4.0	0.0		0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0		0.0		5	6		7
					-										
Timer Results				EBL		EBT	WB		WBT	NBI	-	NBT	SBI		SBT
Assigned Phase	e				_	2	1	-	6		_	4		\rightarrow	
Case Number						7.3	2.0		4.0			9.0		-+	
Phase Duration		```				38.9	8.4	_	47.3			10.2		\rightarrow	
Change Period Max Allow Head						5.5 6.8	5.0 5.9	_	5.5 6.8			5.0 3.1		-+	
Queue Clearan					-	2.3	4.5	_	14.6	-	-	5.2		\rightarrow	
Green Extensio				_		2.5 31.1	0.4	_	26.3	-		0.2		-+	
Phase Call Pro		(ge), s			_	1.00	0.69	_	1.00			0.2		\rightarrow	
Max Out Proba						0.37	0.00	_	0.48		_	0.00		-	
Max Out 1100a	Sinty					0.01	0.00		0.40			0.00		ani:	
Movement Gro	oup Res	ults			EB			WB			NB			SE	3
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement				2	12	1	6		7		14			
Adjusted Flow	Rate (v), veh/h			40	0	73	1473	3	62		64			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1724	1585	1640	1654	1	1620		1045			
Queue Service	Time (g	g s), s			0.3	0.0	2.5	12.6	;	1.0		3.2			
Cycle Queue C	learanc	e Time (g c), s			0.3	0.0	2.5	12.6		1.0		3.2			
Green Ratio (g	/C)				0.58	0.58	0.06	0.73		0.09		0.15			
Capacity (c), v	/eh/h				2001	920	98	2404	1	293		157			
Volume-to-Cap	acity Ra	itio (X)			0.020	0.000	0.741	0.61	2	0.212		0.409			
Back of Queue	(Q), ft	/In (95 th percentile))		2.8	0	69	39.2	2	16.4		41.6			
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		0.1	0.0	2.5	1.4		0.6		1.2			
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00	0.00	0.14	0.00		0.00		0.06			
Uniform Delay	(d1), s	/veh			5.1	0.0	26.6	3.9		24.3		22.1			
Incremental De	l ay (d 2), s/veh			0.0	0.0	20.6	0.9		0.1		0.6			
Initial Queue De	elay (<i>d</i>	3), s/veh			0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (d), s/ve	eh			5.1	0.0	47.2	4.8		24.4		22.8			
Level of Service	. ,				Α		D	A		С		С			
Approach Delay				5.1		Α	6.8		Α	23.6	5	С	0.0		
Intersection De	lay, s/ve	h / LOS				8	.0						A		
M								14.00							
Multimodal Re		(1.00			EB	P		WB			NB	0		SE	
Pedestrian LOS				2.4	_	B	0.6	_	A	2.8		C	2.8	\rightarrow	С
Bicycle LOS So	ore / LC	15		0.5		Α	1.8		В			F			

Copyright © 2017 University of Florida, All Rights Reserved.

Offset, s 0 Reference Point End Green 19.2 20.0 2.5 0.0			HUS	7 Sig	nalize	ain	tersec		esi	lits :	Sun	nmar	У				
Decretation monimulation Instruction monimulation Decretation monimulation <thdecretation monimulation<="" th=""> <thdecretat< td=""><td>Conorol Inform</td><td>action</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Inter</td><td></td><td>ion Inf</td><td>ormatic</td><td></td><td></td><td>l et de t</td><td>la L</td></thdecretat<></thdecretation>	Conorol Inform	action								Inter		ion Inf	ormatic			l et de t	la L
Analysis DD Analysis Date Analysis Date Analysis Date Analysis Date Analysis Date Other Distriction NRS Time Period 2035 Analysis Period 1>7:00 Linitidan Street Kennedy Pkwy Analysis Year 2035 Analysis Period 1>7:00 I>7:00 I<7:00		ation	170							-				on	- 1		
Jurisdiction NAA Time Period 2035 APR-Hr PHF D,83 Inbars Street Kennedy Pkwy Analysis Year 2035 Analysis Period 1> 7:00 Inbrarsection Space Commerce Way File Name 3. Space Commerce Way File Name 7. Time Period 4544 302 2. Time Period 2. Time Particitation 2. Time Particitatitation 2. Time Particitatitatitatitation					Analys	in Dr.		47					-				1. 2
Utban Street Kennedy Pkwy Analysis Year 2035 Analysis Period >> 7.0 Intersection Space Commerce Way File Name 3. Space Commerce Way at Kennedy Pkwy - 202 Image: Commerce Way Demand Information L T R <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>la.</td> <td></td> <td></td> <td>e</td> <td>_</td> <td></td> <td></td> <td>, te</td> <td>2</td>					-				la.			e	_			, te	2
Intersection Space Commerce Way File Name 3. Space Commerce Way at Kennedy Pkwy - 203 Image Commerce Way Demand Information EB WB NB SB Operade Movement L T R S R R R R R R R R R R R R R R R R R <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AM PK-I</td> <td>۹r</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0 0</td> <td>*</td>								AM PK-I	۹r				-			0 0	*
Project Description 4324.03 KSC Space Commerce Way NB NB SB Demand Information L T R <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>7</td><td></td><td>5 6</td></td<>											•				7		5 6
Demand Information L T R				-			3. Spa	ace Con	nmer	ce Wa	y at	Kenned	ly Pkwy	- 203	- 4	<u> 1 † †</u>	
Approach Movement L T R	Project Descrip	tion	4324.03 KSC Spac	e Comn	nerce W	/ay										14144	1 A
Approach Movement L T R	Demand Inform	nation				FB			M	/B			NB			SB	
Demand (v), veh/h 0 49 454 302 27 1 Signal Information Cycle, s 65.2 Reference Point Edit F				_	L	-		Ťτ.	-		R	İ.Γ.		R	L		R
Cycle, s 56.2 Reference Phase 2 Offset, s 0 Reference Point End Orem 19.2 20.0 0.0 0.0 0.0 Force Mode Fixed Simuit. Gap EW On Red 1.0 1.5 0.0 0.0 0.0 0.0 Force Mode Fixed Simuit. Gap EW On Red 1.0 1.5 0.0 0.					-	-		<u> </u>	+-				-		+		-
Cycle.s 56.2 Reference Phase 2 Offset.s 0 Reference Point End Orem 1.92 20.0 2.5 0.0 0.0 0.0 Force Mode Fixed Simult. Gap EW On Red 1.0 1.5 0.0 0.0 0.0 Force Mode Fixed Simult. Gap EW On Red 1.0 1.5 0.0 0.0 0.0 Timer Results EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase 4 1.0 1.5 0.0 0.0 0.0 Case Number 12.0 2.0 4.0 7.3 2.5 5.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																	
Cycle.s 56.2 Reference Phase 2 Offsat, s 0 Reference Phase End Uncoordinated Yes Simuit. Gap E/NI On Red 1.0 0.0 0.0 Force Mode Fixed Simuit. Gap E/NI On Red 1.0 1.5 0.0 0.0 0.0 Timer Results EBL EBL EBL WBT NBL NBT SBL SBT Case Number 12.0 I 2.0 4.0 7.3 SBT Case Number 12.0 I 2.0 4.0 5.5 5.5 Chase Duration, s 5.0 I 2.0 4.0 5.5 5.5 Chase Duration, s I I I 1.60 1.00 1.00 1.00 Max Allow Headway (MAH) s I 3.2 I I.00 1.00 I.00 <	Signal Informa	tion					2		T								
Offset D Reference Poil End Green 19.2 20.0 2.5 0.0 0.0 0.0 0.0 Green Mode Fixed Simuit. Gap E/W On Yeal Simuit. Gap E/W On Yeal Simuit. Gap I/W On Yeal NBL NBL NBL NBL SET Assigned Phase EEL EEL EEL VEL WBL NBL NBL NBL SET Change Period. Y+R c). s S	Cycle, s	56.2	Reference Phase	2	1	54		L⇒.						<u>רו</u> א		-	→
Uncoordinated Yes Simuit. Gap EW On Yes Yes <th< td=""><td>Offset, s</td><td>0</td><td>Reference Point</td><td>End</td><td>Croon</td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td>_</td><td>Т</td><td>2</td><td>3</td><td>Y 4</td></th<>	Offset, s	0	Reference Point	End	Croon						0.0	0.0	_	Т	2	3	Y 4
Force Mode Fixed Simuit. Gap N/S On Red 1.0 1.5 0.0 0.0 s 1 s 1 s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 2 2 1 1 6 2	Uncoordinated	Yes	Simult. Gap E/W	On									_		+		
Assigned Phase 4 1 6 2 Case Number 12.0 2.0 4.0 7.3 Phase Duration, s 7.5 23.2 48.7 25.5 Change Period, (Y+R c), s 5.0 4.0 5.5 5.5 Max Allow Headway (MAH), s 3.2 2.9 2.9 2.9 2.9 Queue Clearance Time (g e), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 Max Out Probability 0.00 0.1 0.7 0.8 0.8 Approach Movement L T R L T R L T R Adjusted Flow Rate (v), veh/n 59 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/n/n 158 166 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 166 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 166 1.5 0.4 0.0 Cassined Movement 4 14	Force Mode	Fixed		On										5	6	7	8
Assigned Phase 4 1 6 2 Case Number 12.0 2.0 4.0 7.3 Phase Duration, s 7.5 23.2 48.7 25.5 Change Period, (Y+R c), s 5.0 4.0 5.5 5.5 Max Allow Headway (MAH), s 3.2 2.9 2.9 2.9 2.9 Queue Clearance Time (g e), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 Max Out Probability 0.00 0.1 0.7 0.8 0.8 Approach Movement L T R L T R L T R Adjusted Flow Rate (v), veh/n 59 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/n/n 158 166 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 166 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 166 1.5 0.4 0.0 Cassined Movement 4 14																	
Case Number 12.0 2.0 4.0 7.3 Phase Duration, s 7.5 23.2 48.7 25.5 Change Period, (Y+Rc), s 5.0 4.0 5.5 5.5 Max Allow Headway (MAH), s 3.2 2.9 2.9 2.9 Queue Clearance Time (g ∘), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 0.00 Max Out Probability 0.60 1.00 1.00 0.00 Movement Group Results EB WB NB SB Adjusted Staturation Flow Rate (s), veh/h 59 547 364 33 1 Adjusted Staturation Flow Rate (s), veh/h/in 1585 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 16.6 1.5 0.4 0.0 Queue Service Time (g c), s 2.1 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 16.6 1.5 0.4 0.0 Green Ratio (g ^C) 0.04 0.34 0.7 0.36 0	Timer Results				EBI	-	EBT	WB	L	WB	Т	NBI	-	NBT	SB	L	SBT
Phase Duration, s 7.5 23.2 48.7 25.5 Change Period, (YRc), s 5.0 4.0 5.5 5.5 Max Allow Headway (MAH), s 3.2 2.9 2.9 2.9 Queue Clearance Time (g e), s 4.1 18.6 3.5 2.4 Green Extension Time (g e), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 0.00 Max Autow Probability 0.60 1.00 1.00 1.00 0.00 0.00 Movement Group Results EB WB NB SB Aginged Movement 4 1 6 2 12 Adjusted Flow Rate (v), veh/h 59 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/h/ln 1585 1766 15.5 0.4 0.0 Green Ratio (g'C) 0.04 0.04 0.34 0.77 0.36 0.36 Queue Clearance Time (g s), s 2.1 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g s), s 2.1 16.6 <td< td=""><td>Assigned Phase</td><td>е</td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>6</td><td></td><td></td><td>2</td></td<>	Assigned Phase	е					4					1		6			2
Change Period, (Y+R c), s 5.0 4.0 5.5 5.5 Max Allow Headway, (MAH), s 3.2 2.9 2.9 2.9 Queue Clearance Time (g s), s 0.1 0.77 0.8 0.8 Green Extension Time (g s), s 0.1 0.77 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 0.00 Max Alov Headway, (MAH), s 0.60 1.00 1.00 0.00 0.12 0.00 0.00 Phase Call Probability 0.60 0.00 0.12 0.00 0.00 0.00 0.00 0.00 Movement Group Results EB WB NB SB 7 R L T R Adjusted Flow Rate (v), veh/h 1585 1767 1781 1668 1585 0.4 0.0 Green Ratio (g c), s 2.1 166 1.5 0.4 0.0 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <	Case Number						12.0					2.0		4.0			7.3
Max Allow Headway (<i>MAH</i>), s 3.2 2.9 2.9 2.9 Queue Clearance Time (g s), s 0.1 0.7 0.8 0.8 Green Extension Time (g s), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 Max Out Probability 0.00 0.12 0.00 0.00 Movement Group Results EB WB NB SB Approach Movement L T R L C 12 L L L	Phase Duration	1, S					7.5					23.2	2 4	48.7			25.5
Queue Clearance Time (g s), s 4.1 18.6 3.5 2.4 Green Extension Time (g s), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 0.00 Max Out Probability 0.60 0.1 0.00 0.100 0.00 0.00 Movement Group Results EB VB VB VB SB 0.00	Change Period	, (Y+R	c), S				5.0					4.0		5.5			5.5
Green Extension Time (g e), s 0.1 0.7 0.8 0.8 Phase Call Probability 0.60 1.00 1.00 1.00 1.00 Max Out Probability 0.00 0.12 0.00 0.12 0.00 0.00 Movement Group Results EB WB R L T R L C	Max Allow Head	dway (/	MAH), s				3.2		Ť			2.9		2.9			2.9
Phase Call Probability 0.60 I.00 1.00 1.00 1.00 Max Out Probability 0.00 0.12 0.00 0.01 0.00 0.00 Movement Group Results EB VB R L T R L L I I	Queue Clearan	ce Time	e (g s), s				4.1					18.6	;	3.5			2.4
Max Out Probability 0.00 0.12 0.00 0.00 Movement Group Results L T R R L T R R R R R R R R R R							0.1		\neg			0.7		0.8			0.8
Max Out Probability 0.00 0.12 0.00 0.00 Movement Group Results L T R R L T R R R R R R R R R R							0.60					1.00)	1.00			1.00
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R Assigned Movement 4 14 1 6 1 6 1 2 12 Adjusted Flow Rate (v), veh/h 1585 2.1 16.6 1.5 0.4 0.0 166.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 1 1 16.6 1.5 0.4 0.0 Capacity (c), veh/h 7.1 0.04 1 10.34 0.77 0.36 0.36 Capacity (c), veh/h 0.830 0.830 1 0.904 0.133 0.027 0.00 Back of Queue (Q), veh/n (95 th percentile) 3.6 1.5 10.9 0.0 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>0.00</td>							0.00							0.00			0.00
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R Assigned Movement 4 14 1 6 1 6 1 2 12 Adjusted Flow Rate (v), veh/h 1585 2.1 16.6 1.5 0.4 0.0 166.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 1 1 16.6 1.5 0.4 0.0 Capacity (c), veh/h 7.1 0.04 1 10.34 0.77 0.36 0.36 Capacity (c), veh/h 0.830 0.830 1 0.904 0.133 0.027 0.00 Back of Queue (Q), veh/n (95 th percentile) 3.6 1.5 10.9 0.0 0.0 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>					_										_		
Assigned Movement 4 14 4 14 1 6 2 12 Adjusted Flow Rate (v), veh/h 59 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/h/ln 1585 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/h/ln 1585 1767 1781 1668 1585 Queue Service Time (g c), s 2.1 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 16.6 1.5 0.4 0.0 Green Ratio (g/C) 0.04 0.04 0.34 0.77 0.36 0.36 Capacity (c), veh/h 71 605 2737 1184 563 Volume-to-Capacity Ratio (X) 0.830 278.1 0.1 4.9 0.3 Back of Queue (Q), thin (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), tweh/n (95 th percentile) 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			sults			_				_	_				<u> </u>		
Adjusted Flow Rate (v), veh/h 59 59 547 364 33 1 Adjusted Saturation Flow Rate (s), veh/h/ln 1585 1767 1781 1668 1585 Queue Service Time (g s), s 2.1 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 16.6 1.5 0.4 0.0 Green Ratio (g/C) 0.04 0.04 0.34 0.77 0.36 0.36 Capacity (c), veh/h 71 605 2737 1184 563 Volume-to-Capacity Ratio (X) 0.830 0.904 0.133 0.027 0.002 Back of Queue (Q), trl/n (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 38.6 278.1 0.1 4.9 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.0 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00					L		_	<u> </u>			R			R	L.	-	
Adjusted Saturation Flow Rate (s), veh/h/ln 1585 Image: Constraint or the co			· · · ·			_	14	_	_	_	_	-	-			_	
Queue Service Time (g s), s 2.1 16.6 1.5 0.4 0.0 Cycle Queue Clearance Time (g c), s 2.1 16.6 1.5 0.4 0.0 Green Ratio (g/C) 0.04 0.04 0.34 0.77 0.36 0.36 Capacity (c), veh/h 71 605 2737 1184 563 Volume-to-Capacity Ratio (X) 0.830 0.904 0.133 0.027 0.002 Back of Queue (Q), ft/ln (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 1.5 10.9 0.0 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td>										_	_						· ·
Cycle Queue Clearance Time (g c), s 2.1 1 16.6 1.5 0.4 0.4 Green Ratio (g/C) 0.04 0.04 0.34 0.77 0.36 0.36 Capacity (c), veh/h 71 0.830 0.904 0.133 0.027 0.002 Back of Queue (Q), ft/ln (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 1.5 278.1 0.1 4.9 0.3 Queue Storage Ratio (RQ) (95 th percentile) 1.5 0.00 0.56 0.00	-		· · ·	n			5			_	_						
Green Ratio (g/C) 0.04 0.04 0 0.34 0.77 0.36 0.36 0.36 Capacity (c), veh/h 71 0.830 0 0 605 2737 1184 563 Volume-to-Capacity Ratio (X) 0.830 0 2 0.904 0.133 0.027 0.002 Back of Queue (Q), th/ln (95 th percentile) 38.6 0 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 1.5 278.1 0.1 4.9 0.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0 0.00 0.0 0.00										_	_						
Capacity (c), veh/n 71 605 2737 1184 563 Volume-to-Capacity Ratio (X) 0.830 0.830 0.904 0.133 0.027 0.002 Back of Queue (Q), ft/ln (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 1.5 10.9 0.0 0.0 0.22 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.56 0.00			e Time (<i>g</i> c), s			_				_	_						
Volume-to-Capacity Ratio (X) 0.830 0.830 0.904 0.133 0.027 0.002 Back of Queue (Q), ft/ln (95 th percentile) 38.6 278.1 0.1 4.9 0.3 Back of Queue (Q), veh/ln (95 th percentile) 1.5 10.9 0.0 0.00 0.00 0.56 0.00		· ·								_							
Back of Queue (Q), ft/ln (95 th percentile) 38.6 Image: Constraint of the co	1 2 7 7		0			_				_						_	_
Back of Queue (Q), veh/in (95 th percentile) 1.5 10.9 0.0 0.2 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.56 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 26.7 17.6 1.7 11.8 11.7 Incremental Delay (d 2), s/veh 8.9 10.0 0.0		-								_							
Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.56 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 26.7 0 17.6 1.7 11.8 11.7 Incremental Delay (d 2), s/veh 8.9 0.0 10.0 0.0				,		_				_			_				
Uniform Delay (d 1), s/veh 26.7 17.6 1.7 11.8 11.7 Incremental Delay (d 2), s/veh 8.9 10.0 0.0 0.0 0.0 0.0 Initial Queue Delay (d 3), s/veh 0.0										_							
Incremental Delay (d 2), s/veh 8.9 10.0 0.0				tile)											_		
Initial Queue Delay (d 3), s/vehImage: d 3 (d 3), s/vehImad	-	. ,								_					_		
Control Delay (d), s/veh35.635.6aaa27.61.7a11.811.7Level of Service (LOS)DDCABBApproach Delay, s/veh / LOS 35.6 D 0.0 17.3B 11.8 BIntersection Delay, s/veh / LOS 35.6 D 0.0 17.3B 11.8 BIntersection Delay, s/veh / LOS 28.6 C 2.8 C 1.8 B 2.1 BMultimodal Results 2.8 C 2.8 C 1.8 B 2.1 B												_					
Level of Service (LOS) D D O C A B B Approach Delay, s/veh / LOS 35.6 D 0.0 17.3 B 11.8 B Intersection Delay, s/veh / LOS 18.2 Intersection Delay, s/veh / LOS Intersection Delay, s/veh /										_						_	
Approach Delay, s/veh / LOS 35.6 D 0.0 17.3 B 11.8 B Intersection Delay, s/veh / LOS 18.2 18.2 B<													_				
Intersection Delay, s/veh / LOS 18.2 B Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.8 C 2.8 C 1.8 B 2.1 B						_							_				_
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.8 C 2.8 C 1.8 B 2.1 B		-			35.6	6	_					17.3	3			3	В
Pedestrian LOS Score / LOS 2.8 C 2.8 C 1.8 B 2.1 B	Intersection De	lay, s/ve	eh / LOS				18	3.2							В		
Pedestrian LOS Score / LOS 2.8 C 2.8 C 1.8 B 2.1 B																	
			(1.00			_	-							-	-	_	_
BICYCIE LOS SCORE / LOS 0.5 A 0.5 A						_		2.8	-	С			_		_	_	-
	BICYCIE LOS SC	ore / LC	13		0.6		A					1.2		A	0.5		A

		HCS	7 Sig	nalize		tersec		esi	lits Si	ummar	У				
General Inform	nation								Interse	ection In	formati	on		14241	μų
	ation	LTG							Duratio		0.25	511		711	
Agency		SD		Amelia	in Det	- 0/0/00	47			-	O.25 Other	-	-		
Analyst Jurisdiction		NASA		Time F		e 8/2/20	PM Pk-I	J.e.	Area T PHF	уре	0.77	ſ	→ 	wļe	2
								ור		. Devie d	-	00			-
Urban Street		Kennedy Pkwy				ır 2035				is Period			Ě.		
Intersection		Space Commerce V	-	File Na		3. Spa	ace Con	nmer	ce Way	at Kenne	dy Pkwy	/ - 203	- 8	<u>111</u>	
Project Descrip	tion	4324.03 KSC Space	e Comn	nerce W	ay									ነላ ተቀጥ	8 N
Demand Inform	nation				EB			N	/B		NB			SB	
Approach Move	ement			L	Т	R	1	T	T F	2 L	Т	R	L	Т	R
Demand (v), v	/eh/h				0	319				104	29		1	1017	8
, í														بعط	
Signal Informa	tion					21									
Cycle, s	78.1	Reference Phase	2		51	Υ	R). *₁	•		\rightarrow
Offset, s	0	Reference Point	End	Green	7.6	33.4	22.6	0.	0 0.	0.0		• ·	2	3	3 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.					1		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.	00.	0.0		5	6	7	8
Times Descrift						COT	14/15					NET	0.5		OPT
Timer Results	-			EBI		EBT	WB	-	WBT	NB		NBT	SB		SBT
Assigned Phase	e				\rightarrow	4		\rightarrow		1		6			2
Case Number						12.0	<u> </u>	\rightarrow		2.0		4.0		\rightarrow	7.3
Phase Duration) -			_	27.6		\rightarrow		11.		50.5		\rightarrow	38.9
Change Period					-	5.0	<u> </u>	\rightarrow		4.0		5.5		\rightarrow	5.5
Max Allow Head Queue Clearan	• •	· ·				3.2 21.7		\rightarrow		2.9		3.3 2.4		<u> </u>	3.3 28.5
Green Extensio					-	0.7		\rightarrow		0.2		2.4 5.0	-	_	20.5 4.7
Phase Call Pro		(ge),s			-	1.00	<u> </u>	\rightarrow		0.9	_	1.00			1.00
Max Out Proba					-	0.00	-	-		0.9		0.00		_	0.02
Max Out Floba	Dinty					0.00				0.0		0.00			0.02
Movement Gro	oup Res	sults			EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				4	14				1	6			2	12
Adjusted Flow I	Rate (v), veh/h			414					135	38			1321	10
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1585	i				1781	1781			1781	1585
Queue Service	Time (g	gs), s			19.7					5.8	0.4			26.5	0.3
Cycle Queue C	learanc	e Time (<i>g</i> c), s			19.7					5.8	0.4			26.5	0.3
Green Ratio (g	/C)				0.29					0.10	0.58			0.43	0.43
Capacity (c), v					460					174	2052			1522	678
Volume-to-Capa					0.901					0.776				0.868	
		In (95 th percentile)			300.5	-				111	4.6			366	4.1
		eh/In (95 th percenti			11.8					4.4	0.2			14.4	0.2
-		RQ) (95 th percent	tile)		0.00	-				0.22	0.00			0.00	0.01
Uniform Delay					26.8				_	34.6	7.1			20.4	12.9
Incremental De		,			7.3	-				2.8	0.0			2.2	0.0
Initial Queue De					0.0	-				0.0	0.0			0.0	0.0
Control Delay (34.1					37.4	7.1			22.7	13.0
Level of Service				24	C	<u> </u>		L		D 20	A				В
Approach Delay	-			34.1		C	0.0			30.	8	С	22.6	>	С
Intersection De	iay, s/ve	en / LOS				2	5.8						С		
Multimodal Re	sulte				EB			W	B		NB			SB	
Pedestrian LOS		/105		2.9		С	2.9		ь С	1.9	_	В	2.1		В
Bicycle LOS Sc				1.2		A	2.5	\rightarrow	<u> </u>	0.6		A	1.6	_	B
Dicycle LOG St		~		1.2		Λ				0.0	,	A	1.0		0

		1100	r olg		or inte	01000				mai	,				
General Inform	nation								Intersec	tion Inf	ormatio	on	1.1	1474t	
Agency		LTG							Duration	h	0.25			774	
Analyst		CAM		Analys	sis Date	e Sep 1	2017	_	Area Typ		Other				
Jurisdiction		NASA		Time F			AM Pk-ł	_	PHF	-	0.86		⇒*	WE	
Urban Street		Space Commerce	Nav		sis Year	-			Analysis	Period	1> 7:	00	4 4		× •
Intersection		Space Commerce	-	File Na			ace Con		e Way at						-
Project Descrip	tion	4324.03 KSC Spac	•			1. 00			e may at	Tiopos		and an o	- 8	1 14147	* *
Troject Descrip		1024.00 100 0000	e oomin		ay										
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			640	359	11	6	61	229	4	0	2	12	0	42
				_		_									
Signal Informa					7		N A	44	5						Υ
Cycle, s	69.9	Reference Phase	2		F [*] ^e	R	R	7	17				₹ 2	3	ĸ↓¤
Offset, s	0	Reference Point	End	Green	0.6	9.7	15.0	4.2		0.0			K		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		5.1	5.1	3.4		0.0		×			~ *† ~
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.5	2.5	2.5	5.0	5.0	0.0		5	6	7	8
Timer Results				EBI		EBT	WB	L	WBT	NB	L	NBT	SB	<u> </u>	SBT
Assigned Phase	e			5	_	2	1	_	6			8			4
Case Number				2.0		3.0	2.0		3.0			12.0			11.0
Phase Duration				25.5	_	39.9	8.2		22.6		_	9.2			12.6
Change Period				7.6	_	7.6	7.6		7.6			8.4		\rightarrow	8.4
Max Allow Head				3.0	_	3.0	3.0		3.0		_	3.1		_	3.2
Queue Clearan				16.3		13.8	2.3		13.1	_	_	2.3	_	_	3.2
Green Extensio		(ge), s		1.6	_	1.4	0.0	_	1.4		_	0.0			0.1
Phase Call Pro				1.00		1.00	0.13	_	1.00			0.13			0.70
Max Out Proba	bility			0.00)	0.00	0.00	ונ	0.00			0.00			0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		744	417	13	7	71	266		7			14	49
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1730	1752	1610	1781	1856	6 1585		1738			1810	1403
Queue Service	Time (g	g s), s		14.3	11.8	0.3	0.3	2.2	11.1		0.3			0.5	1.2
Cycle Queue C	learanc	e Time (<i>g</i>		14.3	11.8	0.3	0.3	2.2	11.1		0.3			0.5	1.2
Green Ratio (g	/C)			0.26	0.46	0.46	0.01	0.21	0.21		0.01			0.06	0.06
Capacity (c), v				887	809	744	16	398	-		19			110	170
Volume-to-Capa				0.839			0.430	0.17			0.367			0.127	0.287
		/In (95 th percentile)		229.3		4	6.4	40.1			5.9			9.4	16.8
		eh/In (95 th percent		9.0	6.9	0.2	0.3	1.6	7.0		0.2			0.4	0.7
		RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.00			0.00			0.00	0.00
Uniform Delay				24.6	13.3	10.2	34.5	22.4	_		34.3			31.1	31.4
Incremental De	• •	,		0.9	0.2	0.0	6.5	0.1	1.5		4.3			0.2	0.3
Initial Queue De		•		0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Control Delay (25.5	13.5	10.2	41.0	22.5	_	_	38.7			31.3	31.7
Level of Service				С	В	В	D	c	C		D			С	C
Approach Delay				21.1	1	С	26.7	7	С	38.	7	D	31.6	5	С
Intersection De	lay, s/ve	eh / LOS				22	2.8						С	_	_
								14/2			NID			0.0	
Multimodal Re		(1.00		0.1	EB			WB		0.5	NB	P		SB	0
Pedestrian LOS				2.1	_	B	2.8	_	C	2.5	_	B	3.0	_	C
Bicycle LOS Sc	ore / LC	13		2.4		В	1.1		A	0.5		A	0.6		Α

	1100	r eig						to Our	innar	,				
General Information							1	Intersect	tion Inf	ormatio	on	1	14741.	be l <u>e</u>
Agency	LTG							Duration,	h	0.25			774	
Analyst	CAM		Analys	sis Date	8/2/20)17	_	Area Typ		Other				
Jurisdiction	NASA		Time I			PM Pk-I		PHF	-	0.77		- → - →	wļe	
Urban Street	Space Commerce	Nav	-	sis Year	-		_	Analysis	Period	1> 7:0	00	4 P		· · ·
Intersection	Space Commerce	-	File N			ace Con		Way at					*	-
Project Description	4324.03 KSC Space	•			ч. орс			, may at	riopos		and the second	- 5	1414Y1	14
r roject Description	1024.00 1100 Opuc	e oomin		lay										
Demand Information				EB			WB	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h			57	76	7	4	313	3 57	9	0	5	131	0	396
			_											
Signal Information				7		N A	924	2						\mathbf{A}
Cycle, s 71.7	Reference Phase	2		P. 6	R	R	5	17				₹,	3	ĸţı
Offset, s 0	Reference Point	End	Green	0.5	3.4	18.0	16.0		0.0	_		<u> </u>		
Uncoordinated Yes	Simult. Gap E/W	On	Yellow		0.0	5.1	3.4	3.4	0.0		↗			- x1/-
Force Mode Fixed	Simult. Gap N/S	On	Red	2.5	0.0	2.5	5.0	5.0	0.0		5	6	7	8
Timer Results			EB	L	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phase			5		2	1		6			8		\rightarrow	4
Case Number			2.0		3.0	2.0		3.0			12.0			11.0
Phase Duration, s			11.5		29.0	8.1	_	25.6			10.2			24.4
Change Period, (Y+R			7.6		7.6	7.6	_	7.6			8.4		\rightarrow	8.4
Max Allow Headway (•		3.0		3.0	3.0		3.0			3.0		\rightarrow	3.1
Queue Clearance Time			3.5		4.8	2.2		16.9			2.7			14.5
Green Extension Time			0.1		1.0	0.0	_	1.0			0.0			1.5
Phase Call Probability			0.77	7	1.00	0.10	ו	1.00			0.30			1.00
Max Out Probability			0.00	וכ	0.00	0.00	ו	0.00			0.00			0.00
Movement Group Res	sults			EB			WB			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v	/), veh/h		74	99	9	5	406	74		18			170	514
Adjusted Saturation Fl	ow Rate (s), veh/h/l	n	1730	1870	1547	1781	1870	1585		1733			1810	1403
Queue Service Time (g s), s		1.5	2.8	0.3	0.2	14.9	2.6		0.7			5.8	12.5
Cycle Queue Clearand	• /		1.5	2.8	0.3	0.2	14.9	2.6		0.7			5.8	12.5
Green Ratio (g/C)			0.05	0.30	0.30	0.01	0.25	0.25		0.03			0.22	0.22
Capacity (c), veh/h			187	557	461	12	470	398		44			405	628
Volume-to-Capacity Ra	atio(X)		0.397	0.177	0.020	0.422	0.866	0.186		0.410			0.420	0.819
Back of Queue (Q), fl	/In (95 th percentile)	27.1	50.2	4.5	5.2	259.3	40.8		14			98.1	169.1
Back of Queue (Q), v	eh/In (95 th percent	ile)	1.1	2.0	0.2	0.2	10.2	1.6		0.6			3.9	6.7
Queue Storage Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.01	0.01	0.00	0.00		0.00			0.00	0.00
Uniform Delay (d 1), s	/veh		32.8	18.7	17.8	35.5	25.7	21.1		34.4			23.9	26.5
Incremental Delay (d	2), s/veh		0.5	0.1	0.0	8.3	1.9	0.1		2.2			0.3	1.0
Initial Queue Delay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
	eh		33.3	18.7	17.8	43.8	27.7	21.2		36.7			24.1	27.5
Control Delay (d), s/v			С	В	В	D	С	С		D			С	С
Control Delay (d), s/v Level of Service (LOS)			04.0	8	С	26.8	3	С	36.7	7	D	26.7	7	С
			24.6		_									
Level of Service (LOS)	/LOS		24.6			6.6						С		
Level of Service (LOS) Approach Delay, s/veh	/LOS		24.0			6.6						c		
Level of Service (LOS) Approach Delay, s/veh	/LOS		24.0	EB		5.6	WB			NB		c	SB	
Level of Service (LOS) Approach Delay, s/veh Intersection Delay, s/veh	/ LOS eh / LOS		24.0	EB		5.6 2.8	_	С	2.5	_	В	C 3.0		С

Copyright © 2017 University of Florida, All Rights Reserved.

APPENDIX J

Signalized Intersection HCS Worksheets – 2035 Design Year Conditions – Improved

		HCS	7 Sig	nalize	aint	ersec		esu	ts Sur	mmar	y				
General Inform	nation								Intersec	tion Inf	ormatio	on.		비식가다	154
	ation	LTG						_	Duration		0.25	511	- 1		
Agency				Amelia	in Data		47	_							
Analyst		SD NASA				8/2/20			Area Typ PHF	be	Other		-		. ÷
Jurisdiction				Time F			AM Pk-I	_		Devied	0.85				-
Urban Street		NASA Pkwy				2035		_	Analysis		1> 7:				-
Intersection		NASAPkwy at Com				1. Nas	sa Pkwy	at Spa	ace Com	merce \	Nay - 2	035 A		11	ſ
Project Descrip	tion	4324.03 KSC Space	e Comn	ierce W	ay	_			_					1414	Y P L
Demand Inform	nation				EB		1	WE	3	1.1	NB		1	SE	3
Approach Move	ement			L	Т	R	L L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h				276	1010	0	76		81		26	1	\mathbf{T}	
								ر میں اور اور اور اور اور اور اور اور اور اور	ر بر از ار ار ار ار ار ار ار ار ار ار ار ار ار						
Signal Informa	ation				6		_						~		
Cycle, s	77.6	Reference Phase	2		l é	¦≓ k °		2				4			
Offset, s	0	Reference Point	End	Green	0.0	61.5	5.6	0.0	0.0	0.0	_		2		s ~
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0	0.0	0.0		5	7 6		7 8
							_								
Timer Results				EBL		EBT	WB	4	WBT	NBL	-	NBT	SBL		SBT
Assigned Phas	е			 		6	5	_	2		_	4	 	\rightarrow	
Case Number				<u> </u>	_	7.3	1.0		4.0		_	9.0	<u> </u>	\rightarrow	
Phase Duration	-			<u> </u>	_	67.0	0.0	_	67.0	<u> </u>	_	10.6	<u> </u>	\rightarrow	
Change Period				<u> </u>		5.5	4.0	_	5.5		_	5.0	<u> </u>	\rightarrow	
Max Allow Hea	• •	· ·		<u> </u>		3.6	0.0	\rightarrow	3.6			3.0	<u> </u>	-	
Queue Clearan				<u> </u>		55.3		+	2.4	<u> </u>		4.1	<u> </u>	-+-	
Green Extensio		(g/e),s		<u> </u>		6.1	0.0	+	8.4	<u> </u>	_	0.2	<u> </u>	\rightarrow	
Phase Call Pro				<u> </u>		1.00	<u> </u>	+	1.00		_	0.93	<u> </u>		
Max Out Proba	Dility					0.32			0.00			0.00		and a	
Movement Gro	oup Res	ults			EB	_		WB			NB			SE	3
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2		7		14			
Adjusted Flow	Rate (v), veh/h			325	1188	0	89	1	95		31			
		w Rate (s), veh/h/l	n		1781	1547	1527	1651		1661		1560			1
Queue Service					1.6	53.3	0.0	0.4	-	2.1		1.4			
		e Time (gc), s			1.6	53.3	0.0	0.4		2.1		1.4			
Green Ratio (g	/C)				0.79	0.79	0.77	0.79	1	0.07		0.07			
Capacity (c), v					2822	1226	795	2617		240		113			
Volume-to-Cap		itio (X)			0.115	0.969	0.000	0.034	•	0.397		0.271			
Back of Queue	(Q), ft	/In (95 th percentile))		3.9	327.5	0	1.1		37.9		23.8			
Back of Queue	(Q), Ve	eh/In (95 th percenti	ile)		0.2	12.6	0.0	0.0		1.4		0.9			
		RQ) (95 th percent	,		0.00	0.78	0.00	0.00		0.06		0.00			
Uniform Delay	(d1), s	/veh			1.8	7.2	0.0	1.7		34.4		34.1			
Incremental De					0.0	16.0	0.0	0.0		0.4		0.5			
Initial Queue D					0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (d), s/ve	eh			1.9	23.2	0.0	1.7		34.8		34.6			
Level of Servic	e (LOS)				Α	С		Α		С		С			
Approach Dela				18.6	;	В	1.7		A	34.7	'	С	0.0		
Intersection De	-					18	3.9						В		
Multimodal Re					EB			WB			NB			SE	3
		11.00		2.3		В	0.6		Α	2.9		С	2.9	T	С
Pedestrian LOS Bicycle LOS So				1.7	_					_	_	F			

Copyright © 2017 University of Florida, All Rights Reserved.

	псэ	7 Sig						000	mmary	/				
General Information								ntorsoc	tion Info	ormativ	20		*7*1	- F 1.
										0.25	511	- 1		
Agency	LTG		Arrelia	:- D -(-		47		Duration				2		N. N.
Analyst Jurisdiction	SD		-		8/2/20			Area Typ PHF	e	Other			wie	÷
	NASA		Time F		-	PM Pk-ł	_		Devie	0.89				~
Urban Street	NASA Pkwy			sis Year		BI		Analysis		1> 7:		-		
Intersection	NASA Pkwy at Com		File Na		1. Nas	sa Pkwy	at Spa	ace Com	merce V	vay - 2	035 P	-	111	
Project Description	4324.03 KSC Spac	e Comn	nerce w	ay								n	N 1 94 1	180
Demand Information	n			EB			WB	}		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h				38	125	15	144	3	718	<u> </u>	0	<u> </u>	<u> </u>	
, í í														
Signal Information				6								~ 		
Cycle, s 59.5	Reference Phase	2		l è	T⊨ °		2							Y
Offset, s 0	Reference Point	End	Green	10	27.2	16.8	0.0	0.0	0.0	_	1	2	3	4
Uncoordinated Yes	Simult. Gap E/W	On	Yellow		4.5	3.5	0.0	0.0	0.0					
Force Mode Fixe	d Simult. Gap N/S	On	Red	1.0	1.0	1.5	0.0	0.0	0.0		5	Y 6	7	8
Timer Results			EBL	-	EBT	WB		WBT	NBL		NBT	SBL		SBT
Assigned Phase					6	5		2		_	4		_	
Case Number					7.3	1.0		4.0			9.0			
Phase Duration, s					32.7	5.0		37.7		_	21.8		_	
Change Period, (Y+	•				5.5	4.0	_	5.5		_	5.0		\rightarrow	
Max Allow Headway				_	3.4	2.9		3.4		_	2.9		_	
Queue Clearance Tin			_	_	5.2	2.3		24.9		_	15.0		_	
Green Extension Tim				_	7.7	0.0	_	7.1		_	1.7		_	
Phase Call Probabilit	у				1.00	0.24		1.00			1.00		\rightarrow	
Max Out Probability					0.00	0.00		0.05			0.00			
Movement Group R	esults			EB			WB			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement				6	16	5	2		7		14			1
Adjusted Flow Rate (v), veh/h			43	140	17	1621		807		0			1
	Flow Rate (s), veh/h/l	n		1766	1560	1781	1781		1730		1572			1
Queue Service Time				0.4	3.2	0.3	22.9		13.0		0.0			1
Cycle Queue Clearar	nce Time (g c), s			0.4	3.2	0.3	22.9		13.0		0.0			1
Green Ratio (g/C)				0.46	0.46	0.51	0.54		0.28		0.30			
Capacity (c), veh/h				1616	714	771	1926		980		472			
Volume-to-Capacity F	Ratio (X)			0.026	0.197	0.022	0.842		0.823		0.000			
Back of Queue (Q),	ft/In (95 th percentile))		5	36.6	3.3	243.9		193.4		0			
Back of Queue (Q),	veh/In (95 th percent	ile)		0.2	1.4	0.1	9.6		7.6		0.0			
Queue Storage Ratio	(RQ) (95 th percent	tile)		0.00	0.09	0.01	0.00		0.32		0.00			
Uniform Delay (d 1),	s/veh			8.9	9.7	7.4	11.6		20.0		0.0			
Incremental Delay (d	/ 2), s/veh			0.0	0.1	0.0	1.1		0.7		0.0			
	d 3), s/veh			0.0	0.0	0.0	0.0		0.0		0.0			
Initial Queue Delay (t b			8.9	9.8	7.4	12.7		20.7		0.0			
Initial Queue Delay (Control Delay (<i>d</i>), s	ven			Α	Α	Α	В		С					
				<u> </u>										
Control Delay (d), s	S)		9.6	_	Α	12.7	7	В	20.7		С	0.0		
Control Delay (d), s Level of Service (LOS	S) h / LOS		9.6	_	A	12.7 4.9	7	В	20.7			0.0 B		
Control Delay (d), si Level of Service (LOS Approach Delay, s/ve Intersection Delay, s/	S) h / LOS		9.6	_	A		7	В	20.7					
Control Delay (d), si Level of Service (LOS Approach Delay, s/ve Intersection Delay, s/ Multimodal Results	S) eh / LOS veh / LOS			EB	A 14	1.9	WB			NB		B	SB	
Control Delay (d), si Level of Service (LOS Approach Delay, s/ve Intersection Delay, s/	S) hh / LOS veh / LOS re / LOS		9.6 2.4 0.6	EB	A		WB	B A B	20.7					С

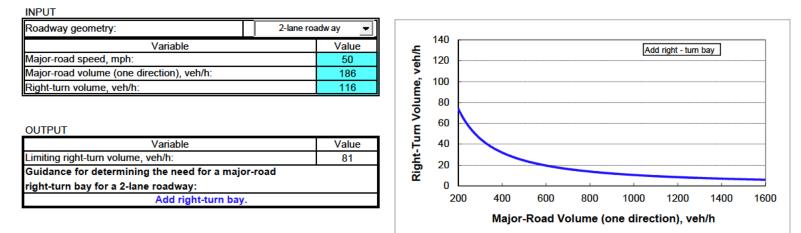
Copyright © 2017 University of Florida, All Rights Reserved.

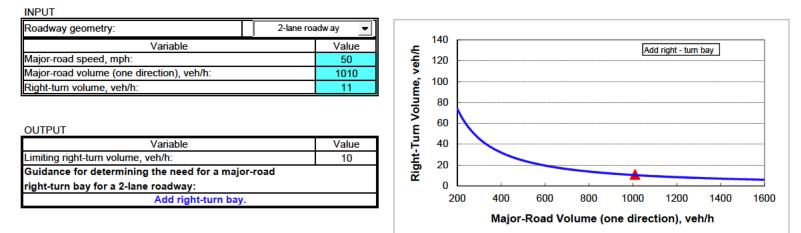
HCS7[™] Streets Version 7.2.1

APPENDIX K NCHRP-457 Turn Lane Warrant Shets

Figure 2 - 5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

0 1readings (English)


Variable	Value
85 th percentile speed, mph:	50
Percent of left-turns in advancing volume (V _A), %:	70%
Advancing volume (V _A), veh/h:	467
Opposing volume (V _o), veh/h:	181
OUTPUT Variable	Value
	Value 265
Variable	265


CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane , s:	1.9

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Figure 2 - 6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

